Advertisement

A Tale of Two Genes: Reelin and BDNF

  • Thomas Ringstedt

BDNF is a survival factor for the Cajal-Retzius cells in the marginal zone, which are an important source of Reelin in the neocortex. BDNF is also a negative regulator of Reelin expression in both Cajal-Retzius cells and GABAergic cells in the cortical plate. BDNF and Reelin act in parallel to regulate many processes during neural development and maintenance, including cell migration and neural plasticity. Frequently, BDNF and Reelin have opposite influences on the processes they regulate, suggesting that BDNF-induced downregulation of Reelin is involved. Reelin is an important regulator of neural migration during neocortex formation. BDNF seems to influence this process both directly and indirectly via regulation of Reelin expression. Moreover, epileptic seizures increase BDNF levels while decreasing Reelin levels, and BDNF and Reelin seem to have opposite roles in mediating the effects of the seizures. Mental disorders, in particular schizophrenia, involve alterations in BDNF and Reelin expression. Again, the changes are mainly opposite, and a negative regulation of Reelin by BDNF has been suggested. In contrast, hippocampal LTP is promoted by both Reelin and BDNF signaling. Finally, there is overlap in the epigenetic regulation and signaling pathways of BDNF and Reelin.

Keywords

Marginal Zone Temporal Lobe Epilepsy BDNF Expression GABAergic Cell Ocular Dominance Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdolmaleky, H. M., Thiagalingam, S., and Wilcox, M. (2005). Genetics and epigenetics in major psychiatric disorders: dilemmas, achievements, applications, and future scope. Am. J. Pharmacogenomics 5:149-160.CrossRefPubMedGoogle Scholar
  2. Akaneya, Y., Tsumoto, T., Kinoshita, S., and Hatanaka, H. (1997). Brain-derived neurotrophic factor enhances long-term potentiation in rat visual cortex. J. Neurosci. 17:6707-6716.PubMedGoogle Scholar
  3. Alcantara, S., Pozas, E., Ibanez, C. F., and Soriano, E. (2006). BDNF-modulated spatial organiza-tion of Cajal-Retzius and GABAergic neurons in the marginal zone plays a role in the develop-ment of cortical organization. Cereb. Cortex 16:487-499.CrossRefPubMedGoogle Scholar
  4. Andrews, W., Liapi, A., Plachez, C., Camurri, L., Zhang, J., Mori, S., Murakami, F., Parnavelas, J. G., Sundaresan, V., and Richards, L. J. (2006). Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 133:2243-2252.CrossRefPubMedGoogle Scholar
  5. Ang, E. S., Jr., Haydar, T. F., Gluncic, V., and Rakic, P. (2003). Four-dimensional migratory coordi-nates of GABAergic interneurons in the developing mouse cortex. J. Neurosci. 23:5805-5815.PubMedGoogle Scholar
  6. Barde, Y. A., Edgar, D., and Thoenen, H. (1982). Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1:549-553.PubMedGoogle Scholar
  7. Beffert, U., Morfini, G., Bock, H. H., Reyna, H., Brady, S. T., and Herz, J. (2002). Reelin-medi-ated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J. Biol. Chem. 277:49958-49964.CrossRefPubMedGoogle Scholar
  8. Beffert, U., Weeber, E. J., Morfini, G., Ko, J., Brady, S. T., Tsai, L. H., Sweatt, J. D., and Herz, J. (2004). Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J. Neurosci. 24:1897-1906.CrossRefPubMedGoogle Scholar
