Reelin and Cognition

  • Shenfeng Qiu
  • Edwin John Weeber

The cognitive function of the human brain refers to the mental manipulation of all the information acquired by the sensory system. A more physiological definition of cognition by Ulric Neisser states, “…the term cognition refers to all processes by which the sensory input is transformed, reduced, elaborated, stored, recovered, and used.” It is our unique cognitive ability acquired from our distinct experience that ultimately makes us who we are; as Rene Descartes said, “I think, therefore I am.” The authors have no intention or expertise to embark on a philosophical discussion of cognition in this chapter; we rather safely rely on our assertion that normal cognition requires proper function of the central nervous system, which constitutes hundreds of millions of neurons and supporting cells and is correctly “wired” during development and, equally as important, “rewired” in response to our postnatal experiences.

Although much of our knowledge on the actions of Reelin comes from investigation of embryonic CNS development, recent studies have indicated that Reelin signaling also plays an important role in synaptic function in the postnatal brain (Weeber et al., 2002; Beffert et al., 2005; Ramos-Moreno et al., 2006). Reelin-expressing neurons are widely distributed in the adult brain (Pesold et al., 1998; Martinez-Cerdeno et al., 2002; Abraham and Meyer, 2003; Roberts et al., 2005; Ramos-Moreno et al., 2006), at a period long after the decrease in number of Cajal-Retzius cells (Marin-Padilla, 1998; Meyer et al., 1998; Sarnat and Flores-Sarnat, 2002). The functional significance of the persistent expression of Reelin after the completion of cell migration remains enigmatic in most brain regions. However, in the hippocampus, Reelin and its lipoprotein receptors are required for proper function of synaptic transmission and plasticity, and this signaling system profoundly modifies mammalian learning and memory behavior (Weeber et al., 2002; Beffert et al., 2005; D’Arcangelo, 2005). This chapter will focus on existing experimental evidence supporting the requirement of Reelin for normal synaptic function in the hippocampus as well as mammalian cognitive ability.


NMDA Receptor Synaptic Plasticity AMPA Receptor Dendritic Spine Synaptic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, H., and Meyer, G. (2003). Reelin-expressing neurons in the postnatal and adult human hippocampal formation. Hippocampus 13:715-727.PubMedGoogle Scholar
  2. Aguilo, A., Schwartz, T. H., Kumar, V. S., Peterlin, Z. A., Tsiola, A., Soriano, E., and Yuste, R. (1999). Involvement of Cajal-Retzius neurons in spontaneous correlated activity of embryonic and postnatal layer 1 from wild-type and reeler mice. J. Neurosci. 19:10856-10868.PubMedGoogle Scholar
  3. Alcantara, S., Ruiz, M., D’Arcangelo, G., Ezan, F., de Lecea, L., Curran, T., Sotelo, C., and Soriano, E. (1998). Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J. Neurosci. 18:7779-7799.PubMedGoogle Scholar
  4. Anderson, P., Bliss, T. V., and Skrede, K. K. (1971). Lamellar organization of hippocampal path-ways. Exp. Brain Res. 13:222-238.PubMedGoogle Scholar
  5. Arnaud, L., Ballif, B. A., Forster, E., and Cooper, J. A. (2003). Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr. Biol. 13:9-17.PubMedGoogle Scholar
  6. Assadi, A. H., Zhang, G., Beffert, U., McNeil, R. S., Renfro, A. L., Niu, S., Quattrocchi, C. C., Antalffy, B. A., Sheldon, M., Armstrong, D. D., Wynshaw-Boris, A., Herz, J., D’Arcangelo, G., and Clark, G. D. (2003). Interaction of reelin signaling and Lis1 in brain development. Nature Genet. 35:270-276.PubMedGoogle Scholar
  7. Ballif, B. A., Arnaud, L., and Cooper, J. A. (2003). Tyrosine phosphorylation of disabled-1 is essential for reelin-stimulated activation of Akt and Src family kinases. Brain Res. Mol. Brain Res. 117:152-159.PubMedGoogle Scholar
