Reelin and Thyroid Hormone

  • Manuel Álvarez-Dolado

Thyroid hormone [3,5,3′-triiodothyronine (T3) and thyroxine (T4)] is essential for proper brain development. In humans, the lack of adequate T3 levels during the perinatal period leads to cretinism, a syndrome associated with mental retardation and neurological deficits, such as ataxia, spasticity, and deafness (for review, see Legrand, 1984; Dussault and Ruel, 1987; Braverman and Utiger, 2000; Bernal, 2005a). These alterations are due to misregulation of the gene expression controlled by T3 through its interaction with nuclear receptors, which act as ligand-modulated transcription factors (Muñoz and Bernal, 1997; Forrest and Vennström, 2000; Yen et al., 2006).


Thyroid Hormone Olfactory Bulb Iodine Deficiency Granule Cell Layer Thyroid Hormone Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, T., Suzuki, T., Unno, M., Tokui, T., and Ito, S. (2002). Thyroid hormone transporters: recent advances. Trends Endocrinol. Metab. 13:215-220.Google Scholar
  2. Alcántara, S., Ruiz, M., D’Arcangelo, G., Ezan, F., de Lecea, L., Curran, T., Sotelo, C., and Soriano, E. (1998). Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J. Neurosci. 18:7779-7799.PubMedGoogle Scholar
  3. Álvarez-Dolado, M., Iglesias, T., Rodríguez-Peña, A., Bernal, J., and Muñoz, A. (1994). Expression of neurotrophins and the trk family of neurotrophin receptors in normal and hypothyroid rat brain. Mol. Brain Res. 27:249-257.CrossRefPubMedGoogle Scholar
  4. Álvarez-Dolado, M., González-Sancho, J., Bernal, J., and Muñoz, A. (1998). Developmental expres-sion of tenascin-C is altered by hypothyroidism in the rat brain. Neuroscience 84:309-322.CrossRefPubMedGoogle Scholar
  5. Álvarez-Dolado, M., Ruiz, M., Del Río, J. A., Alcántara, S., Burgaya, F., Sheldon, M., Nakajima, K., Bernal, J., Howell, B. W., Curran, T., Soriano, E., and Muñoz, A. (1999). Thyroid hormone regulates reelin and dab1 expression during brain development. J. Neurosci. 19:6979-6993.PubMedGoogle Scholar
  6. Álvarez-Dolado, M., Cuadrado, A., Navarro-Yubero, C., Sonderegger, P., Furley, A. J., Bernal, J., and Munoz, A. (2000). Regulation of the L1 cell adhesion molecule by thyroid hormone in the developing brain. Mol. Cell. Neurosci. 4:499-514.CrossRefGoogle Scholar
  7. Álvarez-Dolado, M., Figueroa, A., Kozlov, S., Sonderegger, P., Furley, A. J., and Munoz, A. (2001). Thyroid hormone regulates TAG-1 expression in the developing rat brain. Eur. J. Neurosci. 8:1209-1218.CrossRefGoogle Scholar
  8. Aniello, F., Couchie, D., Bridoux, A. M., Gripois, D., and Nunez, J. (1991). Splicing of juvenile and adult tau m-RNA variants is regulated by thyroid hormone. Proc. Natl. Acad. Sci. USA88:4035-4039.CrossRefPubMedGoogle Scholar
  9. Berbel, P., Guadaño-Ferraz, A., Martínez, M., Quiles, J., Balboa, R., and Innocenti, G. (1993). Organization of auditory callosal connections in hypothyroid rats. Eur. J. Neurosci. 5:1465-1478.CrossRefPubMedGoogle Scholar
  10. Berbel, P., Ausó, E., García-Velasco, J. V., Molina, M. L., and Camacho, M. (2001). Role of thyroid hormones in the maturation and organisation of rat barrel cortex. Neurosci. 107:383-394.CrossRefGoogle Scholar
  11. Bernal, J. (2002). Action of thyroid hormone in brain. J. Endocrinol. Invest. 25:268-288.PubMedGoogle Scholar
  12. Bernal, J. (2005a). Thyroid hormones and brain development. Vitam. Horm. 71: 95-122.CrossRefPubMedGoogle Scholar
  13. Bernal, J. (2005b). The significance of thyroid hormone transporters in the brain. Endocrinology 146:1698-1700.CrossRefPubMedGoogle Scholar
  14. Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J., and Larsen, P. R. (2002). Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 23:38-89.CrossRefPubMedGoogle Scholar
  15. Billon, N., Jolicoeur, C., Tokumoto, Y., Vennstrom, B., and Raff, M. (2002). Normal timing of oli-godendrocyte development depends on thyroid hormone receptor alpha 1 (TRalpha1). EMBO J. 21:6452-6460.CrossRefPubMedGoogle Scholar
