Reelin and Odontogenesis

  • Françoise Bleicher
  • Henry Magloire
  • Marie-Lise Couble
  • Jean-Christophe Maurin

Human tooth is made of three different hard tissues: enamel—recovering the crown and corresponding to the most mineralized tissue found in the body; cementum— deposited on the root surface; and dentine—underlying the enamel and cementum and forming the bulk of the tooth. Dentine covers the pulp, which lies in the center of the tooth. Pulp, the vital mesenchymal tissue, contains: (1) a specialized layer of cells at its periphery (the odontoblast layer) that is responsible for the dentine matrix synthesis and (2) blood vessels and nerves. During development, tooth pulp acquires a profuse nociceptive and sympathetic innervation from the trigeminal ganglion (TG) and the superior cervical ganglion, respectively.

The purpose of this chapter is to briefly review the core components and signaling mechanism of the Reelin pathway, and then to present evidence on possible downstream components. Issues related to the first two questions, the timing and site of Reelin action and the possible changes in cell biology, are left for other chapters.


Nerve Growth Factor Trigeminal Ganglion Dental Pulp Tooth Development Dentinal Tubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allard, B., Couble, M. L., Magloire, H., and Bleicher, F. (2000). Characterization and gene expression of high conductance calcium-activated potassium channels displaying mechanosensitivity in human odontoblasts. J. Biol. Chem. 275:25556-25561.CrossRefPubMedGoogle Scholar
  2. Allard, B., Magloire, H., Couble, M. L., Maurin, J. C., and Bleicher, F. (2006). Voltage-gated sodium channels confer excitability to human odontoblasts: possible role in tooth pain transmission. J. Biol. Chem. 281:29002-29010.CrossRefPubMedGoogle Scholar
  3. Anderson, D. J., Matthews, B., and Shelton, L. E. (1967). Variations in the sensitivity of osmotic stimulation of human dentin. Arch. Oral Biol. 12:43-47.CrossRefPubMedGoogle Scholar
  4. Borrell, V., Del Rio, J. A., Alcantara, S., Derer, M., Martinez, A., D’Arcangelo, G., Nakajima, K., Mikoshiba, K., Derer, P., Curran, T., and Soriano, E. (1999). Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. J. Neurosci. 19:1345-1358.PubMedGoogle Scholar
  5. Brannstrom, M. (1962). A hydrodynamic mechanism in the transmission of pain producing stimuli through the dentine. In: Anderson, D. J. (ed.), Sensory Mechanisms in Dentine. Pergamon Press, Oxford, pp. 73-79.Google Scholar
  6. Buchaille, R., Couble, M. L., Magloire, H., and Bleicher, F. (2000). A substractive PCR-based cDNA library from human odontoblast cells: identification of novel genes expressed in tooth forming cells. Matrix Biol. 19: 421-430.CrossRefPubMedGoogle Scholar
  7. Byers, M. R., and Närhi, M. V. O. (1999). Dental injury models: experimental tools for understanding neuroinflammatory interactions and polymodal nociceptor functions. Crit. Rev. Oral Biol. Med. 10:4-39.CrossRefPubMedGoogle Scholar
  8. Byers, M. R., Kvinnsland, I., and Bothwell, M. (1992). Analysis of low affinity nerve growth factor receptor during pulpal healing and regeneration of myelinated and unmyelinated axons in replanted teeth. J. Comp. Neurol. 326:470-484.CrossRefPubMedGoogle Scholar
  9. Byers, M. R., Suzuki, H., and Maeda, T. (2003). Dental neuroplasticity, neuro-pulpal interactions, and nerve regeneration. Microsc. Res. Tech. 60:503-515.CrossRefPubMedGoogle Scholar
  10. Couble, M. L., Farges, J. C., Bleicher, F., Perrat-Mabillon, B., Boudeulle, M., and Magloire, H. (2000). Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif. Tissue Int. 66:129-138.CrossRefPubMedGoogle Scholar
