Reelin Gene Polymorphisms in Autistic Disorder

  • Carla Lintas
  • Antonio Maria Persico

Migratory streams occur throughout the central nervous system (CNS) during development. Neuronal and glial cell populations migrate out of proliferative zones to reach their final location, where neurons soon establish early intercellular connections. Reelin plays a pivotal role in cell migration processes, acting as a stop signal for migrating neurons in several CNS districts, including the neocortex, the cerebellum, and the hindbrain (Rice and Curran, 2001). At the cellular level, Reelin acts by binding to a variety of receptors, including the VLDL receptors, ApoER2, and α3β1 integrins, and also by exerting a proteolytic activity on extracellular matrix proteins, which is critical to neuronal migration (D’Arcangelo et al., 1999; Hiesberger et al., 1999; Quattrocchi et al., 2002). Indeed, neuronal migration is profoundly altered in reeler mice, lacking Reelin protein due to spontaneous deletions of the reelin (RELN) gene (D’Arcangelo et al., 1995). Their brains display major cytoarchitectonic alterations, yielding a behavioral phenotype characterized by action tremor, dystonic posture, and ataxic gait (Goffinet, 1984). Interestingly, despite significant interindividual differences, postmortem studies of brains of autistic patients have consistently found neuropathological evidence of altered neuronal migration, including ectopic neurons, altered cytoarchitectonics, and aberrant fiber tracts, as recently reviewed by Persico and Bourgeron (2006). Furthermore, the RELN gene maps to human chromosome 7q22, in a region hosting one or more autism genes, according to converging evidence from multiple genetic linkage studies (Muhle et al., 2004; Persico and Bourgeron, 2006). These findings provided initial suggestions that Reelin may play relevant roles in neurodevelopmental disorders, such as autism. Yet, autistic patients are not “reeler” humans: RELN gene mutations resulting in the absence of Reelin protein yield a much more severe phenotype, the Norman-Roberts syndrome (Hong et al., 2000). This rare autosomal recessive neurological disease is characterized by lissencephaly and cerebellar hypoplasia, with severe mental retardation, abnormal neuromuscular connectivity, and congenital lymphedema. Therefore, RELN gene variants potentially conferring genetic liability to neuropsychiatric disorders, such as autism and schizophrenia, were predicted to more likely modulate gene expression levels and/or protein function, rather than to produce a complete loss of function. And indeed, no mutation resulting in premature stop codons and no triplet repeat expansions halting RELN gene expression have been identified to date in autistic or schizophrenic patients. This chapter will thus review current knowledge on RELN gene polymorphisms influencing gene expression and summarize the results of studies addressing the possible genetic association between functional RELN gene variants and autism. Genetic and epigenetic RELN gene variants possibly involved in other neurodevelopmental disorders, such as schizophrenia, will be described elsewhere in this book.