  9. Beffert, U., Weeber, E. J., Durudas, A., Qiu, S., Masiulis, I., Sweatt, J. D., Li, W. P., Adelmann, G., Frotscher, M., Hammer, R. E., and Herz, J. (2005). Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47:567-579.CrossRefPubMedGoogle Scholar
  10. Behar, T. N., Dugich-Djordjevic, M. M., Li, Y. X., Ma, W., Somogyi, R., Wen, X., Brown, E., Scott, C., McKay, R. D., and Barker, J. L. (1997). Neurotrophins stimulate chemotaxis of embryonic cortical neurons. Eur. J. Neurosci. 9:2561-2570.CrossRefPubMedGoogle Scholar
  11. Bibel, M., and Barde, Y. A. (2000). Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14:2919-2937.CrossRefPubMedGoogle Scholar
  12. Bock, H. H., Jossin, Y., Liu, P., Forster, E., May, P., Goffinet, A. M., and Herz, J. (2003). Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to reelin signaling and is required for normal cortical lamination. J. Biol. Chem. 278:38772-38779.CrossRefPubMedGoogle Scholar
  13. Brunstrom, J. E., Gray-Swain, M. R., Osborne, P. A., and Pearlman, A. L. (1997). Neuronal het-erotopias in the developing cerebral cortex produced by neurotrophin-4. Neuron 18:505-517.CrossRefPubMedGoogle Scholar
  14. Bu, G., and Schwartz, A. L. (1998). RAP, a novel type of ER chaperone. Trends Cell Biol. 8:272-276.CrossRefPubMedGoogle Scholar
  15. Cabelli, R. J., Hohn, A., and Shatz, C. J. (1995). Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science 267:1662-1666.CrossRefPubMedGoogle Scholar
  16. Cabelli, R. J., Shelton, D. L., Segal, R. A., and Shatz, C. J. (1997). Blockade of endogenous lig-ands of trkB inhibits formation of ocular dominance columns. Neuron 19:63-76.CrossRefPubMedGoogle Scholar
  17. Cohen, S., and Levi-Montalcini, R. (1957). Purification and properties of a nerve growth-promot-ing factor isolated from mouse sarcoma 180. Cancer Res. 17:15-20.PubMedGoogle Scholar
  18. D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719-723.CrossRefPubMedGoogle Scholar
  19. D’Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon, M., and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24:471-479.CrossRefPubMedGoogle Scholar
  20. Del Rio, J. A., Heimrich, B., Borrell, V., Forster, E., Drakew, A., Alcantara, S., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., Derer, P., Frotscher, M., and Soriano, E. (1997). A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385:70-74.CrossRefPubMedGoogle Scholar
  21. Derer, P. (1985). Comparative localization of Cajal-Retzius cells in the neocortex of normal and reeler mutant mice fetuses. Neurosci. Lett. 54:1-6.CrossRefPubMedGoogle Scholar
  22. Dong, E., Caruncho, H., Liu, W. S., Smalheiser, N. R., Grayson, D. R., Costa, E., and Guidotti, A. (2003). A reelin-integrin receptor interaction regulates Arc mRNA translation in synaptoneurosomes. Proc. Natl. Acad. Sci. USA 100:5479-5484.CrossRefPubMedGoogle Scholar
  23. Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27:33-44.CrossRefPubMedGoogle Scholar
  24. Durany, N., Michel, T., Zochling, R., Boissl, K. W., Cruz-Sanchez, F. F., Riederer, P., and Thome, J. (2001). Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psy-choses. Schizophr. Res. 52:79-86.CrossRefPubMedGoogle Scholar
  25. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B., and Weinberger, D. R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257-269.CrossRefPubMedGoogle Scholar
  26. Ernfors, P., Bengzon, J., Kokaia, Z., Persson, H., and Lindvall, O. (1991). Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis. Neuron 7:165-176.CrossRefPubMedGoogle Scholar
