Advertisement

Apolipoprotein E Receptor 2 and Very-Low-Density Lipoprotein Receptor: An Overview

  • Hans H. Bock
  • Joachim Herz

It is now well established that members of the low-density lipoprotein (LDL) receptor gene family are crucial regulators of different aspects of neuronal development, synaptic plasticity, maintenance of neuronal homeostasis, and neurodegeneration. This was highlighted in particular by the discovery that the lipoprotein receptors apolipoprotein E receptor-2 (ApoER2) and very-low-density lipoprotein receptor (VLDLR) function as receptors for the neuronal signaling protein Reelin. In this chapter, we will briefly introduce the family of LDL receptor-related proteins and review the functions of its members ApoER2 and VLDLR as Reelin receptors and their role in the developing and adult brain.

Keywords

Lipoprotein Receptor ApoE Receptor Reelin Signaling Regulate Intramembrane Proteolysis NPXY Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, O. M., and Willnow, T. E. (2006). Lipoprotein receptors in Alzheimer’s disease. Trends Neurosci. 29:687-694.PubMedGoogle Scholar
  2. Andersen, O. M., Yeung, C. H., Vorum, H., Wellner, M., Andreassen, T. K., Erdmann, B., Mueller, E. C., Herz, J., Otto, A., Cooper, T. G., and Willnow, T. E. (2003). Essential role of the apolipoprotein E receptor-2 in sperm development. J. Biol. Chem. 278:23989-23995.PubMedGoogle Scholar
  3. Andersen, O. M., Reiche, J., Schmidt, V., Gotthardt, M., Spoelgen, R., Behlke, J., von Arnim, C. A., Breiderhoff, T., Jansen, P., Wu, X., Bales, K. R., Cappai, R., Masters, C. L., Gliemann, J., Mufson, E. J., Hyman, B. T., Paul, S. M., Nykjaer, A., and Willnow, T. E. (2005). Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc. Natl. Acad. Sci. USA 102:13461-13466.PubMedGoogle Scholar
  4. Arnaud, L., Ballif, B. A., and Cooper, J. A. (2003a). Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol. Cell. Biol 23:9293-9302.PubMedGoogle Scholar
  5. Arnaud, L., Ballif, B. A., Forster, E., and Cooper, J. A. (2003b). Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr. Biol. 13:9-17.PubMedGoogle Scholar
  6. Assadi, A. H., Zhang, G., Beffert, U., McNeil, R. S., Renfro, A. L., Niu, S., Quattrocchi, C. C., Antalffy, B. A., Sheldon, M., Armstrong, D. D., Wynshaw-Boris, A., Herz, J., D’Arcangelo, G., and Clark, G. D. (2003). Interaction of reelin signaling and Lis1 in brain development. Nature Genet. 35:270-276.PubMedGoogle Scholar
  7. Bacskai, B. J., Xia, M. Q., Strickland, D. K., Rebeck, G. W., and Hyman, B. T. (2000). The endocytic receptor protein LRP also mediates neuronal calcium signaling via N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 97:11551-11556.PubMedGoogle Scholar
  8. Ballif, B. A., Arnaud, L., and Cooper, J. A. (2003). Tyrosine phosphorylation of disabled-1 is essential for reelin-stimulated activation of Akt and Src family kinases. Brain Res. Mol. Brain Res. 117:152-159.PubMedGoogle Scholar
  9. Ballif, B. A., Arnaud, L., Arthur, W. T., Guris, D., Imamoto, A., and Cooper, J. A. (2004). Activation of a Dab1/CrkL/C3G/Rap1 pathway in reelin-stimulated neurons. Curr. Biol. 14:606-610.PubMedGoogle Scholar
  10. Beffert, U., Morfini, G., Bock, H. H., Reyna, H., Brady, S. T., and Herz, J. (2002). Reelin- mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J. Biol. Chem. 277:49958-49964.PubMedGoogle Scholar
  11. Beffert, U., Weeber, E. J., Morfini, G., Ko, J., Brady, S. T., Tsai, L. H., Sweatt, J. D., and Herz, J. (2004). Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J. Neurosci. 24:1897-1906.PubMedGoogle Scholar
  12. Beffert, U., Weeber, E. J., Durudas, A., Qiu, S., Masiulis, I., Sweatt, J. D., Li, W. P., Adelmann, G., Frotscher, M., Hammer, R. E., and Herz, J. (2005). Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor apoer2. Neuron 47:567-579.PubMedGoogle Scholar
