Reelin and Cyclin-Dependent Kinase 5

  • Toshio Ohshima

Reelin, an extracellular signaling molecule, and cyclin-dependent kinase 5 (Cdk5), a cytoplasmic kinase, are key regulators of normal brain development, including establishment of the complex brain structure. Recent studies have indicated that both Reelin signaling and Cdk5 are also involved in synaptic plasticity and neurodegeneration. In this chapter, I shall describe the functions of Cdk5 in neuronal migration during brain development and present an overview of the relationship of Cdk5 with Reelin signaling based on analyses of mutant mouse models. I shall also refer to the functions of Reelin signaling and Cdk5 in dendrite development, synaptic plasticity, and neurodegeneration.


Neuronal Migration Collapsin Response Mediator Protein Reeler Mouse ApoE Receptor Facial Motor Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnaud, L., Ballif, B. A., and Cooper, J. A. (2003). Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol. Cell. Biol. 23:9293-9302.CrossRefPubMedGoogle Scholar
  2. Assadi, A. H., Zhang, G., Beffert, U., McNeil, R. S., Renfro, A. L., Niu, S., Quattrocchi, C. C., Antalffy, B. A., Sheldon, M., Armstrong, D. D., Wynshaw-Boris, A., Herz, J., D’Arcangelo, G.., and Clark G.. D. (2003). Interaction of reelin signaling and Lis1 in brain development. Nature Genet. 35:270-276.CrossRefPubMedGoogle Scholar
  3. Baumann, K., Mandelkow, E. M., Biernat, J., Piwnica-Worms, H., and Mandelkow, E. (1993). Abnormal Alzheimer-like phosphorylation of Tau-protein by cyclin-dependent kinases Cdk2 and Cdk5. FEBS Lett. 336:417-424.CrossRefPubMedGoogle Scholar
  4. Beffert, U., Morfini, G., Bock H. H., Reyna, H., Brady, S. T., and Herz, J. (2002). Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3. J. Biol. Chem. 277:49958-49964.CrossRefPubMedGoogle Scholar
  5. Beffert, U., Weeber E. J., Morfini, G., Ko, J., Brady, S. T., Tsai, L.H., Sweatt, D., and Herz J. (2004). Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neu-ronal migration and synaptic transmission. J. Neurosci. 24:1897-1906.CrossRefPubMedGoogle Scholar
  6. Bibb, J. A., Snyder, G. L., Nishi, A., Zhen, Y., Meijer, L., Fienberg, A. A., Tsai, L. H., Kwon, Y. T., Girault, J. A., Czernik, A. J., Huganir, R. L., Hemmings, H. C., Jr., Nairn, A. C., and Greengard, P. (1999). Protein kinase and phosphatase control by distinct phosphorylation sites within a single regulatory protein. Nature 402:669-671.CrossRefPubMedGoogle Scholar
  7. Borrell, V., Del Rio, J. A., Alcantara, S., Derer, M., Martinez, A., D’Arcangelo, G., Nakajima, K., Mikoshiba, K., Derer, P., Curran, T., and Soriano, E. (1999). Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. J. Neurosci. 19:1345-1358.PubMedGoogle Scholar
  8. Brich, J., Shie, F. S., Howell, B. W., Li, R., Tus, K., Wakeland, E. K., Jin, L. W., Mumby, M., Churchill, G., Herz, J., and Cooper, J. A. (2003). Genetic modulation of phosphorylation in the mouse. J. Neurosci. 23:187-192.PubMedGoogle Scholar
  9. Caviness, V. S. (1982). Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H] thymidine autoradiography. Brain Res. 256:293-302.PubMedGoogle Scholar
  10. Chae, T., Kwon, Y. T., Bronson, R., Dikkes, P., Li, E., and Tsai, L. H. (1997). Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures and adult lethality. Neuron 18:29-42.CrossRefPubMedGoogle Scholar
  11. Delalle, I., Bhide, P. G., Caviness, V. S. J., and Tsai, L. H. (1997). Temporal and spatial patterns of expression of p35, a regulatory subunit of cyclin-dependent kinase 5, in the nervous system of the mouse. J. Neurocytol. 26:283-296.CrossRefPubMedGoogle Scholar
  12. Del Rio, J. A., Heimrich, B., Borrell, V., Forster, E., Drakew, A., Alcantara, S., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., Derer, P., Frotscher, M., and Soriano, E. (1997). A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385:70-74.CrossRefPubMedGoogle Scholar