  27. Fatemi, S. H., Earle, J. A., and McMenomy, T. (2000). Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry 5:654-663.CrossRefPubMedGoogle Scholar
  28. Fatemi, S. H., Kroll, J. L., and Stary, J. M. (2001). Altered levels of reelin and its isoforms in schizophrenia and mood disorders. Neuroreport 12:3209-3215.CrossRefPubMedGoogle Scholar
  29. Fatemi, S. H., Stary, J. M., Earle, J. A., Araghi-Niknam, M., and Eagan, E. (2005a). GABAergic dys-function in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and reelin proteins in cerebellum. Schizophr. Res. 72:109-122.CrossRefPubMedGoogle Scholar
  30. Fatemi, S. H., Snow, A. V., Stary, J. M., Araghi-Niknam, M., Reutiman, T. J., Lee, S., Brooks, A. I., and Pearce, D. A. (2005b). Reelin signaling is impaired in autism. Biol. Psychiatry 57:777-787.CrossRefPubMedGoogle Scholar
  31. Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T., and Lu, B. (1996). Regulation of synap-tic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381:706-709.CrossRefPubMedGoogle Scholar
  32. Friedman, W. J., Olson, L., and Persson, H. (1991). Cells that express brain-derived neurotrophic factor mRNA in the developing postnatal rat brain. Eur. J. Neurosci. 3:688-697.CrossRefPubMedGoogle Scholar
  33. Frotscher, M., Haas, C. A., and Forster, E. (2003). Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. Cereb. Cortex 13:634-640.CrossRefPubMedGoogle Scholar
  34. Gianfranceschi, L., Siciliano, R., Walls, J., Morales, B., Kirkwood, A., Huang, Z. J., Tonegawa, S., and Maffei, L. (2003). Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proc. Natl. Acad. Sci. USA 100:12486-12491.CrossRefPubMedGoogle Scholar
  35. Graus-Porta, D., Blaess, S., Senften, M., Littlewood-Evans, A., Damsky, C., Huang, Z., Orban, P., Klein, R., Schittny, J. C., and Muller, U. (2001). Beta1-class integrins regulate the develop-ment of laminae and folia in the cerebral and cerebellar cortex. Neuron 31:367-379.CrossRefPubMedGoogle Scholar
  36. Guidotti, A., Auta, J., Davis, J. M., Di-Giorgi-Gerevini, V., Dwivedi, Y., Grayson, D. R., Impagnatiello, F., Pandey, G., Pesold, C., Sharma, R., Uzunov, D., and Costa, E. (2000). Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch. Gen. Psychiatry 57:1061-1069.CrossRefPubMedGoogle Scholar
  37. Guilhem, D., Dreyfus, P. A., Makiura, Y., Suzuki, F., and Onteniente, B. (1996). Short increase of BDNF messenger RNA triggers kainic acid-induced neuronal hypertrophy in adult mice. Neuroscience 72:923-931.CrossRefPubMedGoogle Scholar
  38. Haas, C. A., Deller, T., Krsnik, Z., Tielsch, A., Woods, A., and Frotscher, M. (2000). Entorhinal cortex lesion does not alter reelin messenger RNA expression in the dentate gyrus of young and adult rats. Neuroscience 97:25-31.CrossRefPubMedGoogle Scholar
  39. Hallbook, F., Ibanez, C. F., and Persson, H. (1991). Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 6:845-858.CrossRefPubMedGoogle Scholar
  40. Hashimoto, K., Iwata, Y., Nakamura, K., Tsujii, M., Tsuchiya, K. J., Sekine, Y., Suzuki, K., Minabe, Y., Takei, N., Iyo, M., and Mori, N. (2006). Reduced serum levels of brain-derived neurotrophic factor in adult male patients with autism. Prog. Neuropsychopharmacol. Biol. Psychiatry 30:1529-1531.CrossRefPubMedGoogle Scholar
