Reelin and Cajal-Retzius Cells

  • Jean-Marc Mienville

Cajal-Retzius (CR) cells comprise a population of neurons found in the marginal layer of the developing cerebral cortex and hippocampus of amniotes. Their name originates from their codiscovery in the 1890s by Santiago Ramón y Cajal, who was using Golgi staining techniques on brain sections from small mammals such as rabbits (Ramón y Cajal, 1891), and by Gustaf Retzius, who referred to the cortical marginal cells he observed in human fetuses as “Cajal’s cells” (Retzius, 1893). Despite this common classification, it should be noted that the morphology of CR cells from primates versus small mammals is not homogeneous. Drawings of pri- mate marginal cells provided by Retzius and other authors (Meyer et al., 1999) indicate rather complex and variable morphologies, and Retzius even initially considered “his” CR cells as glia (König, 1978). By contrast, CR cells present in the rat marginal zone—or layer I of the more mature cortex—display fairly homogeneous aspects, so that their identification is straightforward based on three morphologic criteria: fusiform or ovoid shape; bipolarity, i.e., presence of one axon and one dendrite; and tangential orientation of the latter (Fig. 18.1). Due to their facilitated access in a widely used species, a large body of data have been collected regarding the physiologic properties of rat CR cells (Mienville, 1999). In 1995, a novel criterion for identifying these neurons emerged with the discovery of reelin, their secreted protein, which is necessary for correct cortical lamination (D’Arcangelo et al., 1995; Ogawa et al., 1995). While reelin is produced by other cells (see below), certainly the combination of morphologic and immunocytochemical criteria now should allow unambiguous identification of CR cells.


Entorhinal Cortex Radial Glia Human Cortex Reeler Mouse Retzius Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, H., and Meyer, G. (2003). Reelin-expressing neurons in the postnatal and adult human hippocampal formation. Hippocampus 13: 715-727.PubMedGoogle Scholar
  2. Abraham, H., Perez-Garcia, C. G., and Meyer, G. (2004a). p73 and reelin in Cajal-Retzius cells of the developing human hippocampal formation. Cereb. Cortex 14: 484-495.PubMedGoogle Scholar
  3. Abraham, H., Toth, Z., and Seress, L. (2004b). A novel population of calretinin-positive neurons comprises reelin-positive Cajal-Retzius cells in the hippocampal formation of the adult domes-tic pig. Hippocampus 14: 385-401.PubMedGoogle Scholar
  4. Abraham, H., Tóth, Z., Bari, F., Domoki, F., and Seress, L. (2005). Novel calretinin and reelin expressing neuronal population includes Cajal-Retzius-type cells in the neocortex of adult pigs. Neuroscience 136: 217-230.PubMedGoogle Scholar
  5. Aguiló, A., Schwartz, T.H., Kumar, V. S., Peterlin, Z. A., Tsiola, A., Soriano, E., and Yuste, R. (1999). Involvement of Cajal-Retzius neurons in spontaneous correlated activity of embryonic and postnatal layer 1 from wild-type and reeler mice. J. Neurosci. 19: 10856-10868.PubMedGoogle Scholar
  6. Alcántara, S., Ruiz, M., D’Arcangelo, G., Ezan, F., de Lecea, L., Curran, T., Sotelo, C., and Soriano, E. (1998). Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J. Neurosci. 18: 7779-7799.PubMedGoogle Scholar
  7. Alcántara, S., Pozas, E., Ibanez, C. F., and Soriano, E. (2006). BDNF-modulated spatial organiza-tion of Cajal-Retzius and GABAergic neurons in the marginal zone plays a role in the develop-ment of cortical organization. Cereb. Cortex 16: 487-499.PubMedGoogle Scholar