  13. Beffert, U., Nematollah Farsian, F., Masiulis, I., Hammer, R. E., Yoon, S. O., Giehl, K. M., and Herz, J. (2006a). ApoE receptor 2 controls neuronal survival in the adult brain. Curr. Biol. 16:2446-2452.PubMedGoogle Scholar
  14. Beffert, U., Durudas, A., Weeber, E. J., Stolt, P. C., Giehl, K. M., Sweatt, J. D., Hammer, R. E., and Herz, J. (2006b). Functional dissection of reelin signaling by site-directed disruption of disabled-1 adaptor binding to apolipoprotein E receptor 2: Distinct roles in development and synaptic plasticity. J. Neurosci. 26:2041-2052.PubMedGoogle Scholar
  15. Benhayon, D., Magdaleno, S., and Curran, T. (2003). Binding of purified reelin to ApoER2 and VLDLR mediates tyrosine phosphorylation of disabled-1. Brain Res. Mol. Brain Res. 112:33-45.PubMedGoogle Scholar
  16. Bock, H. H., and Herz, J. (2003). Reelin activates Src family tyrosine kinases in neurons. Curr. Biol. 13:18-26.PubMedGoogle Scholar
  17. Bock, H. H., Jossin, Y., Liu, P., Forster, E., May, P., Goffinet, A. M., and Herz, J. (2003). Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to reelin signaling and is required for normal cortical lamination. J. Biol. Chem. 278:38772-38779.PubMedGoogle Scholar
  18. Bock, H. H., Jossin, Y., May, P., Bergner, O., and Herz, J. (2004). Apolipoprotein E receptors are required for reelin-induced proteasomal degradation of the neuronal adaptor protein disabled-1. J. Biol. Chem. 279:33471-33479.PubMedGoogle Scholar
  19. Bonifacino, J. S., and Traub, L. M. (2003). Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72:395-447.PubMedGoogle Scholar
  20. Bos, J. L. (2005). Linking Rap to cell adhesion. Curr. Opin. Cell Biol. 17:123-128.PubMedGoogle Scholar
  21. Boycott, K. M., Flavelle, S., Bureau, A., Glass, H. C., Fujiwara, T. M., Wirrell, E., Davey, K., Chudley, A. E., Scott, J. N., McLeod, D. R., and Parboosingh, J. S. (2005). Homozygous deletion of the very low density lipoprotein receptor gene causes autosomal recessive cerebellar hypoplasia with cerebral gyral simplification. Am. J. Hum. Genet. 77:477-483.PubMedGoogle Scholar
  22. Boyles, J. K., Pitas, R. E., Wilson, E., Mahley, R. W., and Taylor, J. M. (1985). Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J. Clin. Invest. 76:1501-1513.PubMedGoogle Scholar
  23. Boyles, J. K., Zoellner, C. D., Anderson, L. J., Kosik, L. M., Pitas, R. E., Weisgraber, K. H., Hui, D. Y., Mahley, R. W., Gebicke-Haerter, P. J., Ignatius, M. J., and Shooter, E. M. (1989). A role for apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. J. Clin. Invest. 83:1015-1031.PubMedGoogle Scholar
  24. Brandes, C., Novak, S., Stockinger, W., Herz, J., Schneider, W. J., and Nimpf, J. (1997). Avian and murine LR8B and human apolipoprotein E receptor 2: differentially spliced products from corresponding genes. Genomics 42:185-191.PubMedGoogle Scholar
  25. Brandes, C., Kahr, L., Stockinger, W., Hiesberger, T., Schneider, W. J., and Nimpf, J. (2001). Alternative splicing in the ligand binding domain of mouse ApoE receptor-2 produces receptor variants binding reelin but not alpha 2-macroglobulin. J. Biol. Chem. 276:22160-22169.PubMedGoogle Scholar
  26. Brich, J., Shie, F. S., Howell, B. W., Li, R., Tus, K., Wakeland, E. K., Jin, L. W., Mumby, M., Churchill, G., Herz, J., and Cooper, J. A. (2003). Genetic modulation of tau phosphorylation in the mouse. J. Neurosci. 23:187-192.PubMedGoogle Scholar
  27. Bu, G., and Schwartz, A. L. (1998). RAP, a novel type of ER chaperone. Trends Cell Biol. 8:272-276.PubMedGoogle Scholar
  28. Calderwood, D. A., Fujioka, Y., de Pereda, J. M., Garcia-Alvarez, B., Nakamoto, T., Margolis, B., McGlade, C. J., Liddington, R. C., and Ginsberg, M. H. (2003). Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling. Proc. Natl. Acad. Sci. USA100:2272-2277.PubMedGoogle Scholar