  41. He, X. P., Kotloski, R., Nef, S., Luikart, B. W., Parada, L. F., and McNamara, J. O. (2004). Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron 43:31-42.CrossRefPubMedGoogle Scholar
  42. Heinrich, C., Nitta, N., Flubacher, A., Muller, M., Fahrner, A., Kirsch, M., Freiman, T., Suzuki, F., Depaulis, A., Frotscher, M., and Haas, C. A. (2006). Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J. Neurosci. 26:4701-4713.CrossRefPubMedGoogle Scholar
  43. Hohn, A., Leibrock, J., Bailey, K., and Barde, Y. A. (1990). Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 344:339-341.CrossRefPubMedGoogle Scholar
  44. Houser, C. R. (1990). Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res. 535:195-204.CrossRefPubMedGoogle Scholar
  45. Howell, B. W., Herrick, T. M., and Cooper, J. A. (1999). Reelin-induced tyrosine [corrected] phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13:643-648.CrossRefPubMedGoogle Scholar
  46. Huang, Z. J., Kirkwood, A., Pizzorusso, T., Porciatti, V., Morales, B., Bear, M. F., Maffei, L., and Tonegawa, S. (1999). BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739-755.CrossRefPubMedGoogle Scholar
  47. Impagnatiello, F., Guidotti, A. R., Pesold, C., Dwivedi, Y., Caruncho, H., Pisu, M. G., Uzunov, D. P., Smalheiser, N. R., Davis, J. M., Pandey, G. N., Pappas, G. D., Tueting, P., Sharma, R. P., and Costa, E. (1998). A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc. Natl. Acad. Sci. USA 95:15718-15723.CrossRefPubMedGoogle Scholar
  48. Iritani, S., Niizato, K., Nawa, H., Ikeda, K., and Emson, P. C. (2003). Immunohistochemical study of brain-derived neurotrophic factor and its receptor, TrkB, in the hippocampal formation of schizophrenic brains. Prog. Neuropsychopharmacol. Biol. Psychiatry 27:801-807.CrossRefPubMedGoogle Scholar
  49. Isackson, P. J., Huntsman, M. M., Murray, K. D., and Gall, C. M. (1991). BDNF mRNA expres-sion is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF. Neuron 6:937-948.CrossRefPubMedGoogle Scholar
  50. Jiang, B., Akaneya, Y., Ohshima, M., Ichisaka, S., Hata, Y., and Tsumoto, T. (2001). Brain-derived neurotrophic factor induces long-lasting potentiation of synaptic transmission in visual cortex in vivo in young rats, but not in the adult. Eur. J. Neurosci. 14:1219-1228.CrossRefPubMedGoogle Scholar
  51. Karege, F., Perret, G., Bondolfi, G., Schwald, M., Bertschy, G., and Aubry, J. M. (2002). Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 109:143-148.CrossRefPubMedGoogle Scholar
  52. Keshvara, L., Magdaleno, S., Benhayon, D., and Curran, T. (2002). Cyclin-dependent kinase 5 phosphorylates disabled 1 independently of reelin signaling. J. Neurosci. 22:4869-4877.PubMedGoogle Scholar
  53. Knable, M. B., Barci, B. M., Webster, M. J., Meador-Woodruff, J., and Torrey, E. F. (2004). Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem find-ings from the Stanley Neuropathology Consortium. Mol. Psychiatry 9:609-620.CrossRefPubMedGoogle Scholar
  54. Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H., and Bonhoeffer, T. (1995). Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA 92:8856-8860.CrossRefPubMedGoogle Scholar
  55. Kovalchuk, Y., Hanse, E., Kafitz, K. W., and Konnerth, A. (2002). Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295:1729-1734.CrossRefPubMedGoogle Scholar