  8. Ballif, B. A., Arnaud, L., Arthur, W. T., Guris, D., Imamoto, A., and Cooper, J. A. (2004). Activation of a Dab1/CrkL/C3G/Rap1 pathway in reelin-stimulated neurons. Curr. Biol. 14:606-610.PubMedGoogle Scholar
  9. Banke, T. G., Bowie, D., Lee, H., Huganir, R. L., Schousboe, A., and Traynelis, S. F. (2000). Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20:89-102.PubMedGoogle Scholar
  10. Barnes, A. P., and Milgram, S. L. (2002). Signals from the X: signal transduction and X-linked mental retardation. Int. J. Dev. Neurosci. 20:397-406.PubMedGoogle Scholar
  11. Barria, A., and Malinow, R. (2005). NMDA receptor subunit composition controls synaptic plas-ticity by regulating binding to CaMKII. Neuron 48:289-301.PubMedGoogle Scholar
  12. Barria, A., Muller, D., Derkach, V., Griffith, L. C., and Soderling, T. R. (1997). Regulatory phos-phorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276:2042-2045.PubMedGoogle Scholar
  13. Beffert, U., Morfini, G., Bock, H. H., Reyna, H., Brady, S. T., and Herz, J. (2002). Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J. Biol. Chem. 277:49958-49964.PubMedGoogle Scholar
  14. Beffert, U., Weeber, E. J., Durudas, A., Qiu, S., Masiulis, I., Sweatt, J. D., Li, W. P., Adelmann, G., Frotscher, M., Hammer, R. E., and Herz, J. (2005). Modulation of synaptic plasticity and mem-ory by reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47:567-579.PubMedGoogle Scholar
  15. Beffert, U., Durudas, A., Weeber, E. J., Stolt, P. C., Giehl, K. M., Sweatt, J. D., Hammer, R. E., and Herz, J. (2006). Functional dissection of reelin signaling by site-directed disruption of disabled-1 adaptor binding to apolipoprotein E receptor 2: distinct roles in development and synaptic plasticity. J. Neurosci. 26:2041-2052.PubMedGoogle Scholar
  16. Bi, X., Lynch, G., Zhou, J., and Gall, C. M. (2001). Polarized distribution of alpha5 integrin in dendrites of hippocampal and cortical neurons. J. Comp. Neurol. 435:184-193.PubMedGoogle Scholar
  17. Bliss, T. V., and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (London) 232:331-356.Google Scholar
  18. Bock, H. H., and Herz, J. (2003). Reelin activates SRC family tyrosine kinases in neurons. Curr. Biol. 13:18-26.PubMedGoogle Scholar
  19. Bock, H. H., Jossin, Y., Liu, P., Forster, E., May, P., Goffinet, A. M., and Herz, J. (2003). Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to reelin signaling and is required for normal cortical lamination. J. Biol. Chem. 278: 38772-38779.PubMedGoogle Scholar
  20. Botella-Lopez, A., Burgaya, F., Gavin, R., Garcia-Ayllon, M. S., Gomez-Tortosa, E., Pena-Casanova, J., Urena, J. M., Del Rio, J. A., Blesa, R., Soriano, E., and Saez-Valero, J. (2006). Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 103:5573-5578.PubMedGoogle Scholar
  21. Brecht, W. J., Harris, F. M., Chang, S., Tesseur, I., Yu, G. Q., Xu, Q., Dee Fish, J., Wyss-Coray, T., Buttini, M., Mucke, L., Mahley, R. W., and Huang, Y. (2004). Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J. Neurosci. 24:2527-2534.PubMedGoogle Scholar
  22. Carmignoto, G., and Vicini, S. (1992). Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258:1007-1011.PubMedGoogle Scholar
  23. Chan, C. S., Weeber, E. J., Kurup, S., Sweatt, J. D., and Davis, R. L. (2003). Integrin requirement for hippocampal synaptic plasticity and spatial memory. J. Neurosci. 23:7107-7116.PubMedGoogle Scholar
  24. Chan, C. S., Weeber, E. J., Zong, L., Fuchs, E., Sweatt, J. D., and Davis, R. L. (2006). Beta 1-integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity, and working memory. J. Neurosci. 26:223-232.PubMedGoogle Scholar
  25. Chang, S., ran Ma, T., Miranda, R. D., Balestra, M. E., Mahley, R. W., and Huang, Y. (2005). Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc. Natl. Acad. Sci. USA 102: 18694-18699.PubMedGoogle Scholar