  29. Cam, J. A., and Bu, G. (2006). Modulation of beta-amyloid precursor protein trafficking and processing by the low density lipoprotein receptor family. Mol. Neurodegener. 1:8.PubMedGoogle Scholar
  30. Cao, X., and Sudhof, T. C. (2001). A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293:115-120.PubMedGoogle Scholar
  31. Cariboni, A., Rakic, S., Liapi, A., Maggi, R., Goffinet, A., and Parnavelas, J. G. (2005). Reelin provides an inhibitory signal in the migration of gonadotropin-releasing hormone neurons. Development 132:4709-4718.PubMedGoogle Scholar
  32. Chen, K., Ochalski, P. G., Tran, T. S., Sahir, N., Schubert, M., Pramatarova, A., and Howell, B. W. (2004). Interaction between Dab1 and CrkII is promoted by reelin signaling. J. Cell Sci. 117:4527-4536.PubMedGoogle Scholar
  33. Chen, Y., Beffert, U., Ertunc, M., Tang, T. S., Kavalali, E. T., Bezprozvanny, I., and Herz, J. (2005). Reelin modulates NMDA receptor activity in cortical neurons. J. Neurosci. 25:8209-8216.PubMedGoogle Scholar
  34. Clatworthy, A. E., Stockinger, W., Christie, R. H., Schneider, W. J., Nimpf, J., Hyman, B. T., and Rebeck, G. W. (1999). Expression and alternate splicing of apolipoprotein E receptor 2 in brain. Neuroscience 90:903-911.PubMedGoogle Scholar
  35. Cooper, J. A., and Howell, B. W. (1999). Lipoprotein receptors: signaling functions in the brain? Cell 97:671-674.PubMedGoogle Scholar
  36. D’Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon, M., and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24:471-479.PubMedGoogle Scholar
  37. Dhavan, R., and Tsai, L. H. (2001). A decade of CDK5. Nature Rev. Mol. Cell Biol. 2:749-759.Google Scholar
  38. Dietschy, J. M., and Turley, S. D. (2004). Thematic review series: Brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J. Lipid Res. 45:1375-1397.PubMedGoogle Scholar
  39. Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27:33-44.PubMedGoogle Scholar
  40. Feng, Y., and Walsh, C. A. (2001). Protein-protein interactions, cytoskeletal regulation and neuronal migration. Nature Rev. Neurosci. 2:408-416.Google Scholar
  41. Forster, E., Tielsch, A., Saum, B., Weiss, K. H., Johanssen, C., Graus-Porta, D., Muller, U., and Frotscher, M. (2002). Reelin, disabled 1, and beta 1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc. Natl. Acad. Sci. USA99:13178-13183.PubMedGoogle Scholar
  42. Frykman, P. K., Brown, M. S., Yamamoto, T., Goldstein, J. L., and Herz, J. (1995). Normal plasma lipoproteins and fertility in gene-targeted mice homozygous for a disruption in the gene encoding very low density lipoprotein receptor. Proc. Natl. Acad. Sci. USA 92:8453-8457.PubMedGoogle Scholar
  43. Goedert, M., and Spillantini, M. G. (2006). A century of Alzheimer’s disease. Science 314:777-781.PubMedGoogle Scholar
  44. Gotthardt, M., Trommsdorff, M., Nevitt, M. F., Shelton, J., Richardson, J. A., Stockinger, W., Nimpf, J., and Herz, J. (2000). Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J. Biol. Chem. 275:25616-25624.PubMedGoogle Scholar
  45. Goudriaan, J. R., Tacken, P. J., Dahlmans, V. E., Gijbels, M. J., van Dijk, K. W., Havekes, L. M., and Jong, M. C. (2001). Protection from obesity in mice lacking the VLDL receptor. Arterioscler. Thromb. Vasc. Biol. 21:1488-1493.PubMedGoogle Scholar
  46. Grant, S. G., O’Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P., and Kandel, E. R. (1992). Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258:1903-1910.PubMedGoogle Scholar
  47. Heckenlively, J. R., Hawes, N. L., Friedlander, M., Nusinowitz, S., Hurd, R., Davisson, M., and Chang, B. (2003). Mouse model of subretinal neovascularization with choroidal anastomosis. Retina 23:518-522.PubMedGoogle Scholar
