Advertisement

Reelin/Dab1 Signaling in the Developing Cerebral Cortex

  • Eric C. Olson
  • Christopher A. Walsh

Abstract

Mice lacking the cytoplasmic adapter protein Dab1 (Disabled homolog-1) display histological defects in the central nervous system (CNS) that are essentially indistinguishable from those observed in the reeler mouse. Dab1 is expressed in virtually all Reelin-responsive cells and is rapidly phosphorylated in response to Reelin application. The finding of a near identity in phenotype, coupled with a direct biochemical response to Reelin, has raised great interest in understanding Dab1 function, both as an exemplar of an adapter protein with a profound phenotypic contribution, and as a means of decoding mechanisms of Reelin signaling. What has emerged from these studies is a surprisingly complex picture of Dab1 at the genomic, mRNA, protein, and functional levels. This chapter will summarize some of the key features of Dab1, and its role as a transducer of the Reelin signal in the developing cerebral cortex.

Keywords

Marginal Zone Reeler Mouse Reelin Signaling Neuronal Position Dab1 Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnaud, L., Ballif, B. A., and Cooper, J. A. (2003a). Regulation of protein tyrosine kinase signal-ing by substrate degradation during brain development. Mol. Cell. Biol. 23:9293-9302.CrossRefPubMedGoogle Scholar
  2. Arnaud, L., Ballif, B. A., Forster, E., and Cooper, J. A. (2003b). Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr. Biol. 13:9-17.CrossRefPubMedGoogle Scholar
  3. Assadi, A. H., Zhang, G., Beffert, U., McNeil, R. S., Renfro, A. L., Niu, S., Quattrocchi, C. C., Antalffy, B. A., Sheldon, M., Armstrong, D. D., Wynshaw-Boris, A., Herz, J., D’Arcangelo, G., and Clark, G. D. (2003). Interaction of reelin signaling and Lis1 in brain development. Nature Genet. 35:270-276.CrossRefPubMedGoogle Scholar
  4. Ballif, B. A., Arnaud, L., and Cooper, J. A. (2003). Tyrosine phosphorylation of disabled-1 is essential for reelin-stimulated activation of Akt and Src family kinases. Brain Res. Mol. Brain Res. 117:152-159.CrossRefPubMedGoogle Scholar
  5. Ballif, B. A., Arnaud, L., Arthur, W. T., Guris, D., Imamoto, A., and Cooper, J. A. (2004). Activation of a Dab1/CrkL/C3G/Rap1 pathway in reelin-stimulated neurons. Curr. Biol. 14:606-610.CrossRefPubMedGoogle Scholar
  6. Bar, I., Tissir, F., Lambert de Rouvroit, C., De Backer, O., and Goffinet, A. M. (2003). The gene encoding disabled-1 (DAB1), the intracellular adaptor of the reelin pathway, reveals unusual complexity in human and mouse. J. Biol. Chem. 278:5802-5812.CrossRefPubMedGoogle Scholar
  7. Beffert, U., Morfini, G., Bock, H. H., Reyna, H., Brady, S. T., and Herz, J. (2002). Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J. Biol. Chem. 277:49958-49964.CrossRefPubMedGoogle Scholar
  8. Blaikie, P., Immanuel, D., Wu, J., Li, N., Yajnik, V., and Margolis, B. (1994). A region in Shc dis-tinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. J. Biol. Chem. 269:32031-32034.PubMedGoogle Scholar
  9. Bock, H. H., and Herz, J. (2003). Reelin activates SRC family tyrosine kinases in neurons. Curr. Biol. 13:18-26.CrossRefPubMedGoogle Scholar
  10. Bock, H. H., Jossin, Y., Liu, P., Forster, E., May, P., Goffinet, A. M., and Herz, J. (2003). Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to reelin signaling and is required for normal cortical lamination. J. Biol. Chem. 278:38772-38779.CrossRefPubMedGoogle Scholar
  11. Bock, H. H., Jossin, Y., May, P., Bergner, O., and Herz, J. (2004). Apolipoprotein E receptors are required for reelin-induced proteasomal degradation of the neuronal adapter protein disabled-1. J. Biol. Chem. 279:33471-33479.CrossRefPubMedGoogle Scholar
  12. Boycott, K. M., Flavelle, S., Bureau, A., Glass, H. C., Fujiwara, T. M., Wirrell, E., Davey, K., Chudley, A. E., Scott, J. N., McLeod, D. R., and Parboosingh, J. S. (2005). Homozygous dele-tion of the very low density lipoprotein receptor gene causes autosomal recessive cerebellar hypoplasia with cerebral gyral simplification. Am. J. Hum. Genet. 77:477-483.CrossRefPubMedGoogle Scholar