  26. Chavis, P., and Westbrook, G. (2001). Integrins mediate functional pre- and postsynaptic matura-tion at a hippocampal synapse. Nature 411:317-321.PubMedGoogle Scholar
  27. Chen, Y., Beffert, U., Ertunc, M., Tang, T. S., Kavalali, E. T., Bezprozvanny, I., and Herz, J. (2005). Reelin modulates NMDA receptor activity in cortical neurons. J. Neurosci. 25:8209-8216.PubMedGoogle Scholar
  28. Chung, H. J., Huang, Y. H., Lau, L. F., and Huganir, R. L. (2004). Regulation of the NMDA recep-tor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J. Neurosci. 24:10248-10259.PubMedGoogle Scholar
  29. D’Arcangelo, G. (2005). Apoer2: a reelin receptor to remember. Neuron 47:471-473.PubMedGoogle Scholar
  30. D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719-723.PubMedGoogle Scholar
  31. D’Arcangelo, G., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., and Curran, T. (1997). Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17:23-31.PubMedGoogle Scholar
  32. Del Rio, J. A., Heimrich, B., Borrell, V., Forster, E., Drakew, A., Alcantara, S., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., Derer, P., Frotscher, M., and Soriano, E. (1997). A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385:70-74.PubMedGoogle Scholar
  33. Dingledine, R., Borges, K., Bowie, D., and Traynelis, S. F. (1999). The glutamate receptor ion channels. Pharmacol. Rev. 51:7-61.PubMedGoogle Scholar
  34. Drakew, A., Deller, T., Heimrich, B., Gebhardt, C., Del Turco, D., Tielsch, A., Forster, E., Herz, J., and Frotscher, M. (2002). Dentate granule cells in reeler mutants and VLDLR and ApoER2 knockout mice. Exp. Neurol. 176:12-24.PubMedGoogle Scholar
  35. Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27:33-44.PubMedGoogle Scholar
  36. Eastwood, S. L., and Harrison, P. J. (2006). Cellular basis of reduced cortical reelin expression in schizophrenia. Am. J. Psychiatry 163:540-542.PubMedGoogle Scholar
  37. Escobar, M., Oberling, P., and Miller, R. R. (2002). Associative deficit accounts of disrupted latent inhibition and blocking in schizophrenia. Neurosci. Biobehav. Rev. 26:203-216.PubMedGoogle Scholar
  38. Fatemi, S. H., Earle, J. A., and McMenomy, T. (2000). Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry 5:654-663.PubMedGoogle Scholar
  39. Fatemi, S. H., Kroll, J. L., and Stary, J. M. (2001). Altered levels of reelin and its isoforms in schizophrenia and mood disorders. Neuroreport 12:3209-3215.PubMedGoogle Scholar
  40. Fatemi, S. H., Stary, J. M., Earle, J. A., Araghi-Niknam, M., and Eagan, E. (2005a). GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and reelin proteins in cerebellum. Schizophr. Res. 72:109-122.PubMedGoogle Scholar
  41. Fatemi, S. H., Snow, A. V., Stary, J. M., Araghi-Niknam, M., Reutiman, T. J., Lee, S., Brooks, A.I., and Pearce, D. A. (2005b). Reelin signaling is impaired in autism. Biol. Psychiatry 57:777-787.PubMedGoogle Scholar
  42. Forster, E., Tielsch, A., Saum, B., Weiss, K. H., Johanssen, C., Graus-Porta, D., Muller, U., and Frotscher, M. (2002). Reelin, disabled 1, and beta 1 integrins are required for the for-mation of the radial glial scaffold in the hippocampus. Proc. Natl. Acad. Sci. US.A 99:13178-13183.Google Scholar
  43. Frotscher, M., Haas, C. A., and Forster, E. (2003). Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. Cereb. Cortex 13:634-640.PubMedGoogle Scholar
  44. Gahwiler, B. H., Capogna, M., Debanne, D., McKinney, R. A., and Thompson, S. M. (1997). Organotypic slice cultures: a technique has come of age. Trends Neurosci. 20:471-477.PubMedGoogle Scholar
  45. Giese, K. P., Fedorov, N. B., Filipkowski, R. K., and Silva, A. J. (1998). Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279:870-873.PubMedGoogle Scholar
  46. Goritz, C., Mauch, D. H., and Pfrieger, F. W. (2005). Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol. Cell. Neurosci. 29:190-201.PubMedGoogle Scholar
