Reelin and Lissencephaly

  • Elena Parrini
  • Renzo Guerrini

The development of the human cerebral cortex is a dynamic process that can be divided into partially overlapping stages occurring during several gestational weeks (Barkovich et al., 2005). Migration of postmitotic neurons from the ventricular zone to form the cortical plate comprises one of the most critical stages in brain development. When migration is complete, the cortex is a six-layered structure, with each layer comprising different types of neurons that form discrete connections within the CNS and perform distinct functions (O’Rourke et al., 1992). When neurons reach their destination, they stop migrating and order themselves into specific “architectonic” patterns in brain development (Fig. 21.1A). Understanding this complex process has progressed based on studies of human malformations and mouse models with deficient neuronal migration, particularly the malformation known as lissencephaly (LIS).


Infantile Spasm Human Cerebral Cortex Ambiguous Genitalia Gyral Pattern Corpus Callosum Agenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barkovich, A. J., Kuzniecky, R.I., Jackson, G. D., Guerrini, R., and Dobyns, W. B. (2005). A developmental and genetic classification for malformations of cortical development. Neurology 65 (12):1873-1887.CrossRefPubMedGoogle Scholar
  2. Bonneau, D., Toutain, A., Laquerriere, A., Marret, S., Saugier-Veber, P., Barthez, M. A., Radi, S., Biran-Mucignat, V., Rodriguez, D., and Gelot, A. (2002). X-linked lissencephaly with absent corpus callosum and ambiguous genitalia (XLAG): clinical, magnetic resonance imaging, and neuropathological findings. Ann. Neurol. 51:340-349.CrossRefPubMedGoogle Scholar
  3. Caviness, V. S., Jr. (1976). Patterns of cell and fiber distribution in the neocortex of the reeler mutant mouse. J. Comp. Neurol. 170:435-447.CrossRefPubMedGoogle Scholar
  4. Caviness, V. S., Jr., and Sidman, R. L. (1973). Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J. Comp. Neurol. 148:141-151.CrossRefPubMedGoogle Scholar
  5. Chang, B. S., Duzcan, F., Kim, S., Cinbis, M., Aggarwal, A., Apse, K. A., Ozdel, O., Atmaca, M., Zencir, S., Bagci, H., and Walsh, C. A. (2007). The role of RELN in lissencephaly and neuropsychiatric disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144(1):58-63.Google Scholar
  6. D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719-723.CrossRefPubMedGoogle Scholar
  7. DeSilva, U., D’Arcangelo, G., Braden, V. V., Chen, J., Miao, G. G., Curran, T., and Green, E. D. (1997). The human reelin gene: isolation, sequencing, and mapping on chromosome 7. Genome Res. 7:157-164.CrossRefPubMedGoogle Scholar
  8. des Portes, V., Pinard, J. M., Billuart, P., Vinet, M. C., Koulakoff, A., Carrie, A., Gelot, A., Dupuis, E., Motte, J., Berwald-Netter, Y., Catala, M., Kahn, A., Beldjord, C., and Chelly, J. (1998). A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92:51-61.CrossRefPubMedGoogle Scholar
  9. Dobyns, W. B., Reiner, O., Carrozzo, R., and Ledbetter, D. H. (1993). Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. J. Am. Med. Assoc. 270:2838-2842.CrossRefGoogle Scholar
  10. Dobyns, W. B., Truwit, C. L., Ross, M. E., Matsumoto, N., Pilz, D. T., Ledbetter, D. H., Gleeson, J. G., Walsh, C. A., and Barkovich, A. J. (1999). Differences in the gyral pattern distinguish chromosome 17-linked and X-linked lissencephaly. Neurology 53:270-277.PubMedGoogle Scholar
  11. Gleeson, J. G., Allen, K. M., Fox, J. W., Lamperti, E. D., Berkovic, S., Scheffer, I., Cooper, E. C., Dobyns, W. B., Minnerath, S. R., Ross, M. E., and Walsh, C. A. (1998). doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92:63-72.CrossRefPubMedGoogle Scholar