  8. Alvarez-Dolado, M., Ruiz, M., Del Río, J. A., Alcántara, S., Burgaya, F., Sheldon, M., Nakajima, K., Bernal, J., Howell, B. W., Curran, T., Soriano, E., and Munoz, A. (1999). Thyroid hormone regulates reelin and dab1 expression during brain development. J. Neurosci. 19: 6979-6993.PubMedGoogle Scholar
  9. Auroux, M. (1969). Cortex cérébral dans la cyclocéphalie (persistance des cellules de Cajal-Retzius). Arch. Anat. Histol. Embryol. 52: 43-52.PubMedGoogle Scholar
  10. Bernier, B., Bar, I., Pieau, C., Lambert De Rouvroit, C., and Goffinet, A. M. (1999). Reelin mRNA expression during embryonic brain development in the turtle Emys orbicularis. J. Comp. Neurol. 413: 463-479.PubMedGoogle Scholar
  11. Bernier, B., Bar, I., D’Arcangelo, G., Curran, T., and Goffinet, A. M. (2000). Reelin mRNA expression during embryonic brain development in the chick. J. Comp. Neurol. 422: 448-463.PubMedGoogle Scholar
  12. Bielle, F., Griveau, A., Narboux-Neme, N., Vigneau, S., Sigrist, M., Arber, S., Wassef, M., and Pierani, A. (2005). Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nature Neurosci. 8: 1002-1012.PubMedGoogle Scholar
  13. Bishop, K. M., Garel, S., Nakagawa, Y., Rubenstein, J. L., and O’Leary, D. D. (2003). Emx1 and Emx2 cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding. J. Comp. Neurol. 457: 345-360.PubMedGoogle Scholar
  14. Blanton, M. G., and Kriegstein, A. R. (1991). Morphological differentiation of distinct neuronal classes in embryonic turtle cerebral cortex. J. Comp. Neurol. 310: 558-570.PubMedGoogle Scholar
  15. Borrell, V., and Marín, O. (2006). Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nature Neurosci. 9: 1284-1293.PubMedGoogle Scholar
  16. Borrell, V., Ruiz, M., Del Río, J. A., and Soriano, E. (1999). Development of commissural con-nections in the hippocampus of reeler mice: evidence of an inhibitory influence of Cajal-Retzius cells. Exp. Neurol. 156: 268-282.PubMedGoogle Scholar
  17. Cabrera-Socorro, A., Hernandez-Acosta, N. C., Gonzalez-Gomez, M., and Meyer, G. (2007). Comparative aspects of p73 and reelin expression in Cajal-Retzius cells and the cortical hem in lizard, mouse and human. Brain Res. 1132: 59-70.PubMedGoogle Scholar
  18. Ceranik, K., Deng, J., Heimrich, B., Lubke, J., Zhao, S., Forster, E., and Frotscher, M. (1999). Hippocampal Cajal-Retzius cells project to the entorhinal cortex: retrograde tracing and intra-cellular labelling studies. Eur. J. Neurosci. 11: 4278-4290.PubMedGoogle Scholar
  19. Chang, Y., Ostling, P., Akerfelt, M., Trouillet, D., Rallu, M., Gitton, Y., El Fatimy, R., Fardeau, V., Le Crom, S., Morange, M., Sistonen, L., and Mezger, V. (2006). Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev. 20: 836-847.PubMedGoogle Scholar
  20. Clark, G. D., Mizuguchi, M., Antalffy, B., Barnes, J., and Armstrong, D. (1997). Predominant localization of the LIS family of gene products to Cajal-Retzius cells and ventricular neuroepi-thelium in the developing human cortex. J. Neuropathol. Exp. Neurol. 56: 1044-1052.PubMedGoogle Scholar
  21. Coulin, C., Drakew, A., Frotscher, M., and Deller, T. (2001). Stereological estimates of total neuron numbers in the hippocampus of adult reeler mutant mice: Evidence for an increased survival of Cajal-Retzius cells. J. Comp. Neurol. 439: 19-31.PubMedGoogle Scholar
  22. D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374: 719-723.PubMedGoogle Scholar
  23. de Bergeyck, V., Nakajima, K., Lambert de Rouvroit, C., Naerhuyzen, B., Goffinet, A. M., Miyata, T., Ogawa, M., and Mikoshiba, K. (1997). A truncated reelin protein is produced but not secreted in the ‘Orleans’ reeler mutation (Relnrl-Orl). Brain Res. Mol. Brain Res. 50: 85-90.PubMedGoogle Scholar
