Advertisement

An Interactive Algorithm for Decomposing: The Parametric Space in Fuzzy Multi-Objective Dynamic Programming Problems

  • Mahmoud A. Abo-Sinna
  • A. H. Amer
  • Hend H. EL Sayed
Part of the Springer Optimization and Its Applications book series (SOIA, volume 16)

Abstract

The aim of this chapter is to study the stability of multi-objective dynamic programming (MODP) problems with fuzzy parameters in the objective functions and in the constraints. These fuzzy parameters are characterized by fuzzy numbers. For such problems, the concept and notion of the stability set of the first kind in parametric nonlinear programming problems are redefined and analyzed qualitatively under the concept of α-Pareto optimality. An interactive fuzzy decision-making algorithm for the determination of any subset of the parametric space that has the same corresponding α-Pareto optimal solution is proposed. A numerical example is given to illustrate the method developed in the chapter.

Key words

Fuzzy sets Monte Carlo simulation grey-related analysis data mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abo-Sinna, M.A., and Hussein, M.L., 1994, An algorithm for decomposing the parametric space in multiobjective dynamic programming problems, European Journal of Operation Research, 73: 532-538.zbMATHCrossRefGoogle Scholar
  2. Abo-Sinna, M.A., and Hussein, M.L., 1995, An Algorithm for generating efficient solutions of multiobjective dynamic programming problems, European Journal of Operation Research, 80: 156-165.zbMATHCrossRefGoogle Scholar
  3. Abo-Sinna, M.A., 1998, stability of multiobjective dynamic programming problems with fuzzy parameters, The Journal of Fuzzy Mathematics, 6(4): 891-904.zbMATHMathSciNetGoogle Scholar
  4. Abo-Sinna, M.A., 2002, Generating Į-pareto optimal solution to multiobjective nonlinear programming problems with fuzzy parameters: a decomposition method, The Journal of Fuzzy Mathematics, 10(1): 423-439.MathSciNetGoogle Scholar
  5. Abo-Sinna, M.A., 2004, Multiple objective (fuzzy) dynamic programming problems: a survey and some applications, The Journal of Applied Mathematics and Computation, 157: 861-888.zbMATHCrossRefMathSciNetGoogle Scholar
  6. Abo-Sinna, M.A., Extension of TOPSIS for multiobjective dynamic programming problems under Fuzziness, Advances in Modeling and Analysis, 37.Google Scholar
  7. Abo-Sinna, M.A., 1994, A multiobjective routing problem under fuzziness, Engineering Optimization, 23: 91-98.CrossRefGoogle Scholar
  8. Bellman, R.E., 1957, Dynamic Programming, Princeton University Press, Princeton, NJ.Google Scholar
  9. Bellman, R.E., and Zadeh, L.A., 1970, Decision-making in a fuzzy environment, Management Science, 17(14): 141-164.MathSciNetGoogle Scholar
  10. Bellman, R.E., and Dreyfus, S.E., 1962, Applied dynamic programming, Princeton University Press, Princeton, NJ.zbMATHGoogle Scholar
  11. Caplin, D.A., and Kornbluth, J.S.H., 1957, Multiobjective Investment Planning Under Uncertainty, Omega, 3: 423-441.CrossRefGoogle Scholar
  12. Carraway, R.L., Morin, Th., and Moskowitz, H., 1990, Generalized dynamic programming for multicriteria optimization, European Journal of Operational Research, 44: 95-104.zbMATHCrossRefMathSciNetGoogle Scholar
  13. Chankong, V., and Haimes, Y.Y., 1983, Multiobjective Decision-Making: Theory and Methodology, North-Holland, Amsterdam.zbMATHGoogle Scholar
  14. Chankong, V., and Haimes, Y.Y., and Gemperline, D.M., 1981, A multiobjective dynamic programming method for capacity Expansion, IEEE Transactions on Automatic Control, 26(5): 1195-1207.zbMATHCrossRefMathSciNetGoogle Scholar
  15. Cohon, J.L., 1978, Multiobjective Programming and Planning, Academic Press, New York.zbMATHGoogle Scholar