  56. Levenson, J. M., Roth, T. L., Lubin, F. D., Miller, C. A., Huang, I. C., Desai, P., Malone, L. M., and Sweatt, J. D. (2006). Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J. Biol. Chem. 281:15763-15773.CrossRefPubMedGoogle Scholar
  57. Levine, E. S., Crozier, R. A., Black, I. B., and Plummer, M. R. (1998). Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc. Natl. Acad. Sci. USA 95:10235-10239.CrossRefPubMedGoogle Scholar
  58. Magdaleno, S. M., and Curran, T. (2001). Brain development: integrins and the reelin pathway. Curr. Biol. 11:R1032-1035.CrossRefPubMedGoogle Scholar
  59. Marty, S., Carroll, P., Cellerino, A., Castren, E., Staiger, V., Thoenen, H., and Lindholm, D. (1996). Brain-derived neurotrophic factor promotes the differentiation of various hippocampal nonpyramidal neurons, including Cajal-Retzius cells, in organotypic slice cultures. J. Neurosci. 16:675-687.PubMedGoogle Scholar
  60. Meyer, G., Goffinet, A. M., and Fairen, A. (1999). What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cereb. Cortex 9:765-775.CrossRefPubMedGoogle Scholar
  61. Minichiello, L., Casagranda, F., Tatche, R. S., Stucky, C. L., Postigo, A., Lewin, G. R., Davies, A. M., and Klein, R. (1998). Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses. Neuron 21:335-345.CrossRefPubMedGoogle Scholar
  62. Miyazaki, K., Narita, N., Sakuta, R., Miyahara, T., Naruse, H., Okado, N., and Narita, M. (2004). Serum neurotrophin concentrations in autism and mental retardation: a pilot study. Brain Dev. 26:292-295.CrossRefPubMedGoogle Scholar
  63. Murray, K. D., Isackson, P. J., Eskin, T. A., King, M. A., Montesinos, S. P., Abraham, L. A., and Roper, S. N. (2000). Altered mRNA expression for brain-derived neurotrophic factor and type II calcium/calmodulin-dependent protein kinase in the hippocampus of patients with intracta-ble temporal lobe epilepsy. J. Comp. Neurol. 418:411-422.CrossRefPubMedGoogle Scholar
  64. Neves-Pereira, M., Mundo, E., Muglia, P., King, N., Macciardi, F., and Kennedy, J. L. (2002). The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am. J. Hum. Genet. 71:651-655.CrossRefPubMedGoogle Scholar
  65. Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., Yamamoto, H., and Mikoshiba, K. (1995). The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14:899-912.CrossRefPubMedGoogle Scholar
  66. Ohmiya, M., Shudai, T., Nitta, A., Nomoto, H., Furukawa, Y., and Furukawa, S. (2002). Brain-derived neurotrophic factor alters cell migration of particular progenitors in the developing mouse cerebral cortex. Neurosci. Lett. 317:21-24.CrossRefPubMedGoogle Scholar
  67. Ohshima, T., and Mikoshiba, K. (2002). Reelin signaling and Cdk5 in the control of neuronal positioning. Mol. Neurobiol. 26:153-166.CrossRefPubMedGoogle Scholar
  68. Ohshima, T., Suzuki, H., Morimura, T., Ogawa, M., and Mikoshiba, K. (2007). Modulation of reelin signaling by cyclin-dependent kinase 5. Brain Res. 1140:84-95.CrossRefPubMedGoogle Scholar
  69. Perry, E. K., Lee, M. L., Martin-Ruiz, C. M., Court, J. A., Volsen, S. G., Merrit, J., Folly, E., Iversen, P. E., Bauman, M. L., Perry, R. H., and Wenk, G. L. (2001). Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am. J. Psychiatry 158:1058-1066.CrossRefPubMedGoogle Scholar