  24. Del Río, J. A., Heimrich, B., Borrell, V., Förster, E., Drakew, A., Alcántara, S., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., Derer, P., Frotscher, M., and Soriano, E. (1997). A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385: 70-74.PubMedGoogle Scholar
  25. Derer, P., Derer, M., and Goffinet, A. (2001). Axonal secretion of reelin by Cajal-Retzius cells: evidence from comparison of normal and RelnOrl. mutant mice. J. Comp. Neurol. 440: 136-143.PubMedGoogle Scholar
  26. Drakew, A., Frotscher, M., Deller, T., Ogawa, M., and Heimrich, B. (1998). Developmental distri-bution of a reeler gene-related antigen in the rat hippocampal formation visualized by CR-50 immunocytochemistry. Neuroscience 82: 1079-1086.PubMedGoogle Scholar
  27. Eriksson, S. H., Thom, M., Heffernan, J., Lin, W. R., Harding, B. N., Squier, M. V., and Sisodiya, S. M. (2001). Persistent reelin-expressing Cajal-Retzius cells in polymicrogyria. Brain 124: 1350-1361.PubMedGoogle Scholar
  28. Fairén, A., Morante-Oria, J., and Frassoni, C. (2002). The surface of the developing cerebral cor-tex: still special cells one century later. Prog. Brain Res. 136: 281-291.PubMedGoogle Scholar
  29. Fatemi, S. H., Emamian, E. S., Kist, D., Sidwell, R. W., Nakajima, K., Akhter, P., Shier, A., Sheikh, S., and Bailey, K. (1999). Defective corticogenesis and reduction in reelin immunore-activity in cortex and hippocampus of prenatally infected neonatal mice. Mol. Psychiatry 4: 145-154.PubMedGoogle Scholar
  30. Fatemi, S. H., Earle, J., and McMenomy, T. (2000). Reduction in reelin immunoreactivity in hip-pocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry 5: 654-663.PubMedGoogle Scholar
  31. Friauf, E., McConnell, S. K., and Shatz, C. J. (1990). Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex. J. Neurosci. 10: 2601-2613.PubMedGoogle Scholar
  32. Frotscher, M., Haas, C. A., and Förster, E. (2003). Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. Cereb. Cortex 13: 634-640.PubMedGoogle Scholar
  33. Garbelli, R., Frassoni, C., Ferrario, A., Tassi, L., Bramerio, M., and Spreafico, R. (2001). Cajal-Retzius cell density as marker of type of focal cortical dysplasia. Neuroreport 12: 2767-2771.PubMedGoogle Scholar
  34. García-Moreno, F., Lopez-Mascaraque, L., and De Carlos, J. A. (2007). Origins and migratory routes of murine Cajal-Retzius cells. J. Comp. Neurol. 500: 419-432.PubMedGoogle Scholar
  35. Goffinet, A. M., Bar, I., Bernier, B., Trujillo, C., Raynaud, A., and Meyer, G. (1999). Reelin expression during embryonic brain development in lacertilian lizards. J. Comp. Neurol. 414: 533-550.PubMedGoogle Scholar
  36. Graus-Porta, D., Blaess, S., Senften, M., Littlewood-Evans, A., Damsky, C., Huang, Z., Orban, P., Klein, R., Schittny, J. C., and Muller, U. (2001). Beta1-class integrins regulate the develop-ment of laminae and folia in the cerebral and cerebellar cortex. Neuron 31: 367-379.PubMedGoogle Scholar
  37. Haas, C. A., Dudeck, O., Kirsch, M., Huszka, C., Kann, G., Pollak, S., Zentner, J., and Frotscher, M. (2002). Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J. Neurosci. 22: 5797-5802.PubMedGoogle Scholar
  38. Hanashima, C., Li, S. C., Shen, L., Lai, E., and Fishell, G. (2004). Foxg1 suppresses early cortical cell fate. Science 303: 56-59.PubMedGoogle Scholar
  39. Hartmann, D., De Strooper, B., and Saftig, P. (1999). Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr. Biol. 9: 719-727.PubMedGoogle Scholar