Autism Spectrum Disorder Autistic Disorder Rett Syndrome Autistic Patient Multiplex Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdolmaleky, H. M., Cheng, K. H., Russo, A., Smith, C. L., Faraone, S. V., Wilcox, M., Shafa, R., Glatt, S. J., Nguyen, G., Ponte, J. F., Thiagalingam, S., and Tsuang, M. T. (2005). Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a pre-liminary report. Am. J. Med. Genet. B Neuropsychiatr. Genet. 134:60-66.Google Scholar
  2. Amir, R. E. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23:185-188.CrossRefPubMedGoogle Scholar
  3. Bartlett, C. W., Gharani, N., Millonig, J. H., and Brzustowicz, L. M. (2005). Three autism candi-date genes: a synthesis of human genetic analysis with other disciplines. Int. J. Dev. Neurosci. 23:221-234.CrossRefPubMedGoogle Scholar
  4. Bonora, E., Beyer, K. S., Lamb, J. A., Parr, J. R., Klauck, S. M., Benner, A., Paolucci, M., Abbott, A., Ragoussis, I., Poustka, A., Bailey, A. J., and Monaco, A. P. (2003). Analysis of reelin as a candidate gene for autism. Mol. Psychiatry 8:885-892.CrossRefPubMedGoogle Scholar
  5. Chelly, J., and Mandel, J. L. (2001). Monogenic causes of X-linked mental retardation. NatureRev. Genet. 9:669-680.CrossRefGoogle Scholar
  6. Chen, M. L., Chen, S. Y., Huang, C. H., and Chen, C. H. (2002). Identification of a single nucle-otide polymorphism at the 5′ promoter region of human reelin gene and association study with schizophrenia. Mol. Psychiatry 7:447-448.CrossRefPubMedGoogle Scholar
  7. D’Amelio, M., Ricci, I., Sacco, R., Liu, X., D’Agruma, L., Muscarella, L. A., Guarnirei, V., Militerni, R., Bravaccio, C., Elia, M., Schneider, C., Melmed, R., Trillo, S., Pascucci, T., Puglisi-Allegra, S., Reichelt, K. L., Macciardi, F., Holden, J. J., and Persico, A. M. (2005). Paraoxonase gene variants are associated with autism in North America, but not in Italy: pos-sible regional specificity in gene-environment interactions. Mol. Psychiatry 10:1006-1016.CrossRefPubMedGoogle Scholar
  8. D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719-723.CrossRefPubMedGoogle Scholar
  9. D’Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon, M., and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24:471-479.CrossRefPubMedGoogle Scholar
  10. De Jaco, A., Camp, S., and Taylor, P. (2005). Influence of the 5′ intron in the control of acetyl-cholinesterase gene expression during myogenesis. Chem. Biol. Interact. 157-158:372-373.CrossRefPubMedGoogle Scholar
  11. Devlin, B., Bennett, P., Dawson, G., Figlewicz, D.A., Grigorenko, E. L., McMahon, W., Minshew, N., Pauls, D., Smith, M., Spence, M. A., Rodier, P. M., Stodgell, C., The CPEA Genetics Network, and Schellenberg, G. D. (2004). Alleles of a reelin CGG repeat do not convey liability to autism in a sample from the CPEA network. Am. J. Med. Genet. B Neuropsychiatr. Genet. 126:46-50.CrossRefGoogle Scholar
  12. Fatemi, S. H., Stary, J. M., and Egan, E. A. (2002). Reduced blood levels of reelin as a vulnerabil-ity factor in pathophysiology of autistic disorder. Cell. Mol. Neurobiol. 22:139-152.CrossRefPubMedGoogle Scholar
  13. Feil, R. (2006). Environmental and nutritional effects on the epigenetic regulation of genes. Mutat. Res. 600:46-57.PubMedGoogle Scholar
  14. Ferré, N., Marsillach, J., Camps, J., Rull, A., Coll, B., Tous, M., and Joven, J. (2005). Genetic association of paraoxonase-1 polymorphisms and chronic hepatitis C virus infection. Clin. Chim. Acta 361:206-210.CrossRefPubMedGoogle Scholar
  15. Gaita, L., and Persico, A. M. (2006). The R192 allele of the PON1 gene is associated with reduced serum arylesterase activity in autistic patients and in their first-degree relatives [abstract 2122]. Presented at the 56th Annual Meeting of the American Society of Human Genetics, October 11, 2006, New Orleans, Louisiana. Available from