  13. Caviness, V. S., Jr., and Sidman, R. L. (1973). Time of origin or corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J. Comp. Neurol. 148:141-151.CrossRefPubMedGoogle Scholar
  14. Chang, B. S., Duzcan, F., Kim, S., Cinbis, M., Aggarwal, A., Apse, K. A., Ozdel, O., Atmaca, M., Zencir, S., Bagci, H., and Walsh, C. A. (2006). The role of RELN in lissencephaly and neu-ropsychiatric disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144:58-63.Google Scholar
  15. Chen, K., Ochalski, P. G., Tran, T. S., Sahir, N., Schubert, M., Pramatarova, A., and Howell, B. W. (2004). Interaction between Dab1 and CrkII is promoted by reelin signaling. J. Cell Sci. 117:4527-4536.CrossRefPubMedGoogle Scholar
  16. D’Arcangelo, G. (2006). Reelin mouse mutants as models of cortical development disorders. Epilepsy Behav. 8:81-90.CrossRefPubMedGoogle Scholar
  17. D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719-723.CrossRefPubMedGoogle Scholar
  18. D’Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon, M., and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24:471-479.CrossRefPubMedGoogle Scholar
  19. Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27:33-44.CrossRefPubMedGoogle Scholar
  20. Falconer, D. (1951). Two new mutants, “trembler” and “reeler,” with neurological actions in the house mouse. J. Genet. 13:192-201.CrossRefGoogle Scholar
  21. Forster, E., Tielsch, A., Saum, B., Weiss, K. H., Johanssen, C., Graus-Porta, D., Muller, U., and Frotscher, M. (2002). Reelin, disabled 1, and beta 1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc. Natl. Acad. Sci. USA 99:13178-13183.CrossRefPubMedGoogle Scholar
  22. Goldowitz, D., Cushing, R. C., Laywell, E., D’Arcangelo, G., Sheldon, M., Sweet, H. O., Davisson, M., Steindler, D., and Curran, T. (1997). Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J. Neurosci. 17:8767-8777.PubMedGoogle Scholar
  23. Gonzalez, J. L., Russo, C. J., Goldowitz, D., Sweet, H. O., Davisson, M. T., and Walsh, C. A. (1997). Birthdate and cell marker analysis of scrambler: a novel mutation affecting cortical development with a reeler-like phenotype. J. Neurosci. 17:9204-9211.PubMedGoogle Scholar
  24. Gonzalez-Billault, C., Del Rio, J. A., Urena, J. M., Jimenez-Mateos, E. M., Barallobre, M. J., Pascual, M., Pujadas, L., Simo, S., Torre, A. L., Gavin, R., Wandosell, F., Soriano, E., and Avila, J. (2005). A role of MAP1B in reelin-dependent neuronal migration. Cereb. Cortex 15:1134-1145.CrossRefPubMedGoogle Scholar
  25. Graus-Porta, D., Blaess, S., Senften, M., Littlewood-Evans, A., Damsky, C., Huang, Z., Orban, P., Klein, R., Schittny, J. C., and Muller, U. (2001). Beta1-class integrins regulate the develop-ment of laminae and folia in the cerebral and cerebellar cortex. Neuron 31:367-379.CrossRefPubMedGoogle Scholar
  26. Hack, I., Bancila, M., Loulier, K., Carroll, P., and Cremer, H. (2002). Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nature Neurosci. 5:939-945.CrossRefPubMedGoogle Scholar
  27. Hammond, V., Howell, B., Godinho, L., and Tan, S. S. (2001). Disabled-1 functions cell autonomously during radial migration and cortical layering of pyramidal neurons. J. Neurosci. 21:8798-8808.PubMedGoogle Scholar
  28. Hartfuss, E., Forster, E., Bock, H. H., Hack, M. A., Leprince, P., Luque, J. M., Herz, J., Frotscher, M., and Gotz, M. (2003). Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 130:4597-4609.CrossRefPubMedGoogle Scholar
  29. Herrick, T. M., and Cooper, J. A. (2002). A hypomorphic allele of dab1 reveals regional differences in reelin-Dab1 signaling during brain development. Development 129:787-796.PubMedGoogle Scholar
  30. Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyro-sine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481-489.CrossRefPubMedGoogle Scholar