  47. Graus-Porta, D., Blaess, S., Senften, M., Littlewood-Evans, A., Damsky, C., Huang, Z., Orban, P., Klein, R., Schittny, J. C., and Muller, U. (2001). Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31:367-379.PubMedGoogle Scholar
  48. Grootendorst, J., Bour, A., Vogel, E., Kelche, C., Sullivan, P. M., Dodart, J. C., Bales, K., and Mathis, C. (2005). Human apoE targeted replacement mouse lines: h-apoE4 and h-apoE3 mice differ on spatial memory performance and avoidance behavior. Behav. Brain Res. 159:1-14.PubMedGoogle Scholar
  49. Hayashi, T., and Huganir, R. L. (2004). Tyrosine phosphorylation and regulation of the AMPA receptor by SRC family tyrosine kinases. J. Neurosci. 24:6152-6160.PubMedGoogle Scholar
  50. Hayashi, Y., Shi, S. H., Esteban, J. A., Piccini, A., Poncer, J. C., and Malinow, R. (2000). Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287:2262-2267.PubMedGoogle Scholar
  51. Herz, J., and Bock, H. H. (2002). Lipoprotein receptors in the nervous system. Annu. Rev. Biochem. 71:405-434.PubMedGoogle Scholar
  52. Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481-489.PubMedGoogle Scholar
  53. Hoe, H. S., Pocivavsek, A., Chakraborty, G., Fu, Z., Vicini, S., Ehlers, M. D., and Rebeck, G. W. (2006). Apolipoprotein E receptor 2 interactions with the N-methyl-D-aspartate receptor. J. Biol. Chem. 281:3425-3431.PubMedGoogle Scholar
  54. Hong, S. E., Shugart, Y. Y., Huang, D. T., Shahwan, S. A., Grant, P. E., Hourihane, J. O., Martin, N. D., and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26:93-96.PubMedGoogle Scholar
  55. Howell, B. W., Hawkes, R., Soriano, P., and Cooper, J. A. (1997). Neuronal position in the devel-oping brain is regulated by mouse disabled-1. Nature 389:733-737.PubMedGoogle Scholar
  56. Irwin, S. A., Galvez, R., and Greenough, W. T. (2000). Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb. Cortex 10:1038-1044.PubMedGoogle Scholar
  57. Kaufmann, W. E., and Moser, H. W. (2000). Dendritic anomalies in disorders associated with mental retardation. Cereb. Cortex 10:981-991.PubMedGoogle Scholar
  58. Ko, J., Humbert, S., Bronson, R. T., Takahashi, S., Kulkarni, A. B., Li, E., and Tsai, L. H. (2001). p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J. Neurosci. 21: 6758-6771PubMedGoogle Scholar
  59. Lau, L. F., and Huganir, R. L. (1995). Differential tyrosine phosphorylation of N-methyl-D-aspar-tate receptor subunits. J. Biol. Chem. 270:20036-20041.PubMedGoogle Scholar
  60. Lee, E. H., Hsieh, Y. P., Yang, C. L., Tsai, K. J., and Liu, C. H. (2000). Induction of integrin-asso-ciated protein (IAP) mRNA expression during memory consolidation in rat hippocampus. Eur. J. Neurosci. 12:1105-1112.PubMedGoogle Scholar
  61. Lee, H. K., Takamiya, K., Han, J. S., Man, H., Kim, C. H., Rumbaugh, G., Yu, S., Ding, L., He, C., Petralia, R. S., Wenthold, R. J., Gallagher, M., and Huganir, R. L. (2003). Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112:631-643.PubMedGoogle Scholar
  62. Lewis, D. A., Hashimoto, T., and Volk, D. W. (2005). Cortical inhibitory neurons and schizophre-nia. Nature Rev. Neurosci. 6:312-324.Google Scholar
  63. Liu, L., Wong, T. P., Pozza, M. F., Lingenhoehl, K., Wang, Y., Sheng, M., Auberson, Y. P., and Wang, Y. T. (2004). Role of NMDA receptor subtypes in governing the direction of hippocam-pal synaptic plasticity. Science 304:1021-1024.PubMedGoogle Scholar
  64. Liu, W. S., Pesold, C., Rodriguez, M. A., Carboni, G., Auta, J., Lacor, P., Larson, J., Condie, B. G., Guidotti, A., and Costa, E. (2001). Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc. Natl. Acad. Sci. USA 98:3477-3482.PubMedGoogle Scholar
  65. Lu, W., and Constantine-Paton, M. (2004). Eye opening rapidly induces synaptic potentiation and refinement. Neuron 43:237-249.PubMedGoogle Scholar
  66. Lu, Y. M., Roder, J. C., Davidow, J., and Salter, M. W. (1998). Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279:1363-1367.PubMedGoogle Scholar
  67. Mahley, R. W., Weisgraber, K. H., and Huang, Y. (2006). Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 103:5644-5651.PubMedGoogle Scholar