  12. Gonzalez, J. L., Russo, C. J., Goldowitz, D., Sweet, H. O., Davisson, M. T., and Walsh, C. A. (1997). Birthdate and cell marker analysis of scrambler: a novel mutation affecting cortical development with a reeler-like phenotype. J. Neurosci. 17:9204-9211.PubMedGoogle Scholar
  13. Hong, S. E., Shugart, Y. Y., Huang, D. T., Shahwan, S. A., Grant, P. E., Hourihane, J. O., Martin, N. D., and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet. 26(1):93-96.CrossRefPubMedGoogle Scholar
  14. Kato, M., and Dobyns, W. B. (2003). Lissencephaly and the molecular basis of neuronal migration. Hum. Mol. Genet. 12:89-96.CrossRefGoogle Scholar
  15. Kato, M., Das, S., Petras, K., Kitamura, K., Morohashi, K., Abuelo, D. N., Barr, M., Bonneau, D., Brady, A. F., Carpenter, N. J., Cipero, K. L., Frisone, F., Fukuda, T., Guerrini, R., Iida, E., Itoh, M., Lewanda, A. F., Nanba, Y., Oka, A., Proud, V. K., Saugier-Veber, P., Schelley, S. L., Selicorni, A., Shaner, R., Silengo, M., Stewart, F., Sugiyama, N., Toyama, J., Toutain, A., Vargas, A. L., Yanazawa, M., Zackai, E. H., and Dobyns, W. B. (2004). Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat. 23(2):147-159.CrossRefPubMedGoogle Scholar
  16. Kitamura, K., Yanazawa, M., Sugiyama, N., Miura, H., Iizuka-Kogo, A., Kusaka, M., Omichi, K., Suzuki, R., Kato-Fukui, Y., Kamiirisa, K., Matsuo, M., Kamijo, S., Kasahara, M., Yoshioka, H., Ogata, T., Fukuda, T., Kondo, I., Kato, M., Dobyns, W. B., Yokoyama, M., and Morohashi, K. (2002). Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nature Genet. 32:359-369.CrossRefPubMedGoogle Scholar
  17. Lambert de Rouvroit, C., and Goffinet, A. M. (1998). The reeler mouse as a model of brain development. Adv. Anat. Embryol. Cell Biol. 150:1-106.PubMedGoogle Scholar
  18. Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., Yamamoto, H., and Mikoshiba, K. (1995). The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14:899-912.CrossRefPubMedGoogle Scholar
  19. O’Rourke, N. A., Dailey, M. E., Smith, S. J., and McConnell, S. K. (1992). Diverse migratory pathways in the developing cerebral cortex. Science 258:299-302.CrossRefPubMedGoogle Scholar
  20. Pilz, D. T., Matsumoto, N., Minnerath, S., Mills, P., Gleeson, J. G., Allen, K. M., Walsh, C. A., Barkovich, A. J., Dobyns, W. B., Ledbetter, D. H., and Ross, M. E. (1998). LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum. Mol. Genet. 7:2029-2037.CrossRefPubMedGoogle Scholar
  21. Reiner, O., Carrozzo, R., Shen, Y., Wehnert, M., Faustinella, F., Dobyns, W. B., Caskey, C. T., and Ledbetter, D. H. (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein β-subunit-like repeats. Nature 364:717-721.CrossRefPubMedGoogle Scholar
  22. Ross, M. E., Swanson, K., and Dobyns, W. B. (2001). Lissencephaly with cerebellar hypoplasia (LCH): a heterogeneous group of cortical malformations. Neuropediatrics 32(5):256-263.CrossRefPubMedGoogle Scholar
  23. Walsh, C. A. (1999). Genetic malformations of the human cerebral cortex. Neuron 23:19-29.CrossRefPubMedGoogle Scholar
  24. Zaki, M., Shehab, M., El-Aleem, A. A., Abdel-Salam, G., Koeller, H. B., Ilkin, Y., Ross, M. E., Dobyns, W. B., and Gleeson, J. G. (2007). Identification of a novel recessive RELN mutation using a homozygous balanced reciprocal translocation. Am. J. Med. Genet. A 143:939-944.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Elena Parrini
    • 1
  • Renzo Guerrini
    • 1
  1. 1.Pediatric Neurology Unit and LaboratoriesChildren’s Hospital A. Meyer-University of FlorenceFlorenceItaly

Personalised recommendations