  11. Dowell, P., and Addy, M. (1983). Dentine hypersensitivity: a review: Aetiology, symptoms and theories of pain production. J. Clin. Periodontol. 10:341-350.CrossRefPubMedGoogle Scholar
  12. Fried, K., Risling, M., Edwall, L., and Olgart, L. (1992). Immunoelectron microscopic localization of laminin and collagen type IV in normal and denervated tooth pulp of the cat. Cell Tissue Res. 270:157-164.CrossRefPubMedGoogle Scholar
  13. Fried, K., Sime, W., Lillesaar, C., Virtanen, I., Tryggvasson, K., and Patarroyo, M. (2005). Laminins 2 (alpha2beta1gamma1, Lm-211) and 8 (alpha4beta1gamma1, Lm-411) are synthesized and secreted by tooth pulp fibroblasts and differentially promote neurite outgrowth from trigeminal ganglion sensory neurons. Exp. Cell Res. 307:329-341.CrossRefPubMedGoogle Scholar
  14. Fristad, I., Heyeraas, K. J., and Kvinnsland, I. (1994). Nerve fibres and cells immunoreactive to neurochemical markers in developing rat molars and supporting tissues. Arch. Oral Biol. 39:633-646.CrossRefPubMedGoogle Scholar
  15. Heymann, R., Kallenbach, S., Alonso, S., Carroll, P., and Mitsiadis, T. A. (2001). Dynamic expression patterns of the new protocadherin families CNRs and PCDH-gamma during mouse odontogenesis: comparison with reelin expression. Mech. Dev. 106: 181-184.CrossRefPubMedGoogle Scholar
  16. Hildebrand, C., Fried, K., Tuisku, F., and Johansson, C. S. (1995). Teeth and tooth nerves. Prog. Neurobiol. 45:165-222.CrossRefPubMedGoogle Scholar
  17. Ibuki, T., Kido, M. A., Kiyoshima, T., Terada, Y., and Tanaka, T. (1996). An ultrastructural study of the relationship between sensory trigeminal nerves and odontoblasts in rat dentin/pulp as demonstrated by the anterograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP). J. Dent. Res. 75:1963-1970.CrossRefPubMedGoogle Scholar
  18. Ikeda, Y., and Terashima, T. (1997). Expression of reelin, the gene responsible for the reeler mutation, in embryonic development and adulthood in the mouse. Dev. Dyn. 210:157-172.CrossRefPubMedGoogle Scholar
  19. Kettunen, P., Loes, S., Furmanek, T., Fjeld, K., Kvinnsland, I. H., Behar, O., Yagi, T., Fujisawa, H., Vainio, S., Taniguchi, M., and Luukko, K. (2005). Coordination of trigeminal axon navigation and patterning with tooth organ formation: epithelial-mesenchymal interactions, and epithelial Wnt4 and Tgfbeta1 regulate semaphorin 3a expression in the dental mesenchyme. Development 132:323-334.CrossRefPubMedGoogle Scholar
  20. Lillesaar, C., and Fried, K. (2004). Neurites from trigeminal ganglion explants grown in vitro are repelled or attracted by tooth-related tissues depending on developmental stage. Neuroscience 125:149-161.CrossRefPubMedGoogle Scholar
  21. Loes, S., Luukko, K., Kvinnsland, I.H., Salminen, M., and Kettunen, P. (2003). Developmentally regulated expression of Netrin-1 and -3 in the embryonic mouse molar tooth germ. Dev. Dyn. 227:573-577.CrossRefPubMedGoogle Scholar
  22. Luukko, K. (1997). Immunohistochemical localization of nerve fibres during development of embryonic rat molar using peripherin and protein gene product 9.5 antibodies. Arch. Oral Biol. 42:189-195.CrossRefPubMedGoogle Scholar
  23. Luukko, K., Arumae, U., Karavanov, A., Moshnyakov, M., Sainio, K., Sariola, M., Saarma, M., and Thesleff, I. (1997). Neurotrophin mRNA expression in the developing tooth suggests multiple roles in innervation and organogenesis. Dev. Dyn. 210:117-129.CrossRefPubMedGoogle Scholar
  24. Luukko, K., Kvinnsland, I. H., and Kettunen, P. (2005). Tissue interactions in the regulation of axon pathfinding during tooth morphogenesis. Dev. Dyn. 234:482-488.CrossRefPubMedGoogle Scholar
  25. Magloire, H., Lesage, F., Couble, M. L., Lazdunski, M., and Bleicher, F. (2003). Expression and localization of TREK-1 K+ channels in human odontoblasts. J. Dent. Res. 82:542-545.CrossRefPubMedGoogle Scholar