  68. Marin-Padilla, M. (1998). Cajal-Retzius cells and the development of the neocortex. Trends Neurosci. 21:64-71.PubMedGoogle Scholar
  69. Martinez-Cerdeno, V., Galazo, M. J., Cavada, C., and Clasca, F. (2002). Reelin immunoreactiv-ity in the adult primate brain: intracellular localization in projecting and local circuit neu-rons of the cerebral cortex, hippocampus and subcortical regions. Cereb. Cortex 12:1298-1311.PubMedGoogle Scholar
  70. Massey, P. V., Johnson, B. E., Moult, P. R., Auberson, Y. P., Brown, M. W., Molnar, E., Collingridge, G. L., and Bashir, Z. I. (2004). Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J. Neurosci. 24:7821-7828.PubMedGoogle Scholar
  71. Mauch, D. H., Nagler, K., Schumacher, S., Goritz, C., Muller, E. C., Otto, A., and Pfrieger, F.W. (2001). CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354-1357.PubMedGoogle Scholar
  72. Meyer, G., Soria, J. M., Martinez-Galan, J. R., Martin-Clemente, B., and Fairen, A. (1998). Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J. Comp. Neurol. 397:493-518.PubMedGoogle Scholar
  73. Milner, R., and Campbell, I. L. (2002). The integrin family of cell adhesion molecules has multi-ple functions within the CNS. J. Neurosci. Res. 69:286-291.PubMedGoogle Scholar
  74. Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., and Seeburg, P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529-540.PubMedGoogle Scholar
  75. Nakayama, K., Kiyosue, K., and Taguchi, T. (2005). Diminished neuronal activity increases neu-ron-neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses. J. Neurosci. 25:4040-4051.PubMedGoogle Scholar
  76. Nicoll, R. A., and Malenka, R. C. (1995). Contrasting properties of two forms of long-term poten-tiation in the hippocampus. Nature 377:115-118.PubMedGoogle Scholar
  77. Niu, S., Renfro, A., Quattrocchi, C. C., Sheldon, M., and D’Arcangelo, G. (2004). Reelin pro-motes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 41:71-84.PubMedGoogle Scholar
  78. Ohkubo, N., Lee, Y. D., Morishima, A., Terashima, T., Kikkawa, S., Tohyama, M., Sakanaka, M., Tanaka, J., Maeda, N., Vitek, M. P., and Mitsuda, N. (2003). Apolipoprotein E and reelin lig-ands modulate tau phosphorylation through an apolipoprotein E receptor/disabled-1/glycogen synthase kinase-3beta cascade. FASEB J. 17:295-297.PubMedGoogle Scholar
  79. Ohshima, T., Ward, J. M., Huh, C. G., Longenecker, G., Veeranna, Pant, H. C., Brady, R. O., Martin, L. J., and Kulkarni, A. B. (1996). Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. USA 93:11173-11178.PubMedGoogle Scholar
  80. Oitzl, M. S., Mulder, M., Lucassen, P. J., Havekes, L. M., Grootendorst, J., and de Kloet, E. R. (1997). Severe learning deficits in apolipoprotein E-knockout mice in a water maze task. Brain Res. 752:189-196.PubMedGoogle Scholar
  81. Pappas, G. D., Kriho, V., and Pesold, C. (2001). Reelin in the extracellular matrix and dendritic spines of the cortex and hippocampus: a comparison between wild type and heterozygous reeler mice by immunoelectron microscopy. J. Neurocytol. 30:413-425.PubMedGoogle Scholar
  82. Pesold, C., Impagnatiello, F., Pisu, M. G., Uzunov, D. P., Costa, E., Guidotti, A., and Caruncho, H. J. (1998). Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc. Natl. Acad. Sci. US.A 95:3221-3226.Google Scholar
  83. Qiu, S., Korwek, K. M., Pratt-Davis, A. R., Peters, M., Bergman, M. Y., and Weeber, E. J. (2006). Cognitive disruption and altered hippocampus synaptic function in reelin haploinsufficient mice. Neurobiol. Learn. Mem. 85:228-242.PubMedGoogle Scholar
  84. Quinlan, E. M., Philpot, B. D., Huganir, R. L., and Bear, M. F. (1999). Rapid, experience- dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nature Neurosci. 2:352-357.PubMedGoogle Scholar
  85. Quinlan, E. M., Lebel, D., Brosh, I., and Barkai, E. (2004). A molecular mechanism for