Alzheimer’s Disease and Reelin

  • Arancha Botella-López
  • Javier Sáez-Valero

Alzheimer’s disease (AD) is the most common cause of dementia among elderly people and is characterized by loss of memory and cognitive functions. The pathological hallmarks include extensive synaptic and neuronal loss, astrogliosis, and accumulation of fibrillar deposits. The amyloid plaques are extracellular deposits mainly composed of a small insoluble protein called β-amyloid protein or Aβ that is derived from the β-amyloid precursor protein (APP) (Masters et al., 1985). The neurofibrillary tangles are composed of intracellular paired helical filaments containing an abnormally phosphorylated form of the tau protein (Grundke-Iqbal et al., 1986). Specific genetic factors are also linked closely to AD. Thus, despite the occurrence of missense mutations in APP, the most common mutations in AD to date are in presenilin (PS1 and PS2) genes, membrane proteins which play a critical role in the γ-secretase processing of APP (Selkoe, 2001). Whereas these mutations are quite infrequent causes of AD, the major known genetic risk factor for the disorder in the typical late-onset period is the ε4 allele of apolipoprotein E (ApoE) (Strittmatter et al., 1993).

The purposes of this chapter are to review the links between Reelin and elements of its signaling pathway with the main hallmarks of AD pathology and summarize our recent findings, including the first evidence of altered Reelin expression in the AD brain.