  16. Dauer, J.P., and Osman, M.S.A., 1985, Decomposition of the parametric space in multiobjective convex programs using the Generalized Tchebycheff Norm, Journal of Mathematical Analysis and Applications, 107(1): 156-166.zbMATHCrossRefMathSciNetGoogle Scholar
  17. Dengfeng, L., and Chuntian, C., 2004, Stability on multiobjective dynamic programming problems with fuzzy parameters in the objective functions and in the constraints, European Journal of Operational Research, 158: 678-696.zbMATHCrossRefMathSciNetGoogle Scholar
  18. Dubois, D., and Prade, H., 1980, Fuzzy Sets and Systems: Theory and Applicatons, Academic Press, New York.Google Scholar
  19. Esogbue, A.O., and Bellman, R.E., 1984, Fuzzy dynamic programming and its extensions, TIMS/Studies in the Management Sciences, 20: 147-167.MathSciNetGoogle Scholar
  20. Esogbue, A.O., 1983, Dynamic programming, fuzzy sets, and the modeling of R & D management control systems, IEEE Transactions on System Man and Cybernetics SMC, 13 (1): 18-30. zbMATHMathSciNetGoogle Scholar
  21. Freimer, M., and Yu, P.L., 1976, Some new results on compromise solutions for group decision problems, Management Science, 22(6): 688-693.zbMATHCrossRefMathSciNetGoogle Scholar
  22. Gass, S., and Saaty, T., 1955, The Computational Algorithm for the parametric objective function, Naval Research Logistic Quarterly, 2: 39-45.CrossRefMathSciNetGoogle Scholar
  23. Haimes, Y.Y., Lasdon, L.S., and Wismar, D.A., 1971, On a bicriterion formulation of the problems of integrated system identification and system optimization, IEEE Transactions on Systems, Man and Cybernetics, 1(3): 296-297.zbMATHCrossRefGoogle Scholar
  24. Henig, M.I., 1983, Vector-valued Dynamic Programming, SIAM Journal on Control and Optimization, 21(3): 490-499.zbMATHCrossRefMathSciNetGoogle Scholar
  25. Hillier, F.S., and Lieberman, G.J., 1986, Introduction to Operations Research, 4th ed., Holden-Day, San Francisco, CA.zbMATHGoogle Scholar
  26. Hussein, M.L., and Abo Sinna, M.A., 1993, Decomposition of multiobjective programming problems by hybrid Fuzzy dynamic programming, Fuzzy Sets and Systems, 60: 25-32.zbMATHCrossRefMathSciNetGoogle Scholar
  27. Hussein, M.L., and Abo Sinna, M.A., 1995, A Fuzzy Dynamic Approach to the Multicriterion Resource Allocation Problem, Fuzzy Sets and Systems, 89: 115-124.CrossRefMathSciNetGoogle Scholar
  28. Hwang, C.L., and Yoon, K., 1981, Multiple Attribute Decision Making: Methods and Applications, Springer-Verlag, Heidelberg.Google Scholar
  29. Kacprzyk, J., and Orlovski, S.A., (eds), 1987, Optimization Models Using Fuzzy sets and possibility Theory, Reidel, Dordrecht.Google Scholar
  30. Larson, R., and Casti, J., 1978, Principle of Dynamic Programming, Part I: Basic Analysis And Computational Methods, Marcel Dekker, New York.Google Scholar
  31. Larson, R., and Casti, J., 1982, Principle of Dynamic Programming, Part Ii: Advanced Theory and Applications, Marcel Dekker, New York.Google Scholar
  32. Lai, Y.J., and Hwang, C.L., 1992, A New Approach to some Possibilistic Linear Programming Problems. Fuzzy Sets and Systems, 49: 121-134.CrossRefMathSciNetGoogle Scholar
  33. Lai, Y.-J., Liu, T.-J., and Hwang, C.L., 1994, TOPSIS for MODM, European Journal of Operation Research, 76: 486-500.zbMATHCrossRefGoogle Scholar
  34. Mangasarian, O.L., 1969, Nonlinear Programming, Mc Graw-Hill, New York.zbMATHGoogle Scholar
  35. Mine, H., and Fukushima, M., 1979, Decomposition of multiple criteria mathematical programming by dynamic programming, International Journal of System Science, 10 (15): 557-566.zbMATHCrossRefMathSciNetGoogle Scholar
  36. Orlovski, S., 1984, Multiobjective programming problem with fuzzy parameters, Control Cybernet, 13(3): 175-183.zbMATHMathSciNetGoogle Scholar