  48. Helbecque, N., and Amouyel, P. (2000). Very low density lipoprotein receptor in Alzheimer disease. Microsc. Res. Tech. 50:273-277.PubMedGoogle Scholar
  49. Helbecque, N., Berr, C., Cottel, D., Fromentin-David, I., Sazdovitch, V., Ricolfi, F., Ducimetiere, P., Di Menza, C., and Amouyel, P. (2001). VLDL receptor polymorphism, cognitive impairment, and dementia. Neurology 56:1183-1188.PubMedGoogle Scholar
  50. Herz, J. (2006). The switch on the RAPper’s necklace. Mol. Cell 23:451-455.PubMedGoogle Scholar
  51. Herz, J., and Beffert, U. (2000). Apolipoprotein E receptors: linking brain development and Alzheimer’s disease. Nature Rev. Neurosci. 1:51-58.Google Scholar
  52. Herz, J., and Bock, H. H. (2002). Lipoprotein receptors in the nervous system. Annu. Rev. Biochem. 71:405-434.PubMedGoogle Scholar
  53. Herz, J., and Chen, Y. (2006). Reelin, lipoprotein receptors and synaptic plasticity. Nature Rev. Neurosci. 7:850-859.Google Scholar
  54. Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24: 481-489.PubMedGoogle Scholar
  55. Ho, A., and Sudhof, T. C. (2004). Binding of F-spondin to amyloid-beta precursor protein: a candidate amyloid-beta precursor protein ligand that modulates amyloid-beta precursor protein cleavage. Proc. Natl. Acad. Sci. USA 101:2548-2553.PubMedGoogle Scholar
  56. Hoe, H. S., and Rebeck, G. W. (2005). Regulation of ApoE receptor proteolysis by ligand binding. Brain Res. Mol. Brain Res. 137:31-39.PubMedGoogle Scholar
  57. Hoe, H. S., Wessner, D., Beffert, U., Becker, A. G., Matsuoka, Y., and Rebeck, G. W. (2005). F-spondin interaction with the apolipoprotein E receptor ApoEr2 affects processing of amyloid precursor protein. Mol. Cell Biol. 25:9259-9268.PubMedGoogle Scholar
  58. Hoe, H. S., Pocivavsek, A., Chakraborty, G., Fu, Z., Vicini, S., Ehlers, M. D., and Rebeck, G. W. (2006a). Apolipoprotein E receptor 2 interactions with the N-methyl-D-aspartate receptor. J. Biol. Chem. 281:3425-3431.PubMedGoogle Scholar
  59. Hoe, H. S., Tran, T. S., Matsuoka, Y., Howell, B. W., and Rebeck, G. W. (2006b). DAB1 and reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing. J. Biol. Chem. 281:35176-35185.PubMedGoogle Scholar
  60. Homayouni, R., Rice, D. S., Sheldon, M., and Curran, T. (1999). Disabled-1 binds to the cytoplasmic domain of amyloid precursor-like protein 1. J. Neurosci. 19:7507-7515.PubMedGoogle Scholar
  61. Hong, S. E., Shugart, Y. Y., Huang, D. T., Shahwan, S. A., Grant, P. E., Hourihane, J. O., Martin, N. D., and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26:93-96.PubMedGoogle Scholar
  62. Howell, B. W., Gertler, F. B., and Cooper, J. A. (1997a). Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. EMBO J. 16:121-132.PubMedGoogle Scholar
  63. Howell, B. W., Hawkes, R., Soriano, P., and Cooper, J. A. (1997b). Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389:733-737.PubMedGoogle Scholar
  64. Howell, B. W., Herrick, T. M., and Cooper, J. A. (1999a). Reelin-induced tryosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13:643-648.PubMedGoogle Scholar
  65. Howell, B. W., Lanier, L. M., Frank, R., Gertler, F. B., and Cooper, J. A. (1999b). The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glyco-proteins and to phospholipids. Mol. Cell Biol. 19:5179-5188.PubMedGoogle Scholar
  66. Howell, B. W., Herrick, T. M., Hildebrand, J. D., Zhang, Y., and Cooper, J. A. (2000). Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development. Curr. Biol. 10:877-885.PubMedGoogle Scholar
  67. Huang, Y., Magdaleno, S., Hopkins, R., Slaughter, C., Curran, T., and Keshvara, L. (2004). Tyrosine phosphorylated disabled 1 recruits Crk family adapter proteins. Biochem. Biophys. Res. Commun. 318:204-212.PubMedGoogle Scholar