ApoE Receptor Lens Culinaris Agglutinin Reelin Signaling Reelin Expression Heterozygous Reeler Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcántara, S., Ruiz, M., D’Arcangelo, G., Ezan, F., de Lecea, L., Curran, T., Sotelo, C., and Soriano, E. (1998). Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J. Neurosci. 18:7779-7799.PubMedGoogle Scholar
  2. Arendt, T. (2003). Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the ‘Dr. Jekyll and Mr. Hyde concept’ of Alzheimer’s disease or the yin and yang of neuroplasticity. Prog. Neurobiol. 71:83-248.CrossRefPubMedGoogle Scholar
  3. Baloyannis, S. J. (2005). Morphological and morphometric alterations of Cajal-Retzius cells in early cases of Alzheimer’s disease: a Golgi and electron microscope study. Int. J. Neurosci. 115:965-980.CrossRefPubMedGoogle Scholar
  4. Bar, I., and Goffinet, A. M. (1999). Developmental neurobiology. Decoding the reelin signal. Nature 399:645-646.CrossRefPubMedGoogle Scholar
  5. Baumann, K., Mandelkow, E. M., Biernat, J., Piwnica-Worms, H., and Mandelkow, E. (1993). Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett. 336:417-424.CrossRefPubMedGoogle Scholar
  6. Beffert, U., Morfini, G., Bock, H. H., Reyna, H., Brady, S. T., and Herz, J. (2002). Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J. Biol. Chem. 277:49958-49964.CrossRefPubMedGoogle Scholar
  7. Beffert, U., Weeber, E. J., Durudas, A., Qiu, S., Masiulis, I., Sweatt, J. D., Li, W. P., Adelmann, G., Frotscher, M., Hammer, R. E., and Herz, J. (2005). Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47:567-579.CrossRefPubMedGoogle Scholar
  8. Botella-López, A., Burgaya, F., Gavín, R., García-Ayllón, M. S., Gómez-Tortosa, E., Peña-Casanova, J., Ureña, J. M., Del Río, J. A., Blesa, R., Soriano, E., and Sáez-Valero, J. (2006). Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 103:5573-5578.CrossRefPubMedGoogle Scholar
  9. Bothwell, M., and Giniger, E. (2000). Alzheimer’s disease: neurodevelopment converges with neurodegeneration. Cell 102:271-273.CrossRefPubMedGoogle Scholar
  10. Brich, J., Shie, F. S., Howell, B. W., Li, R., Tus, K., Wakeland, E. K., Jin, L. W., Mumby, M., Churchill, G., Herz, J., and Cooper, J. A. (2003). Genetic modulation of tau phosphorylation in the mouse. J. Neurosci. 23:187-192.PubMedGoogle Scholar
  11. Cooper, J. A., and Howell, B. W. (1999). Lipoprotein receptors: signaling functions in the brain? Cell 97:671-674.CrossRefPubMedGoogle Scholar
  12. D’Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon M., and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24:471-479.CrossRefPubMedGoogle Scholar
  13. Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27:33-44.CrossRefPubMedGoogle Scholar
  14. Fatemi, S. H. (2005). Reelin glycoprotein: structure, biology and roles in health and disease. Mol. Psychiatry 10:251-257.CrossRefPubMedGoogle Scholar
  15. Grilli, M., Ferrari Toninelli, G., Uberti, D., Spano, P., and Memo, M. (2003). Alzheimer’s disease linking neurodegeneration with neurodevelopment. Funct. Neurol. 18:145-148.PubMedGoogle Scholar
  16. Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., and Binder, L. I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 83:4913-4917.CrossRefPubMedGoogle Scholar
  17. Hartmann, D., De Strooper, B., and Saftig, P. (1999). Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr. Biol. 9:719-727.CrossRefPubMedGoogle Scholar
  18. Herz, J., and Beffert, U. (2000). Apolipoprotein E receptors: linking brain development and Alzheimer’s disease. Nature Rev. Neurosci. 1:51-58.Google Scholar
  19. Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyro-sine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481-489.CrossRefPubMedGoogle Scholar
  20. Hoareau, C., Borrell, V., Soriano, E., Krebs, M. O., Prochiantz, A., and Allinquant, B. (2008). APP cytoplasmic domain antagonizes reelin neurite outgrowth inhibition of hippocampal neu-rons. Neurobiol. Aging 29:542-553.CrossRefPubMedGoogle Scholar
  21. Hoe, H. S., Tran, T. S., Matsuoka, Y., Howell, B. W., and Rebeck, G. W. (2006). Dab1 and reelin effects on APP and ApoEr2 trafficking and processing. J. Biol. Chem. 281:35176-35185.CrossRefPubMedGoogle Scholar
  22. Howell, B. W., Lanier, L. M., Frank, R., Gertler, F. B., and Cooper, J. A. (1999). The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glyco-proteins and to phospholipids. Mol. Cell. Biol. 19:5179-5188.PubMedGoogle Scholar
  23. Ignatova, N., Sindic, C. J., and Goffinet, A. M. (2004). Characterization of the various forms of the reelin protein in the cerebrospinal fluid of normal subjects and in neurological diseases. Neurobiol. Dis. 15:326-330.CrossRefPubMedGoogle Scholar
  24. Ikeda, Y., and Terashima, T. (1997). Expression of reelin, the gene responsible for the reeler mutation, in embryonic development and adulthood in the mouse. Dev. Dyn. 210:157-172.CrossRefPubMedGoogle Scholar
  25. Ishiguro, K., Shiratsuchi, A., Sato, S., Omori, A., Arioka, M., Kobayashi, S., Uchida, T., and Imahori, K. (1993). Glycogen synthase kinase 3 beta is identical to tau protein kinase I gener-ating several epitopes of paired helical filaments. FEBS Lett. 325:167-172.CrossRefPubMedGoogle Scholar
  26. Kilb, W., Hartmann, D., Saftig, P., and Luhmann, H. J. (2004). Altered morphological and elec-trophysiological properties of Cajal-Retzius cells in cerebral cortex of embryonic presenilin-1 knockout mice. Eur. J. Neurosci. 20:2749-2756.CrossRefPubMedGoogle Scholar
  27. Koch, S., Strasser, V., Hauser, C., Fasching, D., Brandes, C., Bajari, T. M., Schneider, W. J., and Nimpf, J. (2002). A secreted soluble form of ApoE receptor 2 acts as a dominant-negative receptor and inhibits reelin signaling. EMBO J. 21:5996-6004.CrossRefPubMedGoogle Scholar
  28. Lugli, G., Krueger, J. M., Davis, J. M., Persico, A. M., Keller, F., and Smalheiser, N. R. (2003). Methodological factors influencing measurement and processing of plasma reelin in humans. BMC Biochem. 4:9.CrossRefPubMedGoogle Scholar