  70. Persico, A. M., D’Agruma, L., Maiorano, N., Totaro, A., Militerni, R., Bravaccio, C., Wassink, T. H., Schneider, C., Melmed, R., Trillo, S., Montecchi, F., Palermo, M., Pascucci, T., Puglisi-Allegra, S., Reichelt, K. L., Conciatori, M., Marino, R., Quattrocchi, C. C., Baldi, A., Zelante, L., Gasparini, P., and Keller, F. (2001). Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol. Psychiatry 6:150-159.CrossRefPubMedGoogle Scholar
  71. Pla, R., Borrell, V., Flames, N., and Marin, O. (2006). Layer acquisition by cortical GABAergic interneurons is independent of reelin signaling. J. Neurosci. 26:6924-6934.CrossRefPubMedGoogle Scholar
  72. Polleux, F., Whitford, K. L., Dijkhuizen, P. A., Vitalis, T., and Ghosh, A. (2002). Control of corti-cal interneuron migration by neurotrophins and PI3-kinase signaling. Development 129:3147-3160.PubMedGoogle Scholar
  73. Rakic, P., and Caviness, V. S., Jr. (1995). Cortical development: view from neurological mutants two decades later. Neuron 14:1101-1104.CrossRefPubMedGoogle Scholar
  74. Riedel, A., Miettinen, R., Stieler, J., Mikkonen, M., Alafuzoff, I., Soininen, H., and Arendt, T. (2003). Reelin-immunoreactive Cajal-Retzius cells: the entorhinal cortex in normal aging and Alzheimer’s disease. Acta Neuropathol. (Berl.) 106:291-302.CrossRefGoogle Scholar
  75. Ringstedt, T., Linnarsson, S., Wagner, J., Lendahl, U., Kokaia, Z., Arenas, E., Ernfors, P., and Ibanez, C. F. (1998). BDNF regulates reelin expression and Cajal-Retzius cell development in the cerebral cortex. Neuron 21:305-315.CrossRefPubMedGoogle Scholar
  76. Scharfman, H. E., Goodman, J. H., Sollas, A. L., and Croll, S. D. (2002). Spontaneous limbic sei-zures after intrahippocampal infusion of brain-derived neurotrophic factor. Exp. Neurol. 174:201-214.CrossRefPubMedGoogle Scholar
  77. Sen, S., Nesse, R. M., Stoltenberg, S. F., Li, S., Gleiberman, L., Chakravarti, A., Weder, A. B., and Burmeister, M. (2003). A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology 28:397-401.CrossRefPubMedGoogle Scholar
  78. Serajee, F. J., Zhong, H., and Mahbubul Huq, A. H. (2006). Association of reelin gene polymor-phisms with autism. Genomics 87:75-83.CrossRefPubMedGoogle Scholar
  79. Siuciak, J. A., Lewis, D. R., Wiegand, S. J., and Lindsay, R. M. (1997). Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol. Biochem. Behav. 56:131-137.CrossRefPubMedGoogle Scholar
  80. Sklar, P., Gabriel, S. B., McInnis, M. G., Bennett, P., Lim, Y. M., Tsan, G., Schaffner, S., Kirov, G., Jones, I., Owen, M., Craddock, N., DePaulo, J. R., and Lander, E. S. (2002). Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Mol. Psychiatry 7:579-593.CrossRefPubMedGoogle Scholar
  81. Suen, P. C., Wu, K., Levine, E. S., Mount, H. T., Xu, J. L., Lin, S. Y., and Black, I. B. (1997). Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-D-aspartate receptor subunit 1. Proc. Natl. Acad. Sci. USA 94:8191-8195.CrossRefPubMedGoogle Scholar
  82. Super, H., Del Rio, J. A., Martinez, A., Perez-Sust, P., and Soriano, E. (2000). Disruption of neu-ronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb. Cortex 10:602-613.CrossRefPubMedGoogle Scholar
  83. Szekeres, G., Juhasz, A., Rimanoczy, A., Keri, S., and Janka, Z. (2003). The C270T polymor-phism of the brain-derived neurotrophic factor gene is associated with schizophrenia. Schizophr. Res. 65:15-18.CrossRefPubMedGoogle Scholar
