Reelin and Pancreatic Cancer

  • Kimberly Walter
  • Michael Goggins

Classically, the RELN gene has been known for its role in neuronal migration and positioning during central nervous system development. Absence of RELN expression results in the characteristic reeler phenotype in rodents, marked by severe defects in cortical layer formation and an uncoordinated, unsteady gait. In humans, loss of reelin expression causes a type of lissencephaly with severe cortical and cerebellar malformation. RELN is also expressed in peripheral tissues, including the liver, kidney, adrenal glands, and pancreas, suggesting an additional role for reelin in development and possibly in structural maintenance of these organs (Smalheiser et al., 2000). Recent findings indicate that RELN is expressed in the normal duct cells of the adult pancreas, and that RELN expression is frequently lost in pancreatic ductal adenocarcinomas and in precursor neoplasms in association with epigenetic silencing (Sato et al., 2006). In vitro studies suggest that loss of RELN contributes to the ability of pancreatic cancer cells to migrate and invade surrounding tissues. These findings support the notion that the effect of reelin pathway status on cell migration may depend on the cell type affected, perhaps depending on the downstream effects of reelin-mediated signaling on the cell’s cytoskeleton. for example, reelin loss stimulates migration in some cell types (Gong et al., 2007), even though the phenotype of RELN gene inactivation in the brain is a failure of migration (Kim et al., 2002; Trommsdorff et al., 1999). Although epigenetic mechanisms appear to be responsible for RELN silencing in pancreatic neoplasms, the mechanism directing this epigenetic silencing of RELN expression is uncertain (Sato et al., 2006).


Pancreatic Cancer Pancreatic Cancer Cell Pancreatic Ductal Adenocarcinoma Pancreatic Cancer Cell Line Epigenetic Silence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anway, M. D., Cupp, A. S., Uzumcu, M., and Skinner, M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466-1469.CrossRefPubMedGoogle Scholar
  2. Bachman, K. E. P. B., Rhee, I., Rajagopalan, H., Herman, J. G., Baylin, S. B., Kinzler, K. W., and Vogelstein, B. (2003). Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene Cancer Cell 3:89-95.CrossRefPubMedGoogle Scholar
  3. Baylin, S. B., and Ohm, J. E. (2006). Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nature Rev. Cancer 6:107-116.CrossRefGoogle Scholar
  4. Blewitt, M. E., Vickaryous, N. K., Paldi, A., Koseki, H., and Whitelaw, E. (2006). Dynamic repro-gramming of DNA methylation at an epigenetically sensitive allele in mice. PLoS Genet. 2:e49.CrossRefPubMedGoogle Scholar
  5. Bock, C., Paulsen, M., Tierling, S., Mikeska, T., Lengauer, T., and Walter, J. (2006). CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet. 2:e26.CrossRefPubMedGoogle Scholar
  6. Cha, T. L., Zhou, B. P., Xia, W., Wu, Y., Yang, C. C., Chen, C. T., Ping, B., Otte, A. P., and Hung, M. C. (2005). Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310:306-310.CrossRefPubMedGoogle Scholar
  7. Di Croce, L., Raker, V. A., Corsaro, M., Fazi, F., Fanelli, M., Faretta, M., Fuks, F., Coco, F. L., Kouzarides, T., Nervi, C., Minucci, S., and Pelicci, P. G. (2002). Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295:1079-1082.CrossRefPubMedGoogle Scholar
  8. Dolinoy, D. C., Weidman, J. R., Waterland, R. A., and Jirtle, R. L. (2006). Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect. 114:567-572.PubMedCrossRefGoogle Scholar