  40. Hevner, R. F., Shi, L., Justice, N., Hsueh, Y., Sheng, M., Smiga, S., Bulfone, A., Goffinet, A. M., Campagnoni, A. T., and Rubenstein, J. L. (2001). Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29: 353-366.PubMedGoogle Scholar
  41. Hevner, R. F., Neogi, T., Englund, C., Daza, R. A., and Fink, A. (2003). Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Brain Res. Dev. Brain Res. 141: 39-53.Google Scholar
  42. Hong, S. E., Shugart, Y. Y., Huang, D. T., Shahwan, S. A., Grant, P. E., Hourihane, J. O., Martin, N. D., and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26: 93-96.PubMedGoogle Scholar
  43. Janušonis, S., Gluncic, V., and Rakic, P. (2004). Early serotonergic projections to Cajal-Retzius cells: relevance for cortical development. J. Neurosci. 24: 1652-1659.PubMedGoogle Scholar
  44. Jiménez, D., Rivera, R., López-Mascaraque, L., and De Carlos, J. A. (2003). Origin of the cortical layer I in rodents. Dev. Neurosci. 25: 105-115.PubMedGoogle Scholar
  45. Kikkawa, S., Yamamoto, T., Misaki, K., Ikeda, Y., Okado, H., Ogawa, M., Woodhams, P. L., and Terashima, T. (2003). Missplicing resulting from a short deletion in the reelin gene causes reeler-like neuronal disorders in the mutant shaking rat Kawasaki. J. Comp. Neurol. 463: 303-315.PubMedGoogle Scholar
  46. Kilb, W., and Luhmann, H. J. (2001). Spontaneous GABAergic postsynaptic currents in Cajal-Retzius cells in neonatal rat cerebral cortex. Eur. J. Neurosci. 13: 1387-1390.PubMedGoogle Scholar
  47. Kilb, W., Hartmann, D., Saftig, P., and Luhmann, H. J. (2004). Altered morphological and elec-trophysiological properties of Cajal-Retzius cells in cerebral cortex of embryonic presenilin-1 knockout mice. Eur. J. Neurosci. 20: 2749-2756.PubMedGoogle Scholar
  48. Kim, A. S., and Pleasure, S. J. (2003). Expression of the BMP antagonist Dan during murine forebrain development. Brain Res. Dev. Brain Res. 145: 159-162.Google Scholar
  49. König, N. (1978). Retzius-Cajal or Cajal-Retzius cells? Neurosci. Lett. 9: 361-363.PubMedGoogle Scholar
  50. Lacor, P. N., Grayson, D. R., Auta, J., Sugaya, I., Costa, E., and Guidotti, A. (2000). Reelin secre-tion from glutamatergic neurons in culture is independent from neurotransmitter regulation. Proc. Natl. Acad. Sci. USA 97: 3556-3561.PubMedGoogle Scholar
  51. Lambert de Rouvroit, C., and Goffinet, A. M. (1998). A new view of early cortical development. Biochem. Pharmacol. 56: 1403-1409.Google Scholar
  52. Lambert de Rouvroit, C., Bernier, B., Royaux, I., de Bergeyck, V., and Goffinet, A. M. (1999). Evolutionarily conserved, alternative splicing of reelin during brain development. Exp. Neurol. 156: 229-238.Google Scholar
  53. Lavdas, A. A., Grigoriou, M., Pachnis, V., and Parnavelas, J. G. (1999). The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19: 7881-7888.PubMedGoogle Scholar
  54. Liu, W. S., Pesold, C., Rodriguez, M. A., Carboni, G., Auta, J., Lacor, P., Larson, J., Condie, B. G., Guidotti, A., and Costa, E. (2001). Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc. Natl. Acad. Sci. USA 98: 3477-3482.PubMedGoogle Scholar
  55. Luque, J. M., Morante-Oria, J., and Fairén, A. (2003). Localization of ApoER2, VLDLR and Dab1 in radial glia: groundwork for a new model of reelin action during cortical development. Brain Res. Dev. Brain Res. 140: 195-203.PubMedGoogle Scholar
  56. Lyu, Y. L., and Wang, J. C. (2003). Aberrant lamination in the cerebral cortex of mouse embryos lacking DNA topoisomerase IIbeta. Proc. Natl. Acad. Sci. USA 100: 7123-7128.PubMedGoogle Scholar