  29. Mandelkow, E. M., Drewes, G., Biernat, J., Gustke, N., Van Lint, J., Vandenheede, J. R., and Mandelkow, E. (1992). Glycogen synthase kinase-3 and the Alzheimer-like state of microtu-bule-associated protein tau. FEBS Lett. 314:315-321.CrossRefPubMedGoogle Scholar
  30. Martínez-Cerdeño, V., Galazo, M. J., Cavada, C., and Clasca, F. (2002). Reelin immunoreactivity in the adult primate brain: intracellular localization in projecting and local circuit neurons of the cerebral cortex, hippocampus and subcortical regions. Cereb. Cortex 12:1298-1311.CrossRefPubMedGoogle Scholar
  31. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 82:4245-4249.CrossRefPubMedGoogle Scholar
  32. Miettinen, R., Riedel, A., Kalesnykas, G., Kettunen, H. P., Puolivali, J., Soininen, H., and Arendt, T. (2005). Reelin-immunoreactivity in the hippocampal formation of 9-month-old wildtype mouse: effects of APP/PS1 genotype and ovariectomy. J. Chem. Neuroanat. 30:105-118.CrossRefPubMedGoogle Scholar
  33. Motoi, Y., Itaya, M., Mori, H., Mizuno, Y., Iwasaki, T., Hattori, H., Haga, S., and Ikeda, K. (2004). Apolipoprotein E receptor 2 is involved in neuritic plaque formation in APP sw mice. Neurosci. Lett. 368:144-147.CrossRefPubMedGoogle Scholar
  34. Ohkubo, N., Lee, Y. D., Morishima, A., Terashima, T., Kikkawa, S., Tohyama, M., Sakanaka, M., Tanaka, J., Maeda, N., Vitek, M. P., and Mitsuda, N. (2003). Apolipoprotein E and reelin lig-ands modulate tau phosphorylation through an apolipoprotein E receptor/disabled-1/glycogen synthase kinase-3beta cascade. FASEB J. 17:295-297.PubMedGoogle Scholar
  35. Parisiadou, L., and Efthimiopoulos, S. (2007). Expression of mDab1 promotes the stability and processing of amyloid precursor protein and this effect is counteracted by X11alpha. Neurobiol. Aging 28:377-388.CrossRefPubMedGoogle Scholar
  36. Pesold, C., Impagnatiello, F., Pisu, M. G., Uzunov, D. P., Costa, E., Guidotti, A., and Caruncho, H. J. (1998). Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc. Natl. Acad. Sci. USA 95:3221-3226.CrossRefPubMedGoogle Scholar
  37. Quattrocchi, C. C., Wannenes, F., Persico, A. M., Ciafre, S. A., D’Arcangelo, G., Farace, M. G., and Keller, F. (2002). Reelin is a serine protease of the extracellular matrix. J. Biol. Chem. 277:303-309.CrossRefPubMedGoogle Scholar
  38. Quattrocchi, C. C., Huang, C., Niu, S., Sheldon, M., Benhayon, D., Cartwright, J., Jr, Mosier, D. R., Keller, F., and D’Arcangelo, G. (2004). Retraction of ‘Quattrocchi et al. Science 2003; 301:649-653’. Science 303:1974.Google Scholar
  39. Rice, D. S., and Curran, T. (2001). Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24:1005-1039.CrossRefPubMedGoogle Scholar
  40. Riedel, A., Miettinen, R., Stieler, J., Mikkonen, M., Alafuzoff, I., Soininen, H., and Arendt T. (2003). Reelin-immunoreactive Cajal-Retzius cells: the entorhinal cortex in normal aging and Alzheimer’s disease. Acta Neuropathol. 106:291-302.CrossRefPubMedGoogle Scholar
  41. Roberts, R. C., Xu, L., Roche, J. K., and Kirkpatrick, B. (2005). Ultrastructural localization of reelin in the cortex in post-mortem human brain. J. Comp. Neurol. 482:294-308.CrossRefPubMedGoogle Scholar
  42. Rodriguez, M. A., Pesold, C., Liu, W. S., Kriho, V., Guidotti, A., Pappas, G. D., and Costa, E. (2000). Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex. Proc. Natl. Acad. Sci. USA 97:3550-3555.CrossRefPubMedGoogle Scholar
  43. Sáez-Valero, J., Costell, M., Sjögren, M., Andreasen, N., Blennnow, K., and Luque, J. M. (2003). Altered levels of cerebrospinal fluid reelin in frontotemporal dementia and Alzheimer’s dis-ease. J. Neurosci. Res. 72:132-136.CrossRefPubMedGoogle Scholar
  44. Selkoe, D. J. (2001). Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81:741-766.PubMedGoogle Scholar
  45. Senzaki, K., Ogawa, M., and Yagi, T. (1999). Proteins of the CNR family are multiple receptors for reelin. Cell 99:635-647.CrossRefPubMedGoogle Scholar
  46. Smalheiser, N. R., Costa, E., Guidotti, A., Impagnatiello, F., Auta, J., Lacor, P., Kriho, V., and Pappas, G. D. (2000). Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 97:1281-1286.CrossRefPubMedGoogle Scholar
  47. Stockinger, W., Brandes, C., Fasching, D., Hermann, M., Gotthardt, M., Herz, J., Schneider, W. J., and Nimpf, J. (2000). The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and -2. J. Biol. Chem. 275:25625-25632.CrossRefPubMedGoogle Scholar
  48. Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., and Roses, A. D. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90:19771981.Google Scholar
  49. Trommsdorff, M., Borg, J. P., Margolis, B., and Herz, J. (1998). Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273:33556-33560.CrossRefPubMedGoogle Scholar
  50. Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.CrossRefPubMedGoogle Scholar
  51. Tueting, P., Costa, E., Dwivedi, Y., Guidotti, A., Impagnatiello, F., Manev, R., and Pesold, C. (1999). The phenotypic characteristics of heterozygous reeler mouse. Neuroreport 10:1329-1334.CrossRefPubMedGoogle Scholar
  52. Verhey, K. J., Meyer, D., Deehan, R., Bleni, J., Schnapp, B. J., Rapoport, T. A., and Margolis, B. (2001). Cargo of kinesin identified as JIP scaffolding proteins and associated signaling mole-cules. J. Cell Biol. 152:959-970.CrossRefPubMedGoogle Scholar
  53. Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., and Herz, J. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277:39944-39952.CrossRefPubMedGoogle Scholar
  54. Wirths, O., Multhaup, G., Czech, C., Blanchard, V., Tremp, G., Pradier, L., Beyreuther, K., and Bayer, T. A. (2001). Reelin in plaques of beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci. Lett. 316:145-148.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Arancha Botella-López
    • 1
    • 2
  • Javier Sáez-Valero
    • 1
    • 2
  1. 1.Instituto de Neurociencias de AlacantUniversidad Miguel Hernández-CSICSant Joan d’Alacant
  2. 2.Centra de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Spain

Personalised recommendations