  68. Huang, Y., Shah, V., Liu, T., and Keshvara, L. (2005). Signaling through disabled 1 requires phosphoinositide binding. Biochem. Biophys. Res. Commun. 331:1460-1468.PubMedGoogle Scholar
  69. Ignatius, M. J., Shooter, E. M., Pitas, R. E., and Mahley, R. W. (1987). Lipoprotein uptake by neuronal growth cones in vitro. Science 236:959-962.PubMedGoogle Scholar
  70. Jossin, Y., Ogawa, M., Metin, C., Tissir, F., and Goffinet, A. M. (2003). Inhibition of SRC family kinases and non-classical protein kinases C induce a reeler-like malformation of cortical plate development. J. Neurosci. 23:9953-9959.PubMedGoogle Scholar
  71. Jossin, Y., Ignatova, N., Hiesberger, T., Herz, J., Lambert de Rouvroit, C., and Goffinet, A. M. (2004). The central fragment of reelin, generated by proteolytic processing in vivo, is critical to its function during cortical plate development. J. Neurosci. 24:514-521.PubMedGoogle Scholar
  72. Keshvara, L., Benhayon, D., Magdaleno, S., and Curran, T. (2001). Identification of reelin-induced sites of tyrosyl phosphorylation on disabled 1. J. Biol. Chem. 276:16008-16014.PubMedGoogle Scholar
  73. Kinoshita, A., Shah, T., Tangredi, M. M., Strickland, D. K., and Hyman, B. T. (2003). The intracellular domain of the low density lipoprotein receptor-related protein modulates transactivation mediated by amyloid precursor protein and Fe65. J. Biol. Chem. 278:41182-41188.PubMedGoogle Scholar
  74. Koch, S., Strasser, V., Hauser, C., Fasching, D., Brandes, C., Bajari, T. M., Schneider, W. J., and Nimpf, J. (2002). A secreted soluble form of ApoE receptor 2 acts as a dominant-negative receptor and inhibits reelin signaling. EMBO J. 21:5996-6004.PubMedGoogle Scholar
  75. Kuo, G., Arnaud, L., Kronstad-O’Brien, P., and Cooper, J. A. (2005). Absence of Fyn and Src causes a reeler-like phenotype. J. Neurosci. 25:8578-8586.PubMedGoogle Scholar
  76. Ma, S. L., Ng, H. K., Baum, L., Pang, J. C., Chiu, H. F., Woo, J., Tang, N. L., and Lam, L. C. (2002). Low-density lipoprotein receptor-related protein 8 (apolipoprotein E receptor 2) gene polymorphisms in Alzheimer’s disease. Neurosci. Lett. 332:216-218.PubMedGoogle Scholar
  77. Mahley, R. W. (1988). Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622-630.PubMedGoogle Scholar
  78. Mahley, R. W., and Rall, S. C., Jr. (2000). Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Genomics Hum. Genet. 1:507-537.PubMedGoogle Scholar
  79. Mahley, R. W., Innerarity, T. L., Rall, S. C., Jr., and Weisgraber, K. H. (1984). Plasma lipoproteins: apolipoprotein structure and function. J. Lipid Res. 25:1277-1294.PubMedGoogle Scholar
  80. Mahley, R. W., Weisgraber, K. H., and Huang, Y. (2006). Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 103:5644-5651.PubMedGoogle Scholar
  81. Mauch, D. H., Nagler, K., Schumacher, S., Goritz, C., Muller, E. C., Otto, A., and Pfrieger, F. W. (2001). CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354-1357.PubMedGoogle Scholar
  82. May, P., and Herz, J. (2003). LDL receptor-related proteins in neurodevelopment. Traffic 4:291-301.PubMedGoogle Scholar
  83. May, P., Reddy, Y. K., and Herz, J. (2002). Proteolytic processing of low density lipoprotein receptor-related protein mediates regulated release of its intracellular domain. J. Biol. Chem. 277:18736-18743.PubMedGoogle Scholar
  84. May, P., Bock, H. H., Nimpf, J., and Herz, J. (2003). Differential glycosylation regulates processing of lipoprotein receptors by gamma-secretase. J. Biol. Chem. 278:37386-37392.PubMedGoogle Scholar
  85. May, P., Rohlmann, A., Bock, H. H., Zurhove, K., Marth, J. D., Schomburg, E. D., Noebels, J. L., Beffert, U., Sweatt, J. D., Weeber, E. J., and Herz, J. (2004). Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol. Cell Biol. 24:8872-8883.PubMedGoogle Scholar