  84. Takahashi, M., Hayashi, S., Kakita, A., Wakabayashi, K., Fukuda, M., Kameyama, S., Tanaka, R., Takahashi, H., and Nawa, H. (1999). Patients with temporal lobe epilepsy show an increase in brain-derived neurotrophic factor protein and its correlation with neuropeptide Y. Brain Res. 818:579-582.CrossRefPubMedGoogle Scholar
  85. Takahashi, M., Shirakawa, O., Toyooka, K., Kitamura, N., Hashimoto, T., Maeda, K., Koizumi, S., Wakabayashi, K., Takahashi, H., Someya, T., and Nawa, H. (2000). Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol. Psychiatry 5:293-300.CrossRefPubMedGoogle Scholar
  86. Timmusk, T., Belluardo, N., Metsis, M., and Persson, H. (1993). Widespread and developmen-tally regulated expression of neurotrophin-4 mRNA in rat brain and peripheral tissues. Eur. J. Neurosci. 5:605-613.CrossRefPubMedGoogle Scholar
  87. Timmusk, T., Belluardo, N., Persson, H., and Metsis, M. (1994). Developmental regulation of brain-derived neurotrophic factor messenger RNAs transcribed from different promoters in the rat brain. Neuroscience 60:287-291.CrossRefPubMedGoogle Scholar
  88. Tokuoka, H., Saito, T., Yorifuji, H., Wei, F., Kishimoto, T., and Hisanaga, S. (2000). Brain-derived neurotrophic factor-induced phosphorylation of neurofilament-H subunit in primary cultures of embryo rat cortical neurons. J. Cell Sci. 113(Pt 6):1059-1068.PubMedGoogle Scholar
  89. Toyooka, K., Asama, K., Watanabe, Y., Muratake, T., Takahashi, M., Someya, T., and Nawa, H. (2002). Decreased levels of brain-derived neurotrophic factor in serum of chronic schizo-phrenic patients. Psychiatry Res. 110:249-257.CrossRefPubMedGoogle Scholar
  90. Tsai, S. J. (2005). Is autism caused by early hyperactivity of brain-derived neurotrophic factor? Med. Hypotheses 65:79-82.CrossRefPubMedGoogle Scholar
  91. Wang, C. X., Song, J. H., Song, D. K., Yong, V. W., Shuaib, A., and Hao, C. (2006). Cyclin-dependent kinase-5 prevents neuronal apoptosis through ERK-mediated upregulation of Bcl-2. Cell Death Differ. 13:1203-1212.CrossRefPubMedGoogle Scholar
  92. Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., and Herz, J. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277:39944-39952.CrossRefPubMedGoogle Scholar
  93. Xu, B., Gottschalk, W., Chow, A., Wilson, R. I., Schnell, E., Zang, K., Wang, D., Nicoll, R. A., Lu, B., and Reichardt, L. F. (2000). The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mecha-nism involving TrkB. J. Neurosci. 20:6888-6897.PubMedGoogle Scholar
  94. Yang, C. B., Zheng, Y. T., Kiser, P. J., and Mower, G. D. (2006). Identification of disabled-1 as a candidate gene for critical period neuroplasticity in cat and mouse visual cortex. Eur. J. Neurosci. 23:2804-2808.CrossRefPubMedGoogle Scholar
  95. Yin, Y., Edelman, G. M., and Vanderklish, P. W. (2002). The brain-derived neurotrophic factor enhances synthesis of Arc in synaptoneurosomes. Proc. Natl. Acad. Sci. USA99:2368-2373.CrossRefPubMedGoogle Scholar
  96. Ying, S. W., Futter, M., Rosenblum, K., Webber, M. J., Hunt, S. P., Bliss, T. V., and Bramham, C. R. (2002). Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci. 22:1532-1540.PubMedGoogle Scholar
  97. Yoshida, M., Assimacopoulos, S., Jones, K. R., and Grove, E. A. (2006). Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order. Development 133:537-545.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Thomas Ringstedt
    • 1
  1. 1.Neonatal Unit, Karolinska InstitutetAstrid Lindgren Children’s Hospital, Q2:07StockholmSweden

Personalised recommendations