  31. Hoffarth, R. M., Johnston, J. G., Krushel, L. A., and van der Kooy, D. (1995). The mouse mutation reeler causes increased adhesion within a subpopulation of early postmitotic cortical neurons. J. Neurosci. 15:4838-4850.PubMedGoogle Scholar
  32. Hong, S. E., Shugart, Y. Y., Huang, D. T., Shahwan, S. A., Grant, P. E., Hourihane, J. O., Martin, N. D., and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26:93-96.CrossRefPubMedGoogle Scholar
  33. Howell, B. W., Gertler, F. B., and Cooper, J. A. (1997a). Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. EMBO J. 16:121-132.CrossRefPubMedGoogle Scholar
  34. Howell, B. W., Hawkes, R., Soriano, P., and Cooper, J. A. (1997b). Neuronal position in the devel-oping brain is regulated by mouse disabled-1. Nature 389:733-737.CrossRefPubMedGoogle Scholar
  35. Howell, B. W., Herrick, T. M., and Cooper, J. A. (1999a). Reelin-induced tryosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13:643-648.CrossRefPubMedGoogle Scholar
  36. Howell, B. W., Lanier, L. M., Frank, R., Gertler, F. B., and Cooper, J. A. (1999b). The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glyco-proteins and to phospholipids. Mol. Cell. Biol. 19:5179-5188.PubMedGoogle Scholar
  37. Howell, B. W., Herrick, T. M., Hildebrand, J. D., Zhang, Y., and Cooper, J. A. (2000). Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development. Curr. Biol. 10:877-885.CrossRefPubMedGoogle Scholar
  38. Huang, Y., Shah, V., Liu, T., and Keshvara, L. (2005). Signaling through disabled 1 requires phos-phoinositide binding. Biochem. Biophys. Res. Commun. 331:1460-1468.CrossRefPubMedGoogle Scholar
  39. Jossin, Y., and Goffinet, A. M.(2001). Reelin does not directly influence axonal growth. J. Neurosci. 21:RC183.PubMedGoogle Scholar
  40. Jossin, Y., and Goffinet, A. M. (2006). The PI3K/Akt/mTor pathway controls brain development in reelin-dependent and independent manners. Society for Neuroscience Abstract 514.8.Google Scholar
  41. Jossin, Y., Ogawa, M., Metin, C., Tissir, F., and Goffinet, A. M. (2003). Inhibition of SRC family kinases and non-classical protein kinases C induce a reeler-like malformation of cortical plate development. J. Neurosci. 23:9953-9959.PubMedGoogle Scholar
  42. Jossin, Y., Ignatova, N., Hiesberger, T., Herz, J., Lambert de Rouvroit, C., and Goffinet, A. M. (2004). The central fragment of reelin, generated by proteolytic processing in vivo, is critical to its function during cortical plate development. J. Neurosci. 24:514-521.CrossRefPubMedGoogle Scholar
  43. Kavanaugh, W. M., and Williams, L. T. (1994). An alternative to SH2 domains for binding tyro-sine-phosphorylated proteins. Science 266:1862-1865.CrossRefPubMedGoogle Scholar
  44. Kavanaugh, W. M., Turck, C.W., and Williams, L. T. (1995). PTB domain binding to signaling proteins through a sequence motif containing phosphotyrosine. Science 268:1177-1179.CrossRefPubMedGoogle Scholar
  45. Keshvara, L., Benhayon, D., Magdaleno, S., and Curran, T. (2001). Identification of reelin-induced sites of tyrosyl phosphorylation on disabled 1. J. Biol. Chem. 276:16008-16014.CrossRefPubMedGoogle Scholar
  46. Kubo, K., Mikoshiba, K., and Nakajima, K. (2002). Secreted reelin molecules form homodimers. Neurosci. Res. 43:381-388.CrossRefPubMedGoogle Scholar
  47. Kuo, G., Arnaud, L., Kronstad-O’Brien, P., and Cooper, J. A. (2005). Absence of Fyn and Src causes a reeler-like phenotype. J. Neurosci. 25:8578-8586.CrossRefPubMedGoogle Scholar
  48. Magdaleno, S., Keshvara, L., and Curran, T. (2002). Rescue of ataxia and preplate splitting by ectopic expression of reelin in reeler mice. Neuron 33:573-586.CrossRefPubMedGoogle Scholar
  49. Margolis, B. (1999). The PTB domain: The name doesn’t say it all. Trends Endocrinol. Metab. 10:262-267.Google Scholar
  50. Meyer, G., Lambert de Rouvroit, C., Goffinet, A. M., and Wahle, P. (2003). Disabled-1 mRNA and protein expression in developing human cortex. Eur. J. Neurosci. 17:517-525.CrossRefPubMedGoogle Scholar