  86. May, P., Herz, J., and Bock, H. H. (2005). Molecular mechanisms of lipoprotein receptor signalling. Cell. Mol. Life Sci. 62:2325-2338.PubMedGoogle Scholar
  87. Mayer, H., Duit, S., Hauser, C., Schneider, W. J., and Nimpf, J. (2006). Reconstitution of the reelin signaling pathway in fibroblasts demonstrates that Dab1 phosphorylation is independent of receptor localization in lipid rafts. Mol. Cell Biol. 26:19-27.PubMedGoogle Scholar
  88. Merdes, G., Soba, P., Loewer, A., Bilic, M. V., Beyreuther, K., and Paro, R. (2004). Interference of human and Drosophila APP and APP-like proteins with PNS development in Drosophila. EMBO J. 23:4082-4095.PubMedGoogle Scholar
  89. Morimura, T., Hattori, M., Ogawa, M., and Mikoshiba, K. (2005). Disabled1 regulates the intracellular trafficking of reelin receptors. J. Biol. Chem. 280:16901-16908.PubMedGoogle Scholar
  90. Niethammer, M., Smith, D. S., Ayala, R., Peng, J., Ko, J., Lee, M. S., Morabito, M., and Tsai, L. H. (2000). NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28:697-711.PubMedGoogle Scholar
  91. Nykjaer, A., and Willnow, T. E. (2002). The low-density lipoprotein receptor gene family: a cellular Swiss army knife? Trends Cell Biol. 12:273-280.PubMedGoogle Scholar
  92. Ohshima, T., Ogawa, M., Veeranna, Hirasawa, M., Longenecker, G., Ishiguro, K., Pant, H. C., Brady, R. O., Kulkarni, A. B., and Mikoshiba, K. (2001). Synergistic contributions of cyclin-dependent kinase 5/p35 and reelin/Dab1 to the positioning of cortical neurons in the developing mouse brain. Proc. Natl. Acad. Sci. USA 98:2764-2769.PubMedGoogle Scholar
  93. Ohshima, T., Suzuki, H., Morimura, T., Ogawa, M., and Mikoshiba, K. (2007). Modulation of reelin signaling by cyclin-dependent kinase 5. Brain Res. 1140:84-95.PubMedGoogle Scholar
  94. Okuizumi, K., Onodera, O., Namba, Y., Ikeda, K., Yamamoto, T., Seki, K., Ueki, A., Nanko, S., Tanaka, H., Takahashi, H., Oyanagi, K., Mizusawa, H., Kanazawa, I., and Tsuji, S. (1995). Genetic association of the very low density lipoprotein (VLDL) receptor gene with sporadic Alzheimer’s disease. Nature Genet. 11:207-209.PubMedGoogle Scholar
  95. Pitas, R. E., Boyles, J. K., Lee, S. H., Hui, D., and Weisgraber, K. H. (1987). Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B,E(LDL) receptors in the brain. J. Biol. Chem. 262:14352-14360.PubMedGoogle Scholar
  96. Pramatarova, A., Ochalski, P. G., Chen, K., Gropman, A., Myers, S., Min, K. T., and Howell, B. W. (2003). Nck beta interacts with tyrosine-phosphorylated disabled 1 and redistributes in reelin-stimulated neurons. Mol. Cell Biol. 23:7210-7221.PubMedGoogle Scholar
  97. Pramatarova, A., Ochalski, P. G., Lee, C. H., and Howell, B. W. (2006). Mouse disabled 1 regulates the nuclear position of neurons in a Drosophila eye model. Mol. Cell Biol. 26:1510-1517.PubMedGoogle Scholar
  98. Qiu, S., Zhao, L. F., Korwek, K. M., and Weeber, E. J. (2006). Differential reelin-induced enhancement of NMDA and AMPA receptor activity in the adult hippocampus. J. Neurosci. 26:12943-12955.PubMedGoogle Scholar
  99. Rice, D. S., Sheldon, M., D’Arcangelo, G., Nakajima, K., Goldowitz, D., and Curran, T. (1998). Disabled-1 acts downstream of reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125:3719-3729.PubMedGoogle Scholar
  100. Roses, A. D. (1996). Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu. Rev. Med. 47:387-400.PubMedGoogle Scholar
  101. Rossel, M., Loulier, K., Feuillet, C., Alonso, S., and Carroll, P. (2005). Reelin signaling is necessary for a specific step in the migration of hindbrain efferent neurons. Development 132:1175-1185.PubMedGoogle Scholar
  102. Sanada, K., Gupta, A., and Tsai, L. H. (2004). Disabled-1-regulated adhesion of migrating neurons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron 42:197-211.PubMedGoogle Scholar