  16. Braverman, L. E., and Utiger, R. D. (2000). Werner and Ingbar’s The Thyroid: A Fundamental and Clinical Text, 8th ed. Lippincott Williams and Wilkins, Philadelphia.Google Scholar
  17. Clos, J., and Legrand, C. H. (1990). An interaction between thyroid hormone and nerve growth factor promotes the development of hippocampus, olfactory bulbs and cerebellum: a compara-tive biochemical study of normal and hypothyroid rats. Growth Factor 3:205-220.CrossRefGoogle Scholar
  18. deLong, G. R. (1990). The effect of iodine deficiency on neuromuscular development. IDD Newsletter 6:1-12.Google Scholar
  19. Derer, P. (1985). Comparative localization of Cajal-Retzius cells in the neocortex of normal and reeler mutant mice fetuses. Neurosci. Lett. 54:1-6.CrossRefPubMedGoogle Scholar
  20. Dickson, P. W., Aldred, A. R., Menting, J. G. T., Marley, P. D., Sawyer, W. H., and Schreiber, G. (1987). Thyroxine transport in choroid plexus. J. Biol. Chem. 262:13907-13915.PubMedGoogle Scholar
  21. Dussault, J. H., and Ruel, J. (1987). Thyroid hormones and brain development. Annu. Rev. Physiol. 49:321-334.CrossRefPubMedGoogle Scholar
  22. Ercan-Fang, S., Schwartz, H. L., and Oppenheimer, J. H. (1996). Isoform specific 3,5,3'-triiodothyronine receptor binding capacity and messenger ribonucleic acid content in rat adenohypophysis: effect of thyroidal state and comparison with extrapituitary tissues. Endocrinology 137:3228-3233.CrossRefPubMedGoogle Scholar
  23. Forrest, D., and Vennström, B. (2000). Functions of thyroid hormone receptors in mice. Thyroid 1:41-52.CrossRefGoogle Scholar
  24. Forrest, D., Sjoberg, M., and Vennstrom, B. (1990). Contrasting developmental and tissue-specific expression of alpha and beta thyroid hormone receptor genes. EMBO J. 9:1519-1528.PubMedGoogle Scholar
  25. Gauthier, K., Plateroti, M., Harvey, C. B., Williams, G. R., Weiss, R. E., Refeto,V.S., Willott, J. F., Sundin, V., Roux, J. P., Malaval, L., Hara, M., Samarut, J., and Chassande, O. (2001). Genetic analysis reveals different functions for the products of the thyroid hormone receptor alpha locus. Mol. Cell. Biol. 21: 4748-4760.CrossRefPubMedGoogle Scholar
  26. Goffinet, A. M. (1980). The cerebral cortex of the reeler embryo (an electron microscopic analy-sis). Anat. Embryol. 159:199-210.CrossRefPubMedGoogle Scholar
  27. Iglesias, T., Caubín, J., Stunnenberg, H. G., Zaballos, A., Bernal, J., and Muñoz, A. (1996). Thyroid hormone-dependent transcriptional repression of neuronal cell adhesion molecule during brain maturation. EMBO J. 15:4307-4316.PubMedGoogle Scholar
  28. Lauder, J. M. (1979). Granule cell migration in the developing rat cerebellum. Influence of neo-natal hypo- and hyper-thyroidism. Dev. Biol. 70:105-115.CrossRefPubMedGoogle Scholar
  29. Lazar, M. A. (1993). Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr. Rev. 14:184-193.PubMedGoogle Scholar
  30. Legrand, J. (1984). Effects of thyroid hormones on central nervous system. In: Yanai, J. (ed.), Neurobehavioural Teratology. Elsevier/North-Holland, Amsterdam, pp. 331-363.Google Scholar
  31. Lima, F. R., Goncalves, N., Gomes, F. C., de Freitas, M. S., and Moura Neto, V. (1998). Thyroid hormone action on astroglial cells from distinct brain regions during development. Int. J. Dev. Neurosci. 16:19-27.CrossRefPubMedGoogle Scholar
  32. Lima, F. R., Gervais, A., Colin, C., Izembart, M., Neto, V. M., and Mallat, M. (2001). Regulation of microglial development: a novel role for thyroid hormone. J. Neurosci. 21:2028-2038.PubMedGoogle Scholar
  33. Lu, E., and Brown, W. (1977). The developing caudate nucleus in the euthyroid and hypothyroid rat. J. Comp. Neurol. 171:261-284.CrossRefPubMedGoogle Scholar
  34. Lucio, R. A., García, J. V., Cerezo, J. R., Pacheco, P., Innocenti, G. M., and Berbel, P. (1997). The development of auditory callosal connections in normal and hypothyroid rats. Cereb. Cortex 7:303-316.CrossRefPubMedGoogle Scholar