  9. Dong, E., Guidotti, A., Grayson, D. R., and Costa, E. (2007). Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc. Natl. Acad. Sci. USA 104:4676-4681.CrossRefPubMedGoogle Scholar
  10. Egger, G., Liang, G., Aparicio, A., and Jones, P. A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457-463.CrossRefPubMedGoogle Scholar
  11. Fatemi, S. H., Emamian, E. S., Kist, D., Sidwell, R. W., Nakajima, K., Akhter, P., Shier, A., Sheikh, S., and Bailey, K. (1999). Defective corticogenesis and reduction in reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol. Psychiatry 4:145-154.CrossRefPubMedGoogle Scholar
  12. Fatemi, S. H., Earle, J., Kanodia, R., Kist, D., Emamian, E. S., Patterson, P. H., Shi, L., and Sidwell, R. (2002). Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cell. Mol. Neurobiol. 22:25-33.CrossRefPubMedGoogle Scholar
  13. Feinberg, A. P., Ohlsson, R., and Henikoff, S. (2006). The epigenetic progenitor origin of human cancer. Nature Rev. Genet. 7:21-33.Google Scholar
  14. Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., Heine-Suner, D., Cigudosa, J. C., Urioste, M., Benitez, J., Boix-Chornet, M., Sanchez-Aguilera, A., Ling, C., Carlsson, E., Poulsen, P., Vaag, A., Stephan, Z., Spector, T. D., Wu, Y. Z., Plass, C., and Esteller, M. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 102:10604-10609.CrossRefPubMedGoogle Scholar
  15. Frigola, J., Song, J., Stirzaker, C., Hinshelwood, R. A., Peinado, M. A., and Clark, S. J. (2006). Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nature Genet. 38:540-549.CrossRefPubMedGoogle Scholar
  16. Gong, C., Wang, T. W., Huang, H. S., and Parent, J. M. (2007). Reelin regulates neuronal progeni-tor migration in intact and epileptic hippocampus. J. Neurosci. 27:1803-1811. Scholar
  17. Huusko, P., Ponciano-Jackson, D., Wolf, M., Kiefer, J. A., Azorsa, D. O., Tuzmen, S., Weaver, D., Robbins, C., Moses, T., Allinen, M., Hautaniemi, S., Chen, Y., Elkahloun, A., Basik, M., Bova, G. S., Bubendorf, L., Lugli, A., Sauter, G., Schleutker, J., Ozcelik, H., Elowe, S., Pawson, T., Trent, J. M., Carpten, J. D., Kallioniemi, O. P., and Mousses, S. (2004). Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nature Genet. 36:979-983.CrossRefPubMedGoogle Scholar
  18. Ishihara, K., Oshimura, M., and Nakao, M. (2006). CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol. Cell 23:733-742.CrossRefPubMedGoogle Scholar
  19. Ito, K., Ito, M., Elliott, W. M., Cosio, B., Caramori, G., Kon, O. M., Barczyk, A., Hayashi, S., Adcock, I. M., Hogg, J. C., and Barnes, P. J. (2005). Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 352:1967-1976.CrossRefPubMedGoogle Scholar
  20. Keshvara, L., Magdaleno, S., Benhayon, D., and Curran, T. (2002). Cyclin-dependent kinase 5 phosphorylates disabled 1 independently of reelin signaling. J. Neurosci. 22:4869-4877.PubMedGoogle Scholar
  21. Kim, H. M., Qu, T., Kriho, V., Lacor, P., Smalheiser, N., Pappas, G. D., Guidotti, A., Costa, E., and Sugaya, K. (2002). Reelin function in neural stem cell biology. Proc. Natl. Acad. Sci. USA 99:4020-4025.CrossRefPubMedGoogle Scholar
  22. Lowenfels, A. B., Maisonneuve, P., DiMagno, E. P., Elitsur, Y., Gates, L. K., Jr., Perrault, J., and Whitcomb, D. C. (1997). Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J.Natl. Cancer Inst. 89:442-446.CrossRefGoogle Scholar