  13. des Portes, V., Pinard, J. M., Billuart, P., Vinet, M. C., Koulakoff, A., Carrie, A., Gelot, A., Dupuis, E., Motte, J., Berwald-Netter, Y., Catala, M., Kahn, A., Beldjord, C., and Chelly, J. (1998). A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92:51-61.CrossRefPubMedGoogle Scholar
  14. Drakew, A., Deller, T., Heimrich, B., Gebhardt, C., Del Turco, D., Tielsch, A., Forster, E., Herz, J., and Frotscher, M. (2002). Dentate granule cells in reeler mutants and VLDLR and ApoER2 knockout mice. Exp. Neurol. 176:12-24.CrossRefPubMedGoogle Scholar
  15. Fox, J. W., Lamperti, E. D., Eksioglu, Y. Z., Hong, S. E., Feng, Y., Graham, D. A., Scheffer, I.E., Dobyns, W. B., Hirsch, B. A., Radtke, R. A., Berkovic, S. F., Huttenlocher, P. R., and Walsh, C. A. (1998). Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21:1315-1325.CrossRefPubMedGoogle Scholar
  16. Gilmore, E. C., Ohshima, T., Goffinet, A. M., Kulkarni, A. B., and Herrup, K. (1998). Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J. Neurosci. 18:6370-6377.PubMedGoogle Scholar
  17. Gleeson, J. G., Allen, K. M., Fox, J. W., Lamperti, E. D., Berkovic, S., Scheffer, I., Cooper, E. C., Dobyns, W. B., Minnerath, S. R., Ross, M. E., and Walsh, C. A. (1998). Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92:63-72.CrossRefPubMedGoogle Scholar
  18. Goffinet, A. M. (1984). Events governing organization of postmigratory neurons: studies on brain development in normal and reeler mice. Brain Res. Rev. 7:261-296.Google Scholar
  19. Hellmich, M. R., Pant, H. C., Wada, E., and Battey, J. F. (1992). Neuronal cdc2-like kinase: a CDC2-related protein kinase with predominantly neuronal expression. Proc. Natl. Acad. Sci. USA 89:10867-10871.CrossRefPubMedGoogle Scholar
  20. Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyro-sine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481-489.CrossRefPubMedGoogle Scholar
  21. Hoe, H. S., Tran, T. S., Matsuoka, Y., Howell, B. W., and Rebeck, G. W. (2006). Dab1 and reelin effects on APP and ApoEr2 trafficking and processing. J. Biol. Chem. 281:35176-35185.CrossRefPubMedGoogle Scholar
  22. Homayouni, R., Rice, D. S., Sheldon, M., and Curran, T. (1999). Disabled-1 binds to the cytoplas-mic domain of amyloid precursor-like protein 1. J. Neurosci. 19:7507-7515.PubMedGoogle Scholar
  23. Howell, B. W., Herrick, T. M., and Cooper, J. A. (1999). Reelin-induced tyrosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13:643-648.CrossRefPubMedGoogle Scholar
  24. Iijima, K., Ando, K., Takeda, S., Satoh, Y., Seki, T., Itohara, S., Greengard, P., Kirino, Y., Nairn, A. C., and Suzuki, T. (2000). Neuron-specific phosphorylation of Alzheimer’s -amyloid pre-cursor protein by cyclin-dependent kinase 5. J. Neurochem. 75:1085-1091.CrossRefPubMedGoogle Scholar
  25. Keshvara, L., Magdaleno, S., Benhayon, D., and Curran, T. (2002). Cyclin-dependent kinase 5 phosphorylates disabled 1 independently of reelin signaling. J. Neurosci. 22:4869-4877.PubMedGoogle Scholar
  26. Ko, J., Humbert, S., Brorson, T., Takahashi, S., Kulkarni, A. B., Li, E., and Tsai, L. H. (2001). p35 and p39 are essential for Cdk5 function during neurodevelopment. J. Neurosci. 21:6758-6771.PubMedGoogle Scholar
  27. Kobayashi, S., Ishiguro, K., Omori, A., Takamatsu, M., Arioka, M., Imahori, K., and Uchida, T. (1993). Cdc2-related kinase PSSALRE/Cdk5 is homologous with the 30 kDa subunit of tau protein kinase II, a proline-directed protein kinase associated with microtubule. FEBS Lett. 335:171-175.CrossRefPubMedGoogle Scholar
  28. Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M., and Tsai, L. H. (2000). Regulation of the N-cad-herin-mediated adhesion by the p35/Cdk5 kinase. Curr. Biol. 10:363-372.CrossRefPubMedGoogle Scholar