  26. Maurin, J. C., Couble, M. L., Didier-Bazes, M., Brisson, C., Magloire, H., and Bleicher, F. (2004). Expression and localization of reelin in human odontoblasts. Matrix Biol. 23:277-285.CrossRefPubMedGoogle Scholar
  27. Maurin, J. C., Delorme, G., Machuca-Gayet, I., Couble, M. L., Magloire, H., Jurdic, P., and Bleicher, F. (2005). Odontoblast expression of semaphorin 7A during innervation of human dentin. Matrix Biol. 24:232-238.CrossRefPubMedGoogle Scholar
  28. Mitsiadis, T. A., Couble, P., Dicou, E., Rudkin, B. B., and Magloire, H. (2003). Patterns of nerve growth factor (NGF), proNGF, and p75 NGF receptor expression in the rat incisor: compari-son with expression in the molar. Differentiation 54:161-175.CrossRefGoogle Scholar
  29. Mohamed, S. S., and Atkinson, M. E. (1983). A histological study of the innervation of develop-ing mouse teeth. J. Anat. 136:735-749.PubMedGoogle Scholar
  30. Nosrat, C. A., Fried, K., Lindskog, S., and Olson, L. (1997). Cellular expression of neurotrophin mRNAs during tooth development. Cell Tissue Res. 290:569-580.CrossRefPubMedGoogle Scholar
  31. Nosrat, C. A., Fried, K., Ebendal, T., and Olson, L. (1998). NGF, BDNF, NT3, NT4 and GDNF in tooth development. Eur. J. Oral Sci. 106(Suppl. 1):94-99.PubMedGoogle Scholar
  32. Pearson, A. A. (1977). The early innervation of the developing deciduous teeth. J. Anat. 123: 563-577.PubMedGoogle Scholar
  33. Qian, X. B., and Naftel, J. P. (1996). Effects of neonatal exposure to anti-nerve growth factor on the number and size distribution of trigeminal neurones projecting to the molar dental pulp in rats. Arch. Oral Biol. 41:359-367.CrossRefPubMedGoogle Scholar
  34. Rice, D. S., and Curran, T. (2000). Disabled-1 is expressed in type AII amacrine cells in the mouse retina. J. Comp. Neurol. 424:327-338.CrossRefPubMedGoogle Scholar
  35. Sahlberg, C., Aukhil, I., and Thesleff, I. (2001). Tenascin-C in developing mouse teeth: expres-sion of splice variants and stimulation by TGFbeta and FGF. Eur. J. Oral Sci. 109:114-124.CrossRefPubMedGoogle Scholar
  36. Salmivirta, K., Sorokin, L. M., and Ekblom, P. (1997). Differential expression of laminin alpha chains during murine tooth development. Dev. Dyn. 210:206-215.CrossRefPubMedGoogle Scholar
  37. Shimizu, A., Nakakura-Ohshima, K., Noda, T., Maeda, T., and Ohshima, H. (2000). Responses of immunocompetent cells in the dental pulp to replantation during the regeneration process in rat molars. Cell Tissue Res. 302:221-233.CrossRefPubMedGoogle Scholar
  38. Teillon, S. M., Yiu, G., and Walsh, C. A. (2003). Reelin is expressed in the accessory olfactory system, but is not a guidance cue for vomeronasal axons. Brain Res. Dev. Brain Res. 140:303-307.CrossRefPubMedGoogle Scholar
  39. Tsuzuki, H., and Kitamura, H. (1991). Immunohistochemical analysis of pulpal innervation in developing rat molars. Arch. Oral Biol. 36:139-146.CrossRefPubMedGoogle Scholar
  40. Villeda, S. A., Akopians, A. L., Babayan, A. H., Basbaum, A. I., and Phelps, P. E. (2006). Absence of reelin results in altered nociception and aberrant neuronal positioning in the dorsal spinal cord. Neuroscience 139:1385-1396.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Françoise Bleicher
    • 1
    • 2
    • 3
    • 4
    • 5
  • Henry Magloire
    • 1
    • 2
    • 3
    • 4
    • 5
  • Marie-Lise Couble
    • 1
    • 2
    • 3
    • 4
    • 5
  • Jean-Christophe Maurin
    • 6
  1. 1.University of LyonLyon
  2. 2.University of Lyon 1Lyon
  4. 4.INRA, LIMR1288Lyon
  5. 5.Faculté d’OdontologieINSERM ERI16LyonFrance
  6. 6.Faculté de Chirurgie-Dentaire de ReimsINSERM ERM 0203, IFR 53, Interfaces Biomatériaux/Tissus HôtesReimsFrance

Personalised recommendations