  103. Sasaki, S., Shionoya, A., Ishida, M., Gambello, M.J., Yingling, J., Wynshaw-Boris, A., and Hirotsune, S. (2000). A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28:681-696.PubMedGoogle Scholar
  104. Sato, N., Fukushima, N., Chang, R., Matsubayashi, H., and Goggins, M. (2006). Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers. Gastroenterology 130:548-565.PubMedGoogle Scholar
  105. Schneider, W. J., and Nimpf, J. (2003). LDL receptor relatives at the crossroad of endocytosis and signaling. Cell. Mol. Life Sci. 60:892-903.PubMedGoogle Scholar
  106. Schneider, W. J., Nimpf, J., and Bujo, H. (1997). Novel members of the low density lipoprotein receptor superfamily and their potential roles in lipid metabolism. Curr. Opin. Lipidol. 8:315-319.PubMedGoogle Scholar
  107. Sheldon, M., Rice, D. S., D’Arcangelo, G., Yoneshima, H., Nakajima, K., Mikoshiba, K., Howell, B. W., Cooper, J. A., Goldowitz, D., and Curran, T. (1997). Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730-733.PubMedGoogle Scholar
  108. Sinha, S., and Lieberburg, I. (1999). Cellular mechanisms of beta-amyloid production and secretion. Proc. Natl. Acad. Sci. USA 96:11049-11053.PubMedGoogle Scholar
  109. Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., Nairn, A. C., Salter, M. W., Lombroso, P. J., Gouras, G. K., and Greengard, P. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neurosci. 8:1051-1058.PubMedGoogle Scholar
  110. Stockinger, W., Brandes, C., Fasching, D., Hermann, M., Gotthardt, M., Herz, J., Schneider, W. J., and Nimpf, J. (2000). The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and -2. J. Biol. Chem. 275:25625-25632.PubMedGoogle Scholar
  111. Stolt, P. C., and Bock, H. H. (2006). Modulation of lipoprotein receptor functions by intracellular adaptor proteins. Cell Signal 18:1560-1571.PubMedGoogle Scholar
  112. Stolt, P. C., Jeon, H., Song, H. K., Herz, J., Eck, M. J., and Blacklow, S. C. (2003). Origins of peptide selectivity and phosphoinositide binding revealed by structures of disabled-1 PTB domain complexes. Structure (Cambridge) 11:569-579.Google Scholar
  113. Stolt, P. C., Vardar, D., and Blacklow, S. C. (2004). The dual-function disabled-1 PTB domain exhibits site independence in binding phosphoinositide and peptide ligands. Biochemistry 43:10979-10987.PubMedGoogle Scholar
  114. Stolt, P. C., Chen, Y., Liu, P., Bock, H. H., Blacklow, S. C., and Herz, J. (2005). Phosphoinositide binding by the disabled-1 PTB domain is necessary for membrane localization and reelin signal transduction. J. Biol. Chem. 280:9671-9677.PubMedGoogle Scholar
  115. Strasser, V., Fasching, D., Hauser, C., Mayer, H., Bock, H. H., Hiesberger, T., Herz, J., Weeber, E. J., Sweatt, J. D., Pramatarova, A., Howell, B., Schneider, W. J., and Nimpf, J. (2004). Receptor clustering is involved in reelin signaling. Mol. Cell Biol. 24:1378-1386.PubMedGoogle Scholar
  116. Strittmatter, W. J., and Bova Hill, C. (2002). Molecular biology of apolipoprotein E. Curr. Opin. Lipidol. 13:119-123.PubMedGoogle Scholar
  117. Tacken, P. J., Teusink, B., Jong, M. C., Harats, D., Havekes, L. M., van Dijk, K. W., and Hofker, M. H. (2000). LDL receptor deficiency unmasks altered VLDL triglyceride metabolism in VLDL receptor transgenic and knockout mice. J. Lipid Res. 41:2055-2062.PubMedGoogle Scholar
  118. Takada, H., Imoto, I., Tsuda, H., Nakanishi, Y., Sakakura, C., Mitsufuji, S., Hirohashi, S., and Inazawa, J. (2006). Genomic loss and epigenetic silencing of very-low-density lipoprotein receptor involved in gastric carcinogenesis. Oncogene 25:6554-6562.PubMedGoogle Scholar
  119. Takahashi, S., Sakai, J., Fujino, T., Hattori, H., Zenimaru, Y., Suzuki, J., Miyamori, I., and Yamamoto, T. T. (2004). The very low-density lipoprotein (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor. J. Atheroscler. Thromb. 11:200-208.PubMedGoogle Scholar