  29. Lee, M. S., Kao, S. C., Lemere, C. A., Xia, W., Tseng, H. C., Zhou, Y., Neve, R., Ahlijanian, M. K., and Tsai, L. H. (2003). APP processing is regulated by cytoplasmic phosphorylation. J. Cell. Biol. 163:83-95.CrossRefPubMedGoogle Scholar
  30. Lew, J., Huang, Q. Q., Qi, Z., Winkfein, R. J., Aebersold, R., Hunt, T., and Wang J. H. (1994). Neuronal cdc2-like kinase is a complex of cyclin-dependent kinase 5 and a novel brain-specific regulatory subunit. Nature 371:423-425.CrossRefPubMedGoogle Scholar
  31. Li, B. S., Sun, M. K., Zhang, L., Takahashi, S., Ma, W., Vinade, L., Kulkarni, A. B., Brady, R.O., and Pant, H. C. (2001). Regulation of NMDA receptors by cyclin-dependent kinase-5.Proc. Natl. Acad. Sci. USA 98:12742-12747.CrossRefGoogle Scholar
  32. Mariani, J., Crepel, F., Mikoshiba, K., Changeux, J. P., and Sotelo, C. (1977). Anatomical, physi-ological and biochemical studies of the cerebellum from Reeler mutant mouse. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 281:1-28.CrossRefGoogle Scholar
  33. Matsubara, M., Kusubata, M., Ishiguro, K., Uchida, T., Titani, K., and Taniguchi, H. (1996). Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J. Biol. Chem. 271:21108-21113.CrossRefPubMedGoogle Scholar
  34. Meyerson, M., Enders, G. H., Wu, C. L., Su, L. K., Gorka, C., Nelson, C., Harlow, E., and Tsai, L. H. (1992). A family of human CDC2-related protein kinases. EMBO J. 11:2909-2917.PubMedGoogle Scholar
  35. Morabito, M. A., Sheng, M., and Tsai, L. H. (2004). Cyclin-dependent kinase 5 phosphorylates the N-terminal domain of the postsynaptic density protein PSD-95 in neurons. J. Neurosci. 24:865-876.CrossRefPubMedGoogle Scholar
  36. Morfini, G., Szebenyim, G., Brown, H., Pant, H. C., Pigino, G., DeBoer, S., Beffert, U., and Brady, S. T. (2004). A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J. 23:2235-2245.CrossRefPubMedGoogle Scholar
  37. Niethammer, M., Smith, D. S., Ayala, R., Peng, J., Ko, J., Lee, M. S., Morabito, M., and Tsai, L.H. (2000). NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28:697-711.CrossRefPubMedGoogle Scholar
  38. Nikolic, M., Dudek, H., Kwon, Y. T., Ramos, Y. F. M., and Tsai, L. H. (1996). The Cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 10:816-825.CrossRefPubMedGoogle Scholar
  39. Nikolic, M., Chou, M. M., Lu, W., Mayer, B. J., and Tsai, L. H. (1998). The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395:194-198.CrossRefPubMedGoogle Scholar
  40. Niu, S., Renfro, A., Quattrocchi, C. C., Sheldon, M., and D’Arcangelo, G. (2004). Reelin pro-motes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 41:71-84.CrossRefPubMedGoogle Scholar
  41. Ohshima, T., and Mikoshiba, K. (2002). Reelin signaling and Cdk5 in the control of neuronal positioning. Mol. Neurobiol. 26:153-166.CrossRefPubMedGoogle Scholar
  42. Ohshima, T., Ward, J. M., Huh, C. G., Longenecker, G., Veeranna, Pant, H. C., Brady, R. O., Martin, L. J., and Kulkarni, A. B. (1996). Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. USA 93:11173-11178.CrossRefPubMedGoogle Scholar
  43. Ohshima, T., Gilmore, E. C., Longenecker, G., Jacobowitz, D. M., Brady, R. O., Herrup, K., and Kulkarni, A. B. (1999). Migration defects of Cdk5(-/-) neurons in the developing cerebellum is cell autonomous. J. Neurosci. 19:6017-6026.PubMedGoogle Scholar
  44. Ohshima, T., Ogawa, M., Veeranna, Hirasawa, M., Longenecker, G., Ishiguro, K., Pant, H. C., Brady, R. O., Kulkarni, A. B., and Mikoshiba, K. (2001). Synergistic contributions of cyclin-dependent kinase 5/p35 and reelin/Dab1 to the positioning of cortical neurons in the develop-ing mouse brain. Proc. Natl. Acad. Sci. USA 98:2764-2769.CrossRefPubMedGoogle Scholar