  23. Marks, P. A., and Jiang, X. (2005). Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle 4:549-551.PubMedGoogle Scholar
  24. Meyer, U., Nyffeler, M., Engler, A., Urwyler, A., Schedlowski, M., Knuesel, I., Yee, B. K., and Feldon, J. (2006). The time of prenatal immune challenge determines the specificity of inflam-mation-mediated brain and behavioral pathology. J. Neurosci. 26:4752-4762.CrossRefPubMedGoogle Scholar
  25. Mitchell, C. P., Chen, Y., Kundakovic, M., Costa, E., and Grayson, D. R. (2005). Histone deacety-lase inhibitors decrease reelin promoter methylation in vitro. J. Neurochem. 93:483-492.CrossRefPubMedGoogle Scholar
  26. Morgan, H. D., Sutherland, H. G., Martin, D. I., and Whitelaw, E. (1999). Epigenetic inheritance at the agouti locus in the mouse. Nature Genet. 23:314-318.CrossRefPubMedGoogle Scholar
  27. Ohm, J., McGarvey, K., Yu, X., Cheng, L., Schuebel, K., Cope, L., Mohammad, H., Chen, W., Daniel, V., Yu, W., Berman, D., Jenuwein, T., Pruitt, K., Sharkis, S., Watkins, D. N., Herman, J., and Baylin, S. (2007). A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nature Genet. 39:237-242.CrossRefPubMedGoogle Scholar
  28. Oki, Y., Aoki, E., and Issa, J.P. (2007). Decitabine—Bedside to bench. Crit. Rev. Oncol. Hematol. 61:140-152.CrossRefPubMedGoogle Scholar
  29. Perrone, G., Vincenzi, B., Zagami, M., Santini, D., Panteri, R., Flammia, G., Verzi, A., Lepanto, D., Morini, S., Russo, A., Bazan, V., Tomasino, R. M., Morello, V., Tonini, G., and Rabitti, C. (2007). Reelin expression in human prostate cancer: a marker of tumor aggressiveness based on correlation with grade. Mod. Pathol. 20:344-351.CrossRefPubMedGoogle Scholar
  30. Pruitt, K., Zinn, R. L., Ohm, J. E., McGarvey, K. M., Kang, S. H., Watkins, D. N., Herman, J. G., and Baylin, S. B. (2006). Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2:e40.CrossRefPubMedGoogle Scholar
  31. Sato, N., Fukushima, N., Chang, R., Matsubayashi, H., and Goggins, M. (2006). Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers. Gastroenterology 130:548-565.CrossRefPubMedGoogle Scholar
  32. Smalheiser, N. R., Costa, E., Guidotti, A., Impagnatiello, F., Auta, J., Lacor, P., Kriho, V., and Pappas, G. D. (2000). Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 97:1281-1286.CrossRefPubMedGoogle Scholar
  33. Song, J. Z. S. C., Harrison, J., Melki, J. R., and Clark, S. J. (2002). Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene 21:1048-1061.CrossRefPubMedGoogle Scholar
  34. Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.CrossRefPubMedGoogle Scholar
  35. Wang, Q., Lu, J., Yang, C., Wang, X., Cheng, L., Hu, G., Sun, Y., Zhang, X., Wu, M., and Liu, Z. (2002). CASK and its target gene Reelin were co-upregulated in human esophageal carcinoma. Cancer Lett. 179:71-77.CrossRefPubMedGoogle Scholar
  36. Waterland, R. A., and Jirtle, R. L. (2003). Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell Biol. 23:5293-5300.CrossRefPubMedGoogle Scholar
  37. West, A. G., and van Attikum, H. (2006). Chromatin at the crossroads. Meeting on signalling to chromatin epigenetics. EMBO Rep. 7:1206-1210.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Kimberly Walter
    • 1
  • Michael Goggins
    • 2
  1. 1.Department of Pathology, The Sol Goldman Pancreatic Research CenterThe Johns Hopkins Medical InstitutionsBaltimore
  2. 2.Departments of Pathology, Medicine, and Oncology, The Sol Goldman Pancreatic Research CenterThe Johns Hopkins Medical InstitutionsBaltimore

Personalised recommendations