  120. Taru, H., Iijima, K., Hase, M., Kirino, Y., Yagi, Y., and Suzuki, T. (2002). Interaction of Alzheimer’s beta-amyloid precursor family proteins with scaffold proteins of the JNK signaling cascade. J. Biol. Chem. 277:20070-20078.PubMedGoogle Scholar
  121. Trommsdorff, M., Borg, J. P., Margolis, B., and Herz, J. (1998). Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273:33556-33560.PubMedGoogle Scholar
  122. Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.PubMedGoogle Scholar
  123. Tsai, L. H., and Gleeson, J. G.(2005). Nucleokinesis in neuronal migration. Neuron 46:383-388.PubMedGoogle Scholar
  124. Verhey, K. J., Meyer, D., Deehan, R., Blenis, J., Schnapp, B. J., Rapoport, T. A., and Margolis, B. (2001). Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152:959-970.PubMedGoogle Scholar
  125. Wang, L., Wang, X., Laird, N., Zuckerman, B., Stubblefield, P., and Xu, X. (2006). Polymorphism in maternal LRP8 gene is associated with fetal growth. Am. J. Hum. Genet. 78:770-777.PubMedGoogle Scholar
  126. Ware, M. L., Fox, J. W., Gonzalez, J. L., Davis, N. M., Lambert de Rouvroit, C., Russo, C. J., Chua, S. C., Jr., Goffinet, A. M., and Walsh, C. A. (1997). Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19:239-249.PubMedGoogle Scholar
  127. Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., and Herz, J. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277:39944-39952.PubMedGoogle Scholar
  128. Willnow, T. E., Nykjaer, A., and Herz, J. (1999). Lipoprotein receptors: new roles for ancient proteins. Nature Cell Biol. 1:E157-162.PubMedGoogle Scholar
  129. Wolfe, M. S. (2006). The gamma-secretase complex: membrane-embedded proteolytic ensemble. Biochemistry 45:7931-7939.PubMedGoogle Scholar
  130. Xu, M., Arnaud, L., and Cooper, J. A. (2005). Both the phosphoinositide and receptor binding activities of Dab1 are required for reelin-stimulated Dab1 tyrosine phosphorylation. Brain Res. Mol. Brain Res. 139:300-305.PubMedGoogle Scholar
  131. Yagi, T., Aizawa, S., Tokunaga, T., Shigetani, Y., Takeda, N., and Ikawa, Y. (1993). A role for Fyn tyrosine kinase in the suckling behaviour of neonatal mice. Nature 366:742-745.PubMedGoogle Scholar
  132. Yamamoto, T., and Bujo, H. (1996). Close encounters with apolipoprotein E receptors. Curr. Opin. Lipidol. 7:298-302.PubMedGoogle Scholar
  133. Yasuda, J., Whitmarsh, A. J., Cavanagh, J., Sharma, M., and Davis, R. J. (1999). The JIP group of mitogen-activated protein kinase scaffold proteins. Mol. Cell Biol. 19:7245-7254.PubMedGoogle Scholar
  134. Yuasa, S., Hattori, K., and Yagi, T. (2004). Defective neocortical development in Fyntyrosine-kinase-deficient mice. Neuroreport 15:819-822.PubMedGoogle Scholar
  135. Yun, M., Keshvara, L., Park, C. G., Zhang, Y. M., Dickerson, J. B., Zheng, J., Rock, C. O., Curran, T., and Park, H. W. (2003). Crystal structures of the Dab homology domains of mouse disabled 1 and 2. J. Biol. Chem. 278:36572-36581.PubMedGoogle Scholar
  136. Zhuo, M., Holtzman, D. M., Li, Y., Osaka, H., DeMaro, J., Jacquin, M., and Bu, G. (2000). Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J. Neurosci. 20:542-549.PubMedGoogle Scholar
  137. Zou, Z., Chung, B., Nguyen, T., Mentone, S., Thomson, B., and Biemesderfer, D. (2004). Linking receptor-mediated endocytosis and cell signaling: evidence for regulated intramembrane proteolysis of megalin in proximal tubule. J. Biol. Chem. 279:34302-34310.PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Hans H. Bock
    • 1
  • Joachim Herz
    • 1
    • 2
  1. 1.Zentrum für NeurowissenschaftenUniversität FreiburgFreiburgGermany
  2. 2.Department of Molecular GeneticsUniversity of Texas Southwestern Medical CenterDallas

Personalised recommendations