  16. Geschwind, D. H., Sowinski, J., Lord, C., Iversen, P., Shestack, J., Jones, P., Ducat, L., Spence, S. J., and AGRE Steering Committee. (2001). The autism genetic resource exchange: a resource for the study of autism and related neuropsychiatric conditions. Am. J. Hum. Genet. 69:463-466.CrossRefPubMedGoogle Scholar
  17. Goffinet, A. M. (1984). Events governing organization of postmigratory neurons: studies on brain development in normal and reeler mice. Brain Res. Rev. 7:261-296.Google Scholar
  18. Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyro-sine phosphorylation of disabled-1 and modulated tau phosphorylation. Neuron 24:481-489.CrossRefPubMedGoogle Scholar
  19. Hong, S. E., Shugart, Y. Y., Huang, D. T., Shahwan, S. A., Grant, P. E., Hourihane, J. O., Martin, N. D., and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with RELN mutations. Nature Genet. 26:93-96.CrossRefPubMedGoogle Scholar
  20. Horike, S., Cai, S., Miyano, M., Cheng, J. F., and Kohwi-Shigematsu, T. (2005). Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nature Genet. 37:31-40.CrossRefPubMedGoogle Scholar
  21. Jaenisch, R., and Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet. 33:245-254.CrossRefPubMedGoogle Scholar
  22. Kilic, S. S., Aydin, S., Kilic, N., Erman, F., Aydin, S., and Celik, I. (2005). Serum arylesterase and paraoxonase activity in patients with chronic hepatitis. World J. Gastroenterol. 11:7351-7354.Google Scholar
  23. Krebs, M. O., Betancur, C., Leroy, S., Bourdel, M. C., Gillberg, C., Leboyer, M., and the Paris Autism Research International Sibpair (PARIS) Study (2002). Absence of association between a polymorphic GGC repeat in the 5′ untranslated region of the reelin gene and autism. Mol. Psychiatry 7:801-804.CrossRefPubMedGoogle Scholar
  24. Laurence, J. A., and Fatemi, S. H. (2005). Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 4:206-210.CrossRefPubMedGoogle Scholar
  25. Lenasi, T., Peterlin, B. M., and Dovc, P. (2006). Distal regulation of alternative splicing by splic-ing enhancer in equine beta-casein intron 1. RNA 12:498-507.CrossRefPubMedGoogle Scholar
  26. Li, J., Nguyen, L., Gleason, C., Lotspeich, L., Spiker, D., Risch, N., and Myers, R. M. (2004). Lack of evidence for an association between WNT2 and RELN polymorphisms and autism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 126:51-57.CrossRefGoogle Scholar
  27. Lugli, G., Krueger, J. M., Davis, J. M., Persico, A. M., Keller, F., and Smalheiser, N. R. (2003). Methodological factors influencing measurement and processing of plasma reelin in humans. BMC Biochem. 4:9.CrossRefPubMedGoogle Scholar
  28. Muhle, R., Trentacoste, V., and Rapin, I. (2004). The genetics of autism. Pediatrics 113:e472-486.CrossRefPubMedGoogle Scholar
  29. Munoz, M., Serrador, J., Nieto, M., Luque, A., Sanchez-Madrid, F., and Teixido, J. (1997). A novel region of the alpha4 integrin subunit with a modulatory role in VLA-4-mediated cell adhesion to fibronectin. Biochem. J. 327:727-733.PubMedGoogle Scholar
  30. Parra, S., Alonso-Villaverde, C., Coll, B., Ferre, N., Marsillach, J., Aragones, G., Mackness, M., Mackness, B., Masana, L., Joven, J., and Camps, J. (2007). Serum paraoxonase-1 activity and concentration are influenced by human immunodeficiency virus infection. Atherosclerosis 194 (1):175-181.CrossRefPubMedGoogle Scholar
  31. Persico, A. M., and Bourgeron, T. (2006). Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci. 29:349-358.CrossRefPubMedGoogle Scholar
  32. Persico, A. M., D’Agruma, L., Maiorano, N., Totaro, A., Militerni, R., Bravaccio, C., Wassink, T. H. for the CLSA, Schneider, C., Melmed, R., Trillo, S., Montecchi, F., Palermo, M., Pascucci, T., Puglisi-Allegra, S., Reichelt, K. L., Conciatori, M., Marino, R., Quattrocchi, C. C., Baldi, A., Zelante, L., Gasparini, P., and Keller, F. (2001). Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol. Psychiatry 6:150-159.CrossRefPubMedGoogle Scholar
  33. Persico, A. M., Levitt, P., and Pimenta, A. F. (2006). Polymorphic GGC repeat differentially regu-lates human reelin gene expression levels. J. Neural Transm. 113:1373-1382.CrossRefPubMedGoogle Scholar
  34. Petropoulos, H., Friedman, S. D., Shaw, D. W., Artru, A. A., Dawson, G., and Dager, S. R. (2006). Gray matter abnormalities in autism spectrum disorder revealed by T2 relaxation. Neurology 67:632-636.CrossRefPubMedGoogle Scholar
  35. Quattrocchi, C. C., Wannenes, F., Persico, A. M., Ciafrè, S. A., D’Arcangelo, G., Farace, M. G., and Keller, F. (2002). Reelin is a serine protease of the extracellular matrix. J. Biol. Chem. 277:303-309.CrossRefPubMedGoogle Scholar
  36. Rice, D. S., and Curran, T. (2001). Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24:1005-1039.CrossRefPubMedGoogle Scholar
  37. Royaux, I., Lambert de Rouvroit, C., D’Arcangelo, G., Demirov, D., and Goffinet, A. M. (1997). Genomic organization of the mouse reelin gene. Genomics 46:240-250.CrossRefPubMedGoogle Scholar
  38. Sacco, R., Militerni, R., Bravaccio, C., Frolli, A., Elia, M., Trillo, S., Curatolo, P., Manzi, B., Lenti, C., Saccani, M., and Persico, A. M. (2006). Clinical and morphological characterization of the macrocephalic endophenotype in autism [abstract 2124]. Presented at the 56th Annual Meeting of the American Society of Human Genetics, October 11, 2006, New Orleans, Louisiana. Available from
  39. Serajee, F. J., Zhong, H., and Huq, A. H. M. M. (2005). Association of reelin gene polymorphisms with autism. Genomics 87:75-83.CrossRefPubMedGoogle Scholar
  40. Skaar, D. A., Shao, Y., Haines, J. L., Stenger, J. E., Jaworski, J., Martin, E. R., DeLong, G. R., Moore, J. H., McCauley, J. L., Sutcliffe, J. S., Ashley-Koch, A. E., Cuccaro, M. L., Folstein, S. E., Gilbert, J. R., and Pericak-Vance, M. A. (2004). Analysis of the RELN gene as a genetic risk factor for autism. Mol. Psychiatry 10:563-571.CrossRefGoogle Scholar
  41. Smalheiser, N. R., Costa, E., Guidotti, A., Impagnatiello, F., Auta, J., Lacor, P., Kriho, V., and Pappas, G. D. (2000). Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 97:1281-1286.CrossRefPubMedGoogle Scholar
  42. Van Lenten, B. J., Wagner, A. C., Anantharamaiah, G. M., Garber, D. W., Fishbein, M. C., Adhikary, L., Nayak, D. P., Hama, S., Navab, M., and Fogelman, A. M. (2002). Influenza infection promotes macrophage traffic into arteries of mice that is prevented by D-4F, an apolipoprotein A-I mimetic peptide. Circulation 106:1127-1132.CrossRefPubMedGoogle Scholar
  43. Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., and Pardo, C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57:67-81.CrossRefPubMedGoogle Scholar
  44. Yano, H., Wang, B. E., Ahmad, I., Zhang, J., Abo, T., Nakayama, J., Krempen, K., and Kohwi, Y. (1999). Identification of (CAG)n and (CGG)n repeat-binding proteins, CAGERs expressed in mature neurons of the mouse brain. Exp. Cell Res. 251:388-400.CrossRefPubMedGoogle Scholar
  45. Zhang, H., Liu, X., Zhang, C., Mundo, E., Macciardi, F., Grayson, D. R., Guidotti, A. R., and Holden, J. J. A. (2002). Reelin gene alleles and suscetibility to autism spectrum disorders. Mol. Psychiatry 7:1012-1017.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Carla Lintas
    • 1
    • 2
  • Antonio Maria Persico
    • 1
    • 2
  1. 1.Laboratory of Molecular Psychiatry and NeurogeneticsUniversity “Campus Bio-Medico,”Italy
  2. 2.Department of Experimental NeurosciencesI.R.C.C.S. “Fondazione Santa Lucia,”RomeItaly

Personalised recommendations