  37. Osman, M., 1977, Qualitative analysis of basic notions in parametric convex programming. I. Parameters in the constraints, Applied Mathematics, 22: 318-332.zbMATHMathSciNetGoogle Scholar
  38. Osman, M., 1977, Qualitative analysis of basic notions in parametric convex programming. II. Parameters in the objective function, Applied Mathematics, 22: 333-348.zbMATHMathSciNetGoogle Scholar
  39. Osman, M., and Dauer, J., 1983, Characterization of Basic Notions in Multiobjective Convex Programming Problems, Technical Report, Lincoln, NE.Google Scholar
  40. Osman, M., and El-Banna, A., 1993, Stability of multiobjective of nonlinear programming with fuzzy parameters, Mathematics and Computers in Simulation, 35: 321-326.CrossRefMathSciNetGoogle Scholar
  41. Rockafellar, R., 1967, Daulity and stability in external problems involving convex functions, Pacific Journal on Mathematics, 21: 167-181.zbMATHMathSciNetGoogle Scholar
  42. Saad, O.M., 1995, Stability on multiobjective linear programming problems with fuzzy parameters, Fuzzy Sets and Systems, 74: 207-215.zbMATHCrossRefMathSciNetGoogle Scholar
  43. Sakawa, M., and Yano, H., 1989, Interactive decision making for multiobjective nonlinear programming problems with fuzzy parameters, Fuzzy Sets and Systems, 29(3): 315-326. zbMATHCrossRefMathSciNetGoogle Scholar
  44. Sakawa, M., and Yano, H., 1990, An interactive fuzzy satisficing method for generalized multiobjective linear programming problems with fuzzy parameters, Fuzzy Sets and Systems, 35: 125-142.zbMATHCrossRefMathSciNetGoogle Scholar
  45. Su, C.C., and Hsu, Y.Y., 1991, Fuzzy dynamic programming: an application to unit commitment, IEEE Transactions on Power Systems PS., 6: 1231-1237.CrossRefGoogle Scholar
  46. Tauxe, G.W., Inman, R.R., and Mades, D.M., 1979, Multiobjective dynamic programming with application to reservoir, Water Resource Research, 5: 1403-1408.CrossRefGoogle Scholar
  47. Tanaka, H., and Asai, K., 1984, Fuzzy linear programming problems with fuzzy numbers, Fuzzy Sets and System, 13(3): 1-10.zbMATHCrossRefMathSciNetGoogle Scholar
  48. Yu, P.L., and Zeleny, M., 1975, The set of all nonídominated solutions in linear cases and a multicriteria simplex method, Journal of Mathematical Analysis and Applications, 49: 430-448.zbMATHCrossRefMathSciNetGoogle Scholar
  49. Yu, P.L., 1974, Cone-convexity, cone extreme points, and nondominated solutions in decision problems with multiobjective, Journal of Optimization Theory and Applications, 14: 319-377.zbMATHCrossRefMathSciNetGoogle Scholar
  50. Yu, P.L. and Seiford, L., 1981, Multi Criteria Analysis, Nijkamp, P., and Spronk, J., (eds.), pp. 235-243, Gower Press, London.Google Scholar
  51. Zadeh, L.A., 1963, Optimality and nonscalar valued performance criteria, IEEE Transactions on Automatic Control, 8(1): 50-60.CrossRefGoogle Scholar
  52. Zeleny, M., 1973, Compromise Programming, in: Multiple Criteria Decision Making, Cochrane, J.L., and Zeleny, M., (eds), pp. 262-300, University of South Carolina, SC.Google Scholar
  53. Zeleny, M., 1982, Multiple Criteria Decision Making, McGraw-Hill, New York.zbMATHGoogle Scholar
  54. Zimmermann, H.J., 1987, Fuzzy Sets, Decision Making, and Expert Systems, Kluwer Academic, Boston, MA.Google Scholar
  55. Zimmermann, H.J., 1985, Fuzzy Sets Theory and its applications, International Series in management science/Operations Research, Kluwer-Nijhoff Rublishing, Dordrecht.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Mahmoud A. Abo-Sinna
    • 1
  • A. H. Amer
    • 2
  • Hend H. EL Sayed
    • 2
  1. 1.Department of Basic Engineering ScienceEL-Menoufia UniversityAL-GharbiaEgypt
  2. 2.Department of MathematicsHelwan UniversityCairoEgypt

Personalised recommendations