  57. Marín-Padilla, M. (1998). Cajal-Retzius cells and the development of the neocortex. Trends Neurosci. 21: 64-71.PubMedGoogle Scholar
  58. Martínez-Cerdeño, V., Galazo, M. J., Cavada, C., and Clascá, F. (2002). Reelin immunoreactivity in the adult primate brain: intracellular localization in projecting and local circuit neurons of the cerebral cortex, hippocampus and subcortical regions. Cereb. Cortex 12: 1298-1311.PubMedGoogle Scholar
  59. Martínez-Galán, J. R., Lopez-Bendito, G., Lujan, R., Shigemoto, R., Fairén, A., and Valdeolmillos, M. (2001). Cajal-Retzius cells in early postnatal mouse cortex selectively express functional metabotropic glutamate receptors. Eur. J. Neurosci. 13: 1147-1154.PubMedGoogle Scholar
  60. Meyer, G., and Goffinet, A. M. (1998). Prenatal development of reelin-immunoreactive neurons in the human neocortex. J. Comp. Neurol. 397: 29-40.PubMedGoogle Scholar
  61. Meyer, G., and Wahle, P. (1999). The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex. Eur. J. Neurosci. 11: 3937-3944.PubMedGoogle Scholar
  62. Meyer, G., Goffinet, A. M., and Fairén, A. (1999). What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cereb. Cortex 9: 765-775.PubMedGoogle Scholar
  63. Meyer, G., Perez-Garcia, C. G., Abraham, H., and Caput, D. (2002a). Expression of p73 and reelin in the developing human cortex. J. Neurosci. 22: 4973-4986.PubMedGoogle Scholar
  64. Meyer, G., Perez-Garcia, C. G., and Gleeson, J. G. (2002b). Selective expression of doublecortin and LIS1 in developing human cortex suggests unique modes of neuronal movement. Cereb. Cortex 12: 1225-1236.PubMedGoogle Scholar
  65. Meyer, G., ambert de Rouvroit, C., Goffinet, A. M., and Wahle, P. (2003). Disabled-1 mRNA and protein expression in developing human cortex. Eur. J. Neurosci. 17: 517-525.PubMedGoogle Scholar
  66. Meyer, G., Cabrera Socorro, A., Perez Garcia, C. G., Martinez Millan, L., Walker, N., and Caput, D. (2004). Developmental roles of p73 in Cajal-Retzius cells and cortical patterning. J. Neurosci. 24: 9878-9887.PubMedGoogle Scholar
  67. Mienville, J. -M. (1999). Cajal-Retzius cell physiology: just in time to bridge the 20th century. Cereb. Cortex 9: 776-782.PubMedGoogle Scholar
  68. Mienville, J. -M., and Pesold, C. (1999). Low resting potential and postnatal upregulation of NMDA receptors may cause Cajal-Retzius cell death. J. Neurosci. 19: 1636-1646.PubMedGoogle Scholar
  69. Mienville, J.-M., Maric, I., Maric, D., and Clay, J. R. (1999). Loss of IA expression and increased excitability in postnatal rat Cajal-Retzius cells. J. Neurophysiol. 82: 1303-1310.PubMedGoogle Scholar
  70. Miettinen, R., Riedel, A., Kalesnykas, G., Kettunen, H. P., Puolivali, J., Soininen, H., and Arendt, T. (2005). Reelin-immunoreactivity in the hippocampal formation of 9-month-old wildtype mouse: effects of APP/PS1 genotype and ovariectomy. J. Chem. Neuroanat. 30: 105-118.PubMedGoogle Scholar
  71. Mooney, S. M., Siegenthaler, J. A., and Miller, M. W. (2004). Ethanol induces heterotopias in organotypic cultures of rat cerebral cortex. Cereb. Cortex 14: 1071-1080.PubMedGoogle Scholar
  72. Morante-Oria, J., Carleton, A., Ortino, B., Kremer, E. J., Fairén, A., and Lledo, P. M. (2003). Subpallial origin of a population of projecting pioneer neurons during corticogenesis. Proc. Natl. Acad. Sci. USA 100: 12468-12473.Google Scholar
  73. Muzio, L., and Mallamaci, A. (2005). Foxg1 confines Cajal-Retzius neuronogenesis and hippoc-ampal morphogenesis to the dorsomedial pallium. J. Neurosci. 25: 4435-4441.PubMedGoogle Scholar
  74. Nakajima, K., Mikoshiba, K., Miyata, T., Kudo, C., and Ogawa, M. (1997). Disruption of hippoc-ampal development in vivo by CR-50 mAb against reelin. Proc. Natl. Acad. Sci. USA 94: 8196-8201.PubMedGoogle Scholar
  75. Naqui, S. Z., Harris, B. S., Thomaidou, D., and Parnavelas, J. G. (1999). The noradrenergic system influences the fate of Cajal-Retzius cells in the developing cerebral cortex. Brain Res. Dev. Brain Res. 113: 75-82.Google Scholar
  76. Nishikawa, S., Goto, S., Hamasaki, T., Yamada, K., and Ushio, Y. (2002). Involvement of reelin and Cajal-Retzius cells in the developmental formation of vertical columnar structures in the cerebral cortex: evidence from the study of mouse presubicular cortex. Cereb. Cortex 12: 1024-1030.PubMedGoogle Scholar
  77. Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., Yamamoto, H., and Mikoshiba, K. (1995). The reeler gene-associated antigen on Cajal-Retzius neurons is a cru-cial molecule for laminar organization of cortical neurons. Neuron 14: 899-912.PubMedGoogle Scholar
  78. Perez-Garcia, C. G., Tissir, F., Goffinet, A. M., and Meyer, G. (2004). Reelin receptors in develop-ing laminated brain structures of mouse and human. Eur. J. Neurosci. 20: 2827-2832.PubMedGoogle Scholar
  79. Pesold, C., Impagnatiello, F., Pisu, M. G., Uzunov, D. P., Costa, E., Guidotti, A., and Caruncho, H. J. (1998). Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc. Natl. Acad. Sci. USA 95: 3221-3226.PubMedGoogle Scholar
  80. Pollard, K. S., Salama, S. R., Lambert, N., Lambot, M. A., Coppens, S., Pedersen, J. S., Katzman, S., King, B., Onodera, C., Siepel, A., Kern, A. D., Dehay, C., Igel, H., Ares, M., Jr., Vanderhaeghen, P., and Haussler, D. (2006). An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443: 167-172.PubMedGoogle Scholar
  81. Radnikow, G., Feldmeyer, D., and Lübke, J. (2002). Axonal projection, input and output synapses, and synaptic physiology of Cajal-Retzius cells in the developing rat neocortex. J. Neurosci. 22: 6908-6919.PubMedGoogle Scholar
  82. Rakic, S., and Zecevic, N. (2003). Emerging complexity of layer I in human cerebral cortex. Cereb. Cortex 13: 1072-1083.PubMedGoogle Scholar
  83. Ramón y Cajal, S. (1891). Sur la structure de l’écorce cérébrale de quelques mammifères. Cellule 7: 125-176.Google Scholar
  84. Retzius, G. (1893). Die Cajal’schen Zellen der Grosshirnrinde beim Menschen und bei Säugethieren. Biol. Untersuch. Neue Folge 5: 1-15.Google Scholar
  85. Riedel, A., Miettinen, R., Stieler, J., Mikkonen, M., Alafuzoff, I., Soininen, H., and Arendt, T. (2003). Reelin-immunoreactive Cajal-Retzius cells: the entorhinal cortex in normal aging and Alzheimer’s disease. Acta Neuropathol. (Berl.) 106: 291-302.Google Scholar
  86. Ringstedt, T., Linnarsson, S., Wagner, J., Lendahl, U., Kokaia, Z., Arenas, E., Ernfors, P., and Ibanez, C.F. (1998). BDNF regulates reelin expression and Cajal-Retzius cell development in the cerebral cortex. Neuron 21: 305-315.PubMedGoogle Scholar
  87. Roberts, R. C., Xu, L., Roche, J. K., and Kirkpatrick, B. (2005). Ultrastructural localization of reelin in the cortex in post-mortem human brain. J. Comp. Neurol. 482: 294-308.PubMedGoogle Scholar
  88. Schiffmann, S. N., Bernier, B., and Goffinet, A. M. (1997). Reelin mRNA expression during mouse brain development. Eur. J. Neurosci. 9: 1055-1071.PubMedGoogle Scholar
  89. Shen, Q., Wang, Y., Dimos, J. T., Fasano, C. A., Phoenix, T. N., Lemischka, I. R., Ivanova, N. B., Stifani, S., Morrisey, E. E., and Temple, S. (2006). The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neurosci. 9: 743-751.PubMedGoogle Scholar
  90. Shinozaki, K., Miyagi, T., Yoshida, M., Miyata, T., Ogawa, M., Aizawa, S., and Suda, Y. (2002). Absence of Cajal-Retzius cells and subplate neurons associated with defects of tangential cell migration from ganglionic eminence in Emx1/2 double mutant cerebral cortex. Development 129: 3479-3492.PubMedGoogle Scholar
  91. Soda, T., Nakashima, R., Watanabe, D., Nakajima, K., Pastan, I., and Nakanishi, S. (2003). Segregation and coactivation of developing neocortical layer 1 neurons. J. Neurosci. 23: 6272-6279.PubMedGoogle Scholar
  92. Stoykova, A., Hatano, O., Gruss, P., and Götz, M. (2003). Increase in reelin-positive cells in the marginal zone of Pax6 mutant mouse cortex. Cereb. Cortex 13: 560-571.PubMedGoogle Scholar
  93. Studer, M., Filosa, A., and Rubenstein, J. L. (2005). The nuclear receptor COUP-TFI represses differentiation of Cajal-Retzius cells. Brain Res. Bull. 66: 394-401.Google Scholar
  94. Stumm, R. K., Zhou, C., Ara, T., Lazarini, F., Dubois-Dalcq, M., Nagasawa, T., Hollt, V., and Schulz, S. (2003). CXCR4 regulates interneuron migration in the developing neocortex. J. Neurosci. 23: 5123-5130.PubMedGoogle Scholar
  95. Supèr, H., Martínez, A., and Soriano, E. (1997). Degeneration of Cajal-Retzius cells in the devel-oping cerebral cortex of the mouse after ablation of meningeal cells by 6-hydroxydopamine. Brain Res. Dev. Brain Res. 98: 15-20.Google Scholar
  96. Supèr, H., Del Río, J.A., Martinez, A., Perez-Sust, P., and Soriano, E. (2000). Disruption of neu-ronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb. Cortex 10: 602-613.PubMedGoogle Scholar
  97. Takiguchi-Hayashi, K., Sekiguchi, M., Ashigaki, S., Takamatsu, M., Hasegawa, H., Suzuki-Migishima, R., Yokoyama, M., Nakanishi, S., and Tanabe, Y. (2004). Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J. Neurosci. 24: 2286-2295.PubMedGoogle Scholar
  98. Thom, M., Sisodiya, S. M., Beckett, A., Martinian, L., Lin, W. R., Harkness, W., Mitchell, T. N., Craig, J., Duncan, J., and Scaravilli, F. (2002). Cytoarchitectural abnormalities in hippocampal sclerosis. J. Neuropathol. Exp. Neurol. 61: 510-519.PubMedGoogle Scholar
  99. Tissir, F., Lambert de Rouvroit, C., Sire, J. Y., Meyer, G., and Goffinet, A. M. (2003). Reelin expression during embryonic brain development in Crocodylus niloticus. J. Comp. Neurol. 457: 250-262.PubMedGoogle Scholar
  100. Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., and Herz, J. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277: 39944-39952.PubMedGoogle Scholar
  101. Yamazaki, H., Sekiguchi, M., Takamatsu, M., Tanabe, Y., and Nakanishi, S. (2004). Distinct ontogenic and regional expressions of newly identified Cajal-Retzius cell-specific genes dur-ing neocorticogenesis. Proc. Natl. Acad. Sci. USA 101: 14509-14514.PubMedGoogle Scholar
  102. Yoshida, M., Assimacopoulos, S., Jones, K. R., and Grove, E. A. (2006). Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order. Development 133: 537-545.PubMedGoogle Scholar
  103. Zecevic, N., and Rakic, P. (2001). Development of layer I neurons in the primate cerebral cortex. J. Neurosci. 21: 5607-5619.PubMedGoogle Scholar
  104. Zecevic, N., Milosevic, A., Rakic, S., and Marín-Padilla, M. (1999). Early development and com-position of the human primordial plexiform layer: an immunohistochemical study. J. Comp. Neurol. 412: 241-254.PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Jean-Marc Mienville
    • 1
  1. 1.Laboratoire de Physiologie Cellulaire et Moléculaire, CNRS – UMR 6548Université de Nice-Sophia AntipolisNice cedex 2France

Personalised recommendations