  45. Ohshima, T., Ogawa, M., Takeuchi, K., Takahashi, S., Kulkarni, A. B., and Mikoshiba, K. (2002). Cyclin-dependent kinase 5/p35 contributes synergistically with reelin/Dab1 to the positioning of facial branchiomotor and inferior olive neurons in the developing mouse hindbrain. J. Neurosci. 22:4036-4044.PubMedGoogle Scholar
  46. Ohshima, T., Ogura, H., Tomizawa, K., Hayashi, K., Suzuki, H., Saito, T., Kamei, H., Nishi, A., Bibb, J. A., Hisanaga, S., Matsui, H., and Mikoshiba, K. (2005). Impairment of hippocampal long-term depression and defective spatial learning and memory in p35-/- mice. J. Neurochem. 94:917-925.CrossRefPubMedGoogle Scholar
  47. Ohshima, T., Suzuki, H., Morimura, T., Ogawa, M., and Mikoshiba, K. (2007). Modulation of reelin signaling by cyclin-dependent kinase 5. Brain Res. 1140:84-95.CrossRefPubMedGoogle Scholar
  48. Olson, E C., Kim, S., and Walsh, C. A. (2006). Impaired neuronal positioning and dendritogenesis in the neocortex after cell-autonomous Dab1 suppression. J. Neurosci. 26:1767-1775.CrossRefPubMedGoogle Scholar
  49. Paglini, G., Pigino, G., Kunda, P., Morfini, G., Maccioni, R., Quiroga, S., Ferreira, A., and Caceres, A. (1998). Evidence for the participation of the neuron-specific CDK5 activator P35 during laminin-enhanced axonal growth. J. Neurosci. 18:9858-9869.PubMedGoogle Scholar
  50. Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., and Tsai, L. H. (1999). Conversion of p35 to p25 de-regulates Cdk5 activity and promotes neurodegeneration. Nature 402:615-622.CrossRefPubMedGoogle Scholar
  51. Paudel, H. K., Lew, J., Ali, Z., and Wang, J. H. (1993). Brain proline-directed protein kinase phosphorylates tau on sites that are abnormally phosphorylated in tau associated with Alzheimer’s paired helical filaments. J. Biol. Chem. 268:23512-23518.PubMedGoogle Scholar
  52. Rashid, T., Banerjee, M., and Nikolic, M. (2001). Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J. Biol. Chem. 276:49043-49052.CrossRefPubMedGoogle Scholar
  53. Reiner, O., Carrozzo, R., Shen, Y., Wehnert, M., Faustinella, F., Dobyns, W. B., Caskey, C. T., and Ledbetter, D. H. (1993). Isolation of a Miller-Dieker lissencephaly gene containing G-protein-subunit-like repeats. Nature 364:717-721.CrossRefPubMedGoogle Scholar
  54. Sasaki, S., Shionoya, A., Ishida, M., Gambello, M. J., Yingling, J., Wynshaw-Boris, A., and Hirotsune, S. (2000). A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the devel-oping and adult nervous system. Neuron 28:681-696.CrossRefPubMedGoogle Scholar
  55. Sheppard, A. M., and Pearlman, A. L. (1997). Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J. Comp. Neurol. 378:173-179.CrossRefPubMedGoogle Scholar
  56. Shuang, R., Zhang, L., Fletcher, A., Groblewski, G. E., Pevsner, J., and Stuenkel, E. L. (1998). Regulation of Munc18/syntaxin 1A interaction by cyclin-dependent kinase 5 in nerve endings. J. Biol. Chem. 273:4957-4966.CrossRefPubMedGoogle Scholar
  57. Stanfield, B. B., and Cowan, W. M. (1979). The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J. Comp. Neurol. 185:393-422.CrossRefPubMedGoogle Scholar
  58. Takahashi, S., Saito, T., Hisanaga, S., Pant, H. C., and Kulkarni, A. B. (2003). Tau phosphoryla-tion by cyclin-dependent kinase 5/p39 during brain development reduces its affinity for micro-tubules. J. Biol. Chem. 278:10506-10515.CrossRefPubMedGoogle Scholar
  59. Takashima, A., Murayama, M., Yasutake, K., Takahashi, H., Yokoyama, M., and Ishiguro, K. (2001). Involvement of cyclin dependent kinase 5 activator p25 on tau phosphorylation in mouse brain. Neurosci. Lett. 306:37-40.CrossRefPubMedGoogle Scholar
  60. Tan, T. C., Valova, V. A., Malladi, C. S., Graham, M. E., Berven, L. A., Jupp, O. J., Hansra, G., McClure, S. J., Sarcevic, B., Boadle, R. A., Larsen, M. R., Cousin, M. A., and Robinson, P. J. (2003). Cdk5 is essential for synaptic vesicle endocytosis. Nature Cell Biol. 5:701-710.CrossRefPubMedGoogle Scholar