  51. Nadarajah, B., Brunstrom, J. E., Grutzendler, J., Wong, R. O., and Pearlman, A. L. (2001). Two modes of radial migration in early development of the cerebral cortex. Nature Neurosci. 4:143-150.CrossRefPubMedGoogle Scholar
  52. Niu, S., Renfro, A., Quattrocchi, C. C., Sheldon, M., and D’Arcangelo, G. (2004). Reelin pro-motes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 41:71-84.CrossRefPubMedGoogle Scholar
  53. O’Bryan, J. P., Lambert, Q. T., and Der, C. J. (1998). The src homology 2 and phosphotyrosine binding domains of the ShcC adaptor protein function as inhibitors of mitogenic signaling by the epidermal growth factor receptor. J. Biol. Chem. 273:20431-20437.CrossRefPubMedGoogle Scholar
  54. Olson, E. C., Kim, S., and Walsh, C. A. (2006). Impaired neuronal positioning and dendritogene-sis in the neocortex after cell-autonomous Dab1 suppression. J. Neurosci. 26:1767-1775.CrossRefPubMedGoogle Scholar
  55. Pawson, T., and Scott, J. D. (1997). Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075-2080.CrossRefPubMedGoogle Scholar
  56. Pinto Lord, M. C., Evrard, P., and Caviness, V. S., Jr. (1982). Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: a Golgi-EM analysis. Brain Res. 256:379-393.PubMedGoogle Scholar
  57. Pramatarova, A., Ochalski, P. G., Chen, K., Gropman, A., Myers, S., Min, K. T., and Howell, B. W. (2003). Nck beta interacts with tyrosine-phosphorylated disabled 1 and redistributes in reelin-stimulated neurons. Mol. Cell. Biol. 23:7210-7221.CrossRefPubMedGoogle Scholar
  58. Pramatarova, A., Ochalski, P. G., Lee, C. H., and Howell, B. W. (2006). Mouse disabled 1 regulates the nuclear position of neurons in a Drosophila eye model. Mol. Cell. Biol. 26:1510-1517.CrossRefPubMedGoogle Scholar
  59. Reiner, O., Carrozzo, R., Shen, Y., Wehnert, M., Faustinella, F., Dobyns, W. B., Caskey, C. T., and Ledbetter, D. H. (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364:717-721.CrossRefPubMedGoogle Scholar
  60. Rice, D. S., Sheldon, M., D’Arcangelo, G., Nakajima, K., Goldowitz, D., and Curran, T. (1998). Disabled-1 acts downstream of reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125:3719-3729.PubMedGoogle Scholar
  61. Sanada, K., Gupta, A., and Tsai, L. H. (2004). Disabled-1-regulated adhesion of migrating neu-rons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron 42:197-211.CrossRefPubMedGoogle Scholar
  62. Schmid, R. S., Jo, R., Shelton, S., Kreidberg, J. A., and Anton, E. S. (2005). Reelin, integrin and Dab1 Interactions during embryonic cerebral cortical development. Cereb. Cortex. 10: 1632-1636.CrossRefGoogle Scholar
  63. Sheldon, M., Rice, D. S., D’Arcangelo, G., Yoneshima, H., Nakajima, K., Mikoshiba, K., Howell, B. W., Cooper, J. A., Goldowitz, D., and Curran, T. (1997). Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730-733.CrossRefPubMedGoogle Scholar
  64. Sheppard, A. M., and Pearlman, A. L. (1997). Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J. Comp. Neurol. 378:173-179.CrossRefPubMedGoogle Scholar
  65. Songyang, Z., Margolis, B., Chaudhuri, M., Shoelson, S. E., and Cantley, L. C. (1995). The phos-photyrosine interaction domain of SHC recognizes tyrosine-phosphorylated NPXY motif. J. Biol. Chem. 270:14863-14866.CrossRefPubMedGoogle Scholar
  66. Soriano, P., Montgomery, C., Geske, R., and Bradley, A. (1991). Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693-702.CrossRefPubMedGoogle Scholar
  67. Stein, P. L., Lee, H. M., Rich, S., and Soriano, P. (1992). pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 70:741-750.CrossRefPubMedGoogle Scholar
  68. Stein, P. L., Vogel, H., and Soriano, P. (1994). Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice. Genes Dev. 8:1999-2007.CrossRefPubMedGoogle Scholar
  69. Stolt, P. C., Jeon, H., Song, H. K., Herz, J., Eck, M. J., and Blacklow, S. C. (2003). Origins of peptide selectivity and phosphoinositide binding revealed by structures of disabled-1 PTB domain complexes. Structure (Camb.) 11:569-579.CrossRefGoogle Scholar