  35. Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., and Evans, R. M. (1995). The nuclear receptor super-family: the second decade. Cell 83:835-839.CrossRefPubMedGoogle Scholar
  36. Manzano, J., Morte, B., Scanlan, T. S., and Bernal, J. (2003). Differential effects of triiodothyro-nine and the thyroid hormone receptor β-specific agonist GC-1 on thyroid hormone target genes in the brain. Endocrinology 144:5480-5487.CrossRefPubMedGoogle Scholar
  37. Mariani, J., Crepel, F., Mikoshiba, K., Changeux, J. P., and Sotelo, C. (1977). Anatomical, physi-ological and biochemical studies of the cerebellum from reeler mutant mouse. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 281:1-28.CrossRefGoogle Scholar
  38. Martínez-Galán, J., Pedraza, P., Santacana, M., Escobar del Rey, F., Morreale de Escobar, G., and Ruiz-Marcos, A. (1997). Early effects of iodine deficiency on radial glial cells of the hippoc-ampus of the rat fetus. A model of neurological cretinism. J. Clin. Invest. 99:2701-2709.CrossRefPubMedGoogle Scholar
  39. Miyata, T., Nakajima, K., Aruga, J., Mikoshiba, K., and Ogawa, M. (1997). Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J. Neurosci. 15:3599-3609.Google Scholar
  40. Moore, J. M., and Guy, R. K. (2005). Coregulator interactions with the thyroid hormone receptor. Mol. Cell. Proteomics 4:475-482.CrossRefPubMedGoogle Scholar
  41. Muñoz, A., and Bernal, J. (1997). Biological activities of thyroid hormone receptors. Eur. J. Endocrinol. 137:433-445.CrossRefPubMedGoogle Scholar
  42. Neveu, I., and Arenas, E. (1996). Neurotrophins promote the survival and development of neurons in the cerebellum of hypothyroid rats in vivo. J. Cell Biol. 133:631-646.CrossRefPubMedGoogle Scholar
  43. Nishihara, E., O’Malley, B. W., and Xu, J. (2004). Nuclear receptor co-regulators are new players in nervous system development and function. Mol. Neurobiol. 3:307-325.CrossRefGoogle Scholar
  44. Oppenheimer, J. H., and Schwartz, H. L. (1997). Molecular basis of thyroid hormone-dependent brain development. Endocr. Rev. 18:462-475.CrossRefPubMedGoogle Scholar
  45. Patel, A.J., Rabie, A., Lewis, P., and Balazs, R. (1976). Effects of thyroid deficiency on postnatal cell formation in the rat brain. A biochemical investigation. Brain Res. 104:33-48.CrossRefPubMedGoogle Scholar
  46. Rice, D.S., Sheldon, M., D’Arcangelo, G., Nakajima, K., Goldowitz, D., and Curran, T. (1998). Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organiza-tion in the mammalian brain. Development 125:3719-3729.PubMedGoogle Scholar
  47. Ringstedt, T., Linnarsson, S., Wagner, J., Lendahl, U., Kokaia, Z., Arenas, E., Ernfors, P., and Ibañez, C. F. (1998). BDNF regulates reelin expression and Cajal-Retzius cell development in the cerebral cortex. Neuron 21:305-315.CrossRefPubMedGoogle Scholar
  48. Rodríguez-Peña, A. (1999). Oligodendrocyte development and thyroid hormone. J. Neurobiol. 40:497-512.CrossRefPubMedGoogle Scholar
  49. Schiffmann, S. N., Bernier, B., and Goffinet, A. (1997). reelin mRNA expression during mouse brain development. Eur. J. Neurosci. 9: 1055-1071CrossRefPubMedGoogle Scholar
  50. Verhoelst, C. H., Roelens, S. A., and Darras, V. M. (2005). Role of spatiotemporal expression of iodothyronine deiodinase proteins in cerebellar cell organization. Brain Res. Bull. 67:196-202.Google Scholar
  51. Weiss, R. E., and Ramos, H. E. (2004). Thyroid hormone receptor subtypes and their interaction with steroid receptor coactivators. Vitam. Horm. 68:185-207.CrossRefPubMedGoogle Scholar
  52. Yen, P. M., Ando, S., Feng, X., Liu, Y., Maruvada, P., and Xia, X. (2006). Thyroid hormone action at the cellular, genomic and target gene levels. Mol. Cell. Endocrinol. 246:121-127.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Manuel Álvarez-Dolado
    • 1
  1. 1.Cellular Regeneration LaboratoryCentra de Investigatión Principe Felipe (CIPF)ValenciaSpain

Personalised recommendations