  61. Tanaka, T., Serneo, F. F., Tseng, H. C., Kulkarni, A. B., Tsai, L. H., and Gleeson, J. G. (2004). Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration. Neuron 41:215-227.CrossRefPubMedGoogle Scholar
  62. Tang, D., Yeung, J., Lee, K. Y., Matsushita, M., Matsui, H., Tomizawa, K., Hatase, O., and Wang, J. H. (1995). An isoform of the neuronal cyclin-dependent kinase 5 (cdk5) activator. J. Biol. Chem. 270:26897-26903.CrossRefPubMedGoogle Scholar
  63. Tomizawa, K., Ohta, J., Matsushita, M., Moriwaki, A., Li, S. T., Takei, K., and Matsui, H. (2002). Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activity. J. Neurosci. 22:2590-2597.PubMedGoogle Scholar
  64. Tomizawa, K., Sunada, S., Lu, Y. F., Oda, Y., Kinuta, M., Ohshima, T., Saito, T., Wei, F. Y., Matsushita, M., Li, S. T., Tsutsui, K., Hisanaga, S., Mikoshiba, K., Takei, K., and Matsui, H. (2003). Cophosphorylation of amphiphysin I and dynamin I by Cdk5 regulates clathrin-medi-ated endocytosis of synaptic vesicles. J. Cell Biol. 163:813-824.CrossRefPubMedGoogle Scholar
  65. Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.CrossRefPubMedGoogle Scholar
  66. Tsai, L. H., Takahashi, T., Caviness, V. S., Jr., and Harlow, E. (1993). Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development 119:1029-1040.PubMedGoogle Scholar
  67. Tsai, L. H., Delalle, I., Caviness, V. S., Jr., Chae, T., and Harlow, E. (1994). p35 is a neural-spe-cific regulatory subunit of cyclin-dependent kinase 5. Nature 371:419-423.CrossRefPubMedGoogle Scholar
  68. Uchida, Y., Ohshima, T., Sasaki, Y., Suzuki, H., Yanai, S., Yamashita, N., Nakamura, F., Takei, K., Ihara, Y., Mikoshiba, K., Kolattukudy, P., Honnorat, J., and Goshima, Y. (2005).Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3β phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells 10:165-179.CrossRefPubMedGoogle Scholar
  69. Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., and Herz, J. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277:39944-39952.CrossRefPubMedGoogle Scholar
  70. Wenzel, H. J., Robbins, C. A., Tsai, L. H., and Schwartzkroin, P. A. (2001). Abnormal morpho-logical and functional organization of the hippocampus in a p35 mutant model of cortical dys-plasia associated with spontaneous seizure. J. Neurosci. 21:983-998.PubMedGoogle Scholar
  71. Wu, D. C., Yu, Y. P., Lee, N. T., Yu, A. C., Wang, J. H., and Han, Y. F. (2000). The expression of Cdk5, p35, p39, and Cdk5 kinase activity in developing, adult, and aged rat brains. Neurochem. Res. 25:923-929.CrossRefPubMedGoogle Scholar
  72. Xiong, W., Pestell, R., and Rosner, M. R. (1997). Role of cyclins in neuronal differentiation of immortalized hippocampal cells. Mol. Cell. Biol. 17:6585-6597.PubMedGoogle Scholar
  73. Yamashita, N., Uchida, Y., Ohshima, T., Hirai, S. I., Nakamura, F., Taniguchi, M., Mikoshiba, K., Honnorat, J., Kolattukudy, P., Thomasset, N., Takei, K., Takahashi, T., and Goshima, Y. (2006). CRMP1 mediates reelin signaling in cortical neuronal migration. J. Neurosci. 26:13357-13362.CrossRefPubMedGoogle Scholar
  74. Yoo, B. C., and Lubec, G. (2001). p25 protein in neurodegeneration. Nature 30:135-147.Google Scholar
  75. Zheng, M., Leung, C. L., and Liem, R. K. (1998). Region-specific expression of cyclin-dependent kinase 5 (Cdk5) and its activators, p35 and p39, in the developing and adult rat central nervous system. J. Neurobiol. 35:141-159.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Toshio Ohshima
    • 1
    • 2
  1. 1.Laboratory for Developmental NeurobiologyRIKEN Brain Science InstituteSaitamaJapan
  2. 2.Laboratory for Molecular Brain Science, Department of Life Science and Medical Bio-ScienceWaseda UniversityTokyoJapan

Personalised recommendations