  70. Stolt, P. C., Vardar, D., and Blacklow, S. C. (2004). The dual-function disabled-1 PTB domain exhibits site independence in binding phosphoinositide and peptide ligands. Biochemistry 43:10979-10987.CrossRefPubMedGoogle Scholar
  71. Strasser, V., Fasching, D., Hauser, C., Mayer, H., Bock, H. H., Hiesberger, T., Herz, J., Weeber, E. J., Sweatt, J. D., Pramatarova, A., Howell, B., Schneider, W. J., and Nimpf, J. (2004). Receptor clustering is involved in reelin signaling. Mol. Cell. Biol. 24:1378-1386.CrossRefPubMedGoogle Scholar
  72. Suetsugu, S., Tezuka, T., Morimura, T., Hattori, M., Mikoshiba, K., Yamamoto, T., and Takenawa, T. (2004). Regulation of actin cytoskeleton by mDab1 through N-WASP and ubiquitination of mDab1. Biochem. J. 384:1-8.CrossRefPubMedGoogle Scholar
  73. Super, H., Del Rio, J. A., Martinez, A., Perez-Sust, P., and Soriano, E. (2000). Disruption of neu-ronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb. Cortex 10:602-613.CrossRefPubMedGoogle Scholar
  74. Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A., and Davisson, M. T. (1996). Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm. Genome 7:798-802.CrossRefPubMedGoogle Scholar
  75. Tabata, H., and Nakajima, K. (2002). Neurons tend to stop migration and differentiate along the cortical internal plexiform zones in the reelin signal-deficient mice. J. Neurosci. Res. 69:723-730.CrossRefPubMedGoogle Scholar
  76. Tanaka, T., Serneo, F. F., Higgins, C., Gambello, M. J., Wynshaw-Boris, A., and Gleeson, J. G. (2004). Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol. 165:709-721.CrossRefPubMedGoogle Scholar
  77. Trommsdorff, M., Borg, J. P., Margolis, B., and Herz, J. (1998). Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273:33556-33560.CrossRefPubMedGoogle Scholar
  78. Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.CrossRefPubMedGoogle Scholar
  79. Uhlik, M. T., Temple, B., Bencharit, S., Kimple, A. J., Siderovski, D. P., and Johnson, G. L. (2005). Structural and evolutionary division of phosphotyrosine binding (PTB) domains.J. Mol. Biol. 345:1-20.CrossRefGoogle Scholar
  80. Utsunomiya-Tate, N., Kubo, K., Tate, S., Kainosho, M., Katayama, E., Nakajima, K., and Mikoshiba, K. (2000). Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proc. Natl. Acad. Sci. USA 97:9729-9734.CrossRefPubMedGoogle Scholar
  81. Ware, M. L., Fox, J. W., Gonzalez, J. L., Davis, N. M., Lambert de Rouvroit, C., Russo, C. J., Chua, S. C., Jr., Goffinet, A. M., and Walsh, C. A. (1997). Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19:239-249.CrossRefPubMedGoogle Scholar
  82. Wynshaw-Boris, A., and Gambello, M. J. (2001). LIS1 and dynein motor function in neuronal migration and development. Genes Dev. 15:639-651.CrossRefPubMedGoogle Scholar
  83. Xu, M., Arnaud, L., and Cooper, J. A. (2005). Both the phosphoinositide and receptor binding activities of Dab1 are required for reelin-stimulated Dab1 tyrosine phosphorylation. Brain Res. Mol. Brain Res. 139:300-305.CrossRefPubMedGoogle Scholar
  84. Yip, Y. P., Capriotti, C., Magdaleno, S., Benhayon, D., Curran, T., Nakajima, K., and Yip, J. W. (2004). Components of the reelin signaling pathway are expressed in the spinal cord. J. Comp. Neurol. 470:210-219.CrossRefPubMedGoogle Scholar
  85. Yun, M., Keshvara, L., Park, C. G., Zhang, Y. M., Dickerson, J. B., Zheng, J., Rock, C. O., Curran, T., and Park, H. W. (2003). Crystal structures of the Dab homology domains of mouse disabled 1 and 2. J. Biol. Chem. 278:36572-36581.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Eric C. Olson
    • 1
  • Christopher A. Walsh
    • 2
  1. 1.Department of Neuroscience and PhysiologySUNY Upstate Medical UniversitySyracuse
  2. 2.Howard Hughes Medical Institute, BIDMC, Division of Genetics, Boston Children’s HospitalHarvard Medical SchoolBoston

Personalised recommendations