The Role of Reelin in Etiology and Treatment of Psychiatric Disorders

  • S. Hossein Fatemi
  • Teri J. Reutiman
  • Timothy D. Folsom

There are many brain proteins that participate in the early growth and development of the mammalian central nervous system. Reelin is a glycoprotein that helps guide brain development in an orderly fashion. Changes in the level of this protein or its receptors or downstream proteins may cause abnormal corticogenesis and alter synaptic plasticity. These changes have also been observed in a number of neuropsychiatric disorders. We will discuss more about this protein and its possible involvement in various neuropsychiatric disorders.


Bipolar Disorder Reeler Mouse ApoE Receptor Reelin Signaling Reelin Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdolmaleky, H. M., Smith, C. L., Farone, S. V., Shafa, R., Stone, W., Glatt, S. J., and Tsuang, M. T. (2004). Methylomics in psychiatry: modulation of gene-environment interactions may be through DNA methylation. Am. J. Med. Genet. 127B:51-59.CrossRefPubMedGoogle Scholar
  2. Abraham, H., and Meyer, G. (2003). Reelin-expressing neurons in the postnatal and adult human hippocampal formation. Hippocampus 13:715-727.CrossRefPubMedGoogle Scholar
  3. Absil, P., Pinxten, R., Balthazart, J., and Eens, M. (2003). Effects of testosterone on reelin expression in the brain of male European starlings. Cell Tissue Res. 312:81-98.PubMedGoogle Scholar
  4. Akahane, A., Kunugi, H., Tanaka, H., and Nanko, S. (2002). Association analysis of polymorphic CGG repeat in 5' UTR of the reelin and VLDLR genes with schizophrenia. Schizophr. Res. 58(1):37-41.CrossRefPubMedGoogle Scholar
  5. Arnaud, L., Ballif, B. A., and Cooper, J. A. (2003a). Regulation of protein tyrosine kinase signalling by substrate degradation during brain development. Mol. Cell Biol. 23:9293-9302.CrossRefPubMedGoogle Scholar
  6. Arnaud, L., Ballif, B. A., Forster, E., and Cooper, J. A. (2003b). Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr. Biol. 13:9-17.CrossRefPubMedGoogle Scholar
  7. Assadi, A. H., Zhang, G., Beffert, U., McNeil, R. S., Renfro, A. L., Niu, S., Quattrocchi, C. C., Antalffy, B. A., Sheldon, M., Armstrong, D. D., Wynshaw-Boris, A., Herz, J., D’Arcangelo, G., and Clark, G. D. (2003). Interaction of reelin signaling and Lis1 in brain development. Nature Genet. 35:270-276.CrossRefPubMedGoogle Scholar
  8. Barr, A. M., Fish, K. N., and Markou, A. (2007). The reelin receptors VLDLR and ApoER2 regulate sensorimotor gating in mice. Neuropharmacology 52:1114-1123.CrossRefPubMedGoogle Scholar
  9. Beffert, U., Morfini, G., Bock, H. H., Reyna, H., Brady, S. T., and Herz, J. (2002). Reelinmediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3Β. J. Biol. Chem. 51:49958-49964.CrossRefGoogle Scholar
  10. Beffert, U., Weeber, E. J., Durudas, A., Qiu, S., Masiulis, I., Sweatt, J. D., Li, W. P., Adelmann, G., Frotscher, M., Hammer, R. E., and Herz, J. (2005). Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47:567-579.CrossRefPubMedGoogle Scholar
  11. Beffert, U., Durudas, A., Weeber, E. J., Stolt, P. C., Giehl, K. M., Sweatt, J. D., Hammer, R. E., and Herz, J. (2006). Functional dissection of reelin signaling by site-directed disruption of disabled-1 adaptor binding to apolipoprotein E receptor 2: distinct roles in development and synaptic plasticity. J. Neurosci. 26:2041-2052.CrossRefPubMedGoogle Scholar
  12. Bonora, E., Beyer, K. S., Lamb, J. A., Parr, J. R., Klauck, S. M., Benner, A., Paolucci, M., Abbott, A., Ragoussis, I., Poustka, A., Bailey, A. J., and Monaco, A. P., and the International Molecular Genetic Study of Autism Consortium (IMGSAC). (2003). Analysis of reelin as a candidate gene for autism. Mol. Psychiatry 10:885-892.Google Scholar
  13. Botella-Lopez, A., Burgaya, F., Gavin, R., Garcia-Ayllon, M. S., Gomez-Tortosa, E., Pena-Casanova, J., Urena, J. M., Del Rio, J. A., Blesa, R., Soriano, E., and Saez-Valero, J. (2006). Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 103:5573-5578.CrossRefPubMedGoogle Scholar
  14. Bothwell, M., and Giniger, E. (2000). Alzheimer’s disease: neurodevelopment converges with neurodegeneration. Cell 102:271-273.CrossRefPubMedGoogle Scholar
  15. Bullock, W. M., Paz, R. D., Roberts, R. C., Andreasen, N. C., and Perrone-Bizzozero, N. I. (2006). Gene expression alterations in the cerebellum of patients with schizophrenia revealed by DNA microarray analysis. J. Neurochem. 96(suppl 1):34.Google Scholar
  16. Carboni, G., Tueting, P., Tremolizzo, L., Sugaya, I., Davis, J., Costa, E., and Guidotti, A. (2004). Enhanced dizocilpine efficacy in heterozygous reeler mice relates to GABA turnover downregulation. Neuropharmacology 46:1070-1081.CrossRefPubMedGoogle Scholar
  17. Chang, B. S., Duzcan, F., Kim, S., Cinbis, M., Aggarwal, A., Apse, K. A., Ozdel, O., Atmaca, M., Zencir, S., Bagci, H., and Walsh, C. A. (2007). The role of RELN in lissencephaly and neuropsychiatric disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144:58-63.Google Scholar
  18. Chen, M. I., Chen, S. Y., Huang, C. H., and Chen, C. H. (2002). Identification of a single nucleotide polymorphism at the 5' promoter region of human reelin gene and association study with schizophrenia. Mol. Psychiatry 7:447-448.CrossRefPubMedGoogle Scholar
  19. Chugani, D. C. (2002). Role of altered brain serotonin mechanisms in autism. Mol. Psychiatry 7(Suppl. 2): S16-S17.CrossRefPubMedGoogle Scholar
  20. Cooper, J., and Howell, B.W. (1999). Lipoprotein receptors: signaling function in the brain? Cell 97:671-674.CrossRefPubMedGoogle Scholar
  21. Costa, E., Chen, Y., Davis, J., Dong, E., Noh, J. S., Tremolizzo, L., Veldic, M., Grayson, D. R., and Guidotti, A. (2002). Reelin and schizophrenia: a disease at the interface of the genome and the epigenome. Mol. Interv. 2:47-57.CrossRefPubMedGoogle Scholar
  22. Costa, E., Grayson, D. R., and Guidotti, A. (2003a). Epigenetic downregulation of GABAergic function in schizophrenia; potential for pharmacological intervention? Mol. Interv. 3:220-229.CrossRefPubMedGoogle Scholar
  23. Costa, E., Grayson, D. R., Mitchell, C. P., Tremolizzo, L., Veldic, M., and Guidotti, A. (2003b). GABAergic cortical neuron chromatin as a putative target to treat schizophrenia vulnerability. Crit. Rev. Neurobiol. 15:121-142.CrossRefPubMedGoogle Scholar
  24. Curristin, S. M., Cao, A., Stewart, W. B., Zhang, H., Madri, J. A., Morrow, J. S., and Ment, L. R. (2002). Disrupted synaptic development in the hypoxic newborn brain. Proc. Natl. Acad. Sci. USA 99:16729-16734.CrossRefGoogle Scholar
  25. D’Arcangelo, G., Miao, G. G., Chon, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995). A protein related to extracellular matrix proteins detected in the mouse mutant reeler. Nature 374:719-723.CrossRefPubMedGoogle Scholar
  26. D’Arcangelo, G., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., and Curran, T. (1997). Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17:23-31.PubMedGoogle Scholar
  27. D’Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon, M., and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24:471-479.CrossRefPubMedGoogle Scholar
  28. DeBergeyck, V., Naerhuyzen, B., Goffinet, A. M., and Lambert de Rouvroit, C. (1998). A panel of monoclonal antibodies against reelin, the extracellular matrix protein defective in reeler mutant mice. J. Neurosci. Methods 82:17-24.CrossRefPubMedGoogle Scholar
  29. Deguchi, K., Inoue, K., Avila, W. E., Lopez-Terrada, D., Antalffy, B. A., Quattrocchi, C. C., Sheldon, M., Mikoshiba, K., D’Arcangelo, G., and Armstrong, D. L. (2003). Reelin and disabled-1 expression in developing and mature human cortical neurons. J. Neuropathol. Exp. Neurol. 62:676-684.PubMedGoogle Scholar
  30. de Rouvroit, C. L., deBergeyck, V., Cortvrindt, C., Bar, I., Eeckhout, Y., and Goffinet, A. M. (1999). Reelin, the extracellular matrix protein deficient in reeler mutant mice, is processed by a metalloproteinase. Exp. Neurol. 156:214-217.CrossRefGoogle Scholar
  31. DeSilva, U., D’Arcangelo, G., Braden, V. Y., Chen, J., Miso, G. G., Curran, T., and Green, E. D. (1997). The human reelin gene: isolation, sequencing, and mapping on chromosome 7. Genome Res.7:157-164.CrossRefGoogle Scholar
  32. Devlin, B., Bennett, P., Dawson, G., Figlewicz, D. A., Grigorenko, E. L., McMahon, W., Minshew, N., Pauls, D., Smith, M., Spence, M. A., Rodier, P. M., Stodgell, C., and Schellenberg, G. D.; CPEA Genetics Network. (2004). Alleles of a reelin CGG repeat do not convey liability to autism in a sample from the CPEA network. Am. J. Med. Genet. 126B:46-50.Google Scholar
  33. Dong, E., Costa, E., Grayson, D. R., and Guidotti, A. (2007). Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc. Natl. Acad. Sci. USA 104:4676-4681.CrossRefPubMedGoogle Scholar
  34. Duan, L., Reddi, A. L., Ghosh, A., Dimri, M., and Band, H. (2004). The Cbl family and other ubiquitin ligases: destructive forces in control of antigen receptor signalling. Immunity 21:7-17.CrossRefPubMedGoogle Scholar
  35. Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds alpha 3 beta 1 integrin and inhibits neuronal migration. Neuron 27:33-44.CrossRefPubMedGoogle Scholar
  36. Eastwood, S. L., and Harrison, P. J. (2003). Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol. Psychiatry 8:821-831.CrossRefGoogle Scholar
  37. Eastwood, S. L., Law, A. J., Everall, I. P., and Harrison, P. J. (2003). The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol. Psychiatry 8:148-155.CrossRefPubMedGoogle Scholar
  38. Falconer, D. S. (1951). Two new mutants, “Trembler” and “Reeler”, with neurological actions in the house mouse. J. Genet. 50:192-201.CrossRefGoogle Scholar
  39. Fatemi, S. H. (2001). Reelin mutations in mouse and man: from reeler mouse to schizophrenia, mood disorders, autism and lissencephaly. Mol. Psychiatry 6:129-133.CrossRefPubMedGoogle Scholar
  40. Fatemi, S. H. (2002). The role of reelin in pathology of autism. Mol. Psychiatry 7: 919-920.CrossRefPubMedGoogle Scholar
  41. Fatemi, S. H. (2005). Reelin glycoprotein in autism and schizophrenia. Int. Rev. Neurobiol. 71:179-187.CrossRefPubMedGoogle Scholar
  42. Fatemi, S. H., Emamian, E. S., Kist, D., Sidwell, R. W., Nakajima, K., Akhter, P., Shier, A., Sheikh, S., and Bailey, K. (1999). Defective corticogenesis and reduction in reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol. Psychiatry 4:145-154.CrossRefPubMedGoogle Scholar
  43. Fatemi, S. H., Earle, J. A., and McMenomy, T. (2000). Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry 5:654-663.CrossRefPubMedGoogle Scholar
  44. Fatemi, S. H., Stary, J. M., Hart, A. R., and Realmuto, G. R. (2001). Dysregulation of reelin and Bcl-2 proteins in autistic cerebellum. J. Autism Dev. Disord. 31:529-535.CrossRefPubMedGoogle Scholar
  45. Fatemi, S. H., Stary, J. M., and Egan, E. A. (2002). Reduced blood levels of reelin as a vulnerability factor in pathophysiology of autistic disorder. Cell. Mol. Neurobiol. 22:139-152.CrossRefPubMedGoogle Scholar
  46. Fatemi, S. H., Snow, A. V., and Stary, J. M. (2004). Reelin glycoprotein is reduced in cerebellum and areas 9 & 40 of autistic brains. Biol. Psychiatry 55:806.Google Scholar
  47. Fatemi, S. H., Stary, J. M., Araghi-Niknam, M., and Egan, E. (2005a). GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of reelin and GAD 65 & 67 kDa proteins in cerebellum. Schizophr. Res. 72:109-122.CrossRefPubMedGoogle Scholar
  48. Fatemi, S. H., Snow, A. V., Stary, J. M., Araghi-Niknam, M., Reutiman, T. J., Lee, S., Brooks, A. I., and Pearce, D. A. (2005b). Reelin signaling is impaired in autism. Biol. Psychiatry 57:777-787.CrossRefPubMedGoogle Scholar
  49. Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Bell, C., Nos, L., Fried, P., Pearce, D. A., Singh, S., Siderovski, D. P., Willard, F. S., and Fukuda, M. (2006). Chronic olanzapine treatment causes differential expression of genes in frontal cortex of rats as revealed by DNA microarray tech-nique. Neuropsychopharm. 31(9):1888-1899.CrossRefGoogle Scholar
  50. Forster, E., Tielsch, A., Saum, B., Weiss, K. H., Johanssen, C., Graus-Porta, D., Muller, U., and Frotscher, M. (2002). Reelin, disabled 1, and beta 1 integrins are required for the radial glial scaffold in the hippocampus. Proc. Natl. Acad. Sci. USA 99:13178-13183.CrossRefPubMedGoogle Scholar
  51. Garlick, D. (2002). Understanding the nature of the general factor of intelligence: the role of individual differences in neural plasticity as an explanatory mechanism. Psychol. Rev. 109:116-136.CrossRefPubMedGoogle Scholar
  52. Goffinet, A. M. (1979). An early developmental defect in the cerebral cortex of the Reelor mouse. Anat. Embryol. 157:205-218.CrossRefPubMedGoogle Scholar
  53. Goffinet, A. M. (1984). Events governing organization of postmigratory neurons: studies on brain development in normal and reeler mice. Brain Res. 319:261-296.PubMedGoogle Scholar
  54. Goffinet, A. M. (1992). The reeler gene: a clue to brain development and evolution. Int. J. Dev. Biol. 36:101-107.PubMedGoogle Scholar
  55. Gottesman, I. I., and Gould, T. D. (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160:636-645.CrossRefPubMedGoogle Scholar
  56. Guidotti, A. R., Auta, J., Davis, J., Di-Giorgi-Gerevini, V., Dwivedi, Y., Grayson, D. R., Impagnatiello, F., Pandey, G., Pesold, C., Sharma, R., Uzunov, D., and Costa, E. (2000). Decrease in reelin and glutamic acid decarboxylase 67 (GAD 67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch. Gen. Psychiatry 57:1061-1069.CrossRefPubMedGoogle Scholar
  57. Hadj-Sahraoui, N., Frederic, F., Delhaye-Bouchaud, N., and Mariani, J. (1996). Gender effect on Purkinje cell loss in the cerebellum of the heterozygous reeler mouse. J. Neurogenet. 11:45-58.CrossRefPubMedGoogle Scholar
  58. Helbecque, N., and Amouyel, P. (2000). Very low density lipoprotein in Alzheimer diseases. Microsc. Res.Tech. 50:273-277.CrossRefPubMedGoogle Scholar
  59. Herz, J., and Chen, Y. (2006). Reelin, lipoprotein receptors and synaptic plasticity. Nature Rev. Neurosci. 7:850-859.Google Scholar
  60. Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct biding of reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481-489.CrossRefPubMedGoogle Scholar
  61. Hong, S. E., Shugart, Y. Y., Huang, D. T., Shahwan, S. A., Grant, P. E., Hourihane, J. O., Martin, N. D., and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26:93-96.CrossRefPubMedGoogle Scholar
  62. Ignatova, N., Sindic, C. J. M., and Goffinet, A. M. (2004). Characterization of the various forms of the reelin protein in the cerebrospinal fluid of normal subjects and in neurological diseases. Neurobiol. Dis. 15:326-330.CrossRefPubMedGoogle Scholar
  63. Ikeda, Y., and Terashima, T. (1997). Expression of reelin, the gene responsible for the reeler mutation, in embryonic development and adulthood in the mouse. Dev. Dyn. 210:157-172.CrossRefPubMedGoogle Scholar
  64. Impagnatiello, F., Guidotti, A. R., Pesold, C., Dwivedi, Y., Caruncho, H., Pisu, M. G., Uzuniv, D.P., Smalheiser, N. R., Davis, J. M., Pandey, G. N., Pappas, G. D., Tueting, P., Sharma, R. P., and Costa, E. (1998). A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc. Natl. Acad. Sci. USA 95:15718-15723.CrossRefPubMedGoogle Scholar
  65. Janusonis, S., Gluncic, V., and Rakic, P. (2004). Early serotonergic projections to Cajal-Retzius cells: relevance for cortical development. J. Neurosci. 24:1652-1659.CrossRefPubMedGoogle Scholar
  66. Jossin, Y., and Goffinet, A. M. (2007). Reelin signals through PI3K and Akt to control cortical development and through mTor to regulate dendritic growth. Mol. Cell. Biol. 27:7113-7124.CrossRefPubMedGoogle Scholar
  67. Jossin, Y., Ignatova, N., Hiesberger, T., Herz, J., Lambert de Rouvroit, C., and Goffinet, A. M. (2004). The central fragment of reelin, generated by proteolytic processing in vivo, is critical to its function during cortical plate development. J. Neurosci. 24:514-521.CrossRefPubMedGoogle Scholar
  68. Keshvara, L., Benhayon, D., Magdaleno, S., and Curran, T. (2001). Identification of reelininduced sites of tyrosyl phosphorylation on disabled-1. J. Biol. Chem. 276:16008-16014.CrossRefPubMedGoogle Scholar
  69. Knable, M. B., Barci, B. M., Webster, M. J., Meador-Woodruff, J., and Torrey, E. F. (2004). Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol. Psychiatry 9:609-620.CrossRefPubMedGoogle Scholar
  70. Krebs, M. O., Betancur, C., Leroy, S., Bourdel, M. C., Gillberg, C., and Leboyer, M; Paris Autism Research International Sibpair (PARIS) study. (2002). Absence of association between a polymorphic GGC repeat in the 5' untranslated region of the reelin gene and autism. Mol. Psychiatry 7:801-804.Google Scholar
  71. Lacor, P., Grayson, D. R., Auto, J., Sugaya, I., Costa, E., and Guidotti, A. (2000). Reelin secretion from glutamatergic neurons in culture is independent from neurotransmitter regulation. Proc. Natl. Acad. Sci. USA 97:3556-3561.CrossRefPubMedGoogle Scholar
  72. Li, J., Nguyen, L., Gleason, C., Lotspeich, L., Spiker, D., Risch, N., and Myers, R. M. (2004). Lack of evidence for an association between WNT2 and RELN polymorphisms and autism. Am. J. Med. Genet. 126B:51-57.CrossRefPubMedGoogle Scholar
  73. Lugli, G., Krueger, J. M., Davis, J. M., Persico, A. M., Keller, F., and Smalheiser, N. R. (2003). Methodological factors influencing measurement and processing of plasma reelin in humans. BMC Biochem. 4:9.CrossRefPubMedGoogle Scholar
  74. Luque, J. M., Morante-Oria, J., and Fairen, A. (2003). Localization of ApoER2, VLDLR and Dab-1 in radial glia: groundwork for a new model of reelin action during cortical development. Dev. Brain Res. 140:195-203.CrossRefGoogle Scholar
  75. Magdaleno, S., Keshvara, L., and Curran, T. (2002). Rescue of ataxia and preplate splitting by ectopic expression of reelin in reeler mice. Neuron 33:573-586.CrossRefPubMedGoogle Scholar
  76. McAlonan, G. M., Daly, E., Kumari, V., Critchley, H. D., van Amelsvoort, T., Suckling, J., Simmons, A., Sigmundsson, T., Greenwood, K., Russell, A., Schmitz, N., Happe, F., Howlin, P., and Murphy, D. G. (2002). Brain anatomy and sensorimotor gating in Asperger’s syndrome. Brain 125:1594-1606.CrossRefPubMedGoogle Scholar
  77. Meincke, U., Light, G. A., Geyer, M. A., Braff, D. L., and Gouzoulis-Mayfrank, E. (2004). Sensitization and habituation of the acoustic startle reflex in patients with schizophrenia. Psychiatry Res. 126:51-61.CrossRefPubMedGoogle Scholar
  78. Meyer, U., Nyffeler, M., Yee, B. K., Knuesel, I., and Feldon, J. (2007). Adult brain and behavioral pathological markers of preimmune challenge during early/middle and late fetal development in mice. Brain Behav. Immun. in press.Google Scholar
  79. Miki, H., Sasaki, T., Takai, Y., and Takenawa, T. (1998). Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391:93-96.CrossRefPubMedGoogle Scholar
  80. Miyata, H., Chute, D. J., Fink, J., Villablanca, P., and Vinters, H. V. (2003). Lissencephaly with agenesis of corpus callosum and rudimentary dysplastic cerebellum: a subtype of lissencephaly with cerebellar hypoplasia. Acta Neuropathol. (Berl.) 107:69-81.Google Scholar
  81. Ogawa, M., Miyata, T., Nakajima, K., Yoguy, K., Seiko, M., Ikenaka, K., Yamamoto, H., and Mikoshiba, K. (1995). The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14:899-912.CrossRefPubMedGoogle Scholar
  82. Ohkubo, N., Vitek, M. P., Morishima, A., Suzuki, Y., Miki, T., Maeda, N., and Mitsuda, N. (2007). Reelin signals survival through Src-family kinases that inactivate BAD activity. J. Neurochem. 103 (2):820-830.CrossRefPubMedGoogle Scholar
  83. Palmen, S. J., van Engeland, H., Hof, P. R., and Schmitz, C. (2004). Neuropathological findings in autism. Brain 127:2572-2583.CrossRefPubMedGoogle Scholar
  84. Perez-Costas, E., Melendez-Ferro, M., Perez-Garcia, C. G., Caruncho, H. J., and Rodicio, M. C. (2004). Reelin immunoreactivity in the larval sea lamprey brain. J. Chem. Neuroanat. 23:211-221.CrossRefGoogle Scholar
  85. Persico, A., D’Agruma, L., Maiorano, N., Totaro, A., Militerni, R., Bravaccio, C., Wassink, T. H., Schneider, C., Melmed, R., Trillo, S., Montecchi, F., Palermo, M., Pascucci, T., Puglisi-Allegra, S., Reichelt, K. L., Conciatori, M., Marino, R., Quattrocchi, C. C., Baldi, A., Zelante, L., Gasparini, P., and Keller, F. (2001). Collaborative linkage study of autism: reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol. Psychiatry 6:150-159.CrossRefPubMedGoogle Scholar
  86. Persico, A., Levitt, P., and Pimenta, A. F. (2006). Polymorphic GGC repeat differentially regulates human reelin gene expression levels. J. Neural Transm. 113:1373-1382.CrossRefPubMedGoogle Scholar
  87. Pesold, C., Impagnatiello, F., Pisu, M. G., Uzunov, D. P., Costa, E., Guidotti, A., and Caruncho, H. J. (1990). Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc. Natl. Acad. Sci. USA 95:3221-3226.CrossRefGoogle Scholar
  88. Rodriguez, M. A., Pesold, C., Liu, W. S., Kriho, V., Guidotti, A., Pappas, G. D., and Costa, E. (2000). Colocalization of integrin receptors and reelin in dendritic spine post-synaptic densities of adult non-human primate cortex. Proc. Natl. Acad. Sci. USA 97:3550-3555.CrossRefPubMedGoogle Scholar
  89. Saez-Valero, J., Costell, M., Sjogren, M., Andreasen, N., Blennow, K., and Luque, J.M. (2003). Altered levels of cerebrospinal fluid reelin in frontotemporal dementia and Alzheimer’s disease. J. Neurosci. Res. 72:132-136.CrossRefPubMedGoogle Scholar
  90. Serajee, F. A., Zhong, H., and Mahbubul Huq, A. H. M. (2005). Association of reelin gene polymorphisms with autism. Genomics 87:75-83.CrossRefPubMedGoogle Scholar
  91. Shi, L., Fatemi, S. H., Sidewell, R. W., and Patterson, P. H. (2003). Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J. Neurosci. 23:297-302.PubMedGoogle Scholar
  92. Smalheiser, N. R., Costa, E., Guidotti, A., Impagnatiello, F., Auta, J., Lacor, P., Kriho, V., and Pappas, G. D. (2000). Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 97:1281-1286.CrossRefPubMedGoogle Scholar
  93. Strasser, V., Fasching, D., Hauser, C., Mayer, H., Bock, H. H., Hiesberger, T., Herz, J., Weeber, E.J., Sweatt, J. D., Pramatarova, A., Howell, B., Schneider, W. J., and Nimpf, J. (2004). Receptor clustering is involved in reelin signaling. Mol. Cell. Biol. 24:1378-1386.CrossRefPubMedGoogle Scholar
  94. Suetsugu, S., Tezuka, T., Morimura, T., Hattori, M., Mikoshiba, K., Yamamoto, T., and Takenawa, T. (2004). Regulation of actin cytoskeleton by mDab1 through N-WASP and ubiquitination of mDab1. Biochem. J. 384:1-8.CrossRefPubMedGoogle Scholar
  95. Tissir, F., and Goffinet, A. M. (2003). Reelin and brain development. Nature Rev. Neurosci. 4:496-505.Google Scholar
  96. Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stodkinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.CrossRefPubMedGoogle Scholar
  97. Tueting, P., Costa, E., Dwivedi, Y., Guidotti, A., Impagnatiello, F., Manev, R., and Pesold, C. (1999). The phenotypic characteristics of heterozygous reeler mouse. NeuroReport 10:1329-1334.CrossRefPubMedGoogle Scholar
  98. Tueting, P., Doueiri, M.-S., Davis, J. M., and Guidotti, A. (2005). Prepulse inhibition of startle reflects compromised GABAergic neurotransmission in reeler heterozygous mice. Program No. 936.5 2005 Abstract Viewer and Itinerary Planner. Society for Neuroscience, Washington, DC. Online.Google Scholar
  99. Utsunomiya-Tate, N., Kubo, K. I., Tate, S. C., Kainosho, M., Katayama, E., Nakajima, K., and Mikoshiba K. (2000). Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proc. Natl. Acad. Sci. USA 97:9729-9734.CrossRefPubMedGoogle Scholar
  100. Veldic, M., Caruncho, H. J., Liu, W. S., Davis, J., Satta, R., Grayson, D. R., Guidotti, A., and Costa, E. (2004). DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc. Natl. Acad. Sci. USA 101:348-353.CrossRefPubMedGoogle Scholar
  101. Wedenoja, J., Loukola, A., Tuulio-Henricksson, A., Pauino, T., Ekelund, J., Silander, K., Varilo, T., Hekkila, K., Suvisaari, J., Partonen, T., Lonnqvist, J., and Peltonen, L. (2007). Replication of linkage on chromosome 7q22 and association of the regional reelin gene with working memory in schizophrenia families. Mol. Psychiatry in press.Google Scholar
  102. Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., and Herz, J. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277:39944-39952.CrossRefPubMedGoogle Scholar
  103. Welch, M. D., Iwamatsu, A., and Mitchison, T. J. (1997). Actin polymerization is induced by Arp 2/3 protein complex at the surface of Listeria monocytogenes. Nature 385:265-269.CrossRefPubMedGoogle Scholar
  104. Zhang, H., Liu, X., Zhang, C., Muno, E., Macciardi, F., Grayson, D. R., Guidotti, A. R., and Holden, J. J. (2002). Reelin gene alleles and susceptibility for autism spectrum disorders. Mol. Psychiatry 7:1012-1017.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • S. Hossein Fatemi
    • 1
  • Teri J. Reutiman
    • 2
  • Timothy D. Folsom
    • 2
  1. 1.Departments of Psychiatry, Pharmacology, and NeuroscienceUniversity of Minnesota Medical SchoolMinneapolis55455
  2. 2.Department of PsychiatryUniversity of Minnesota Medical SchoolMinneapolis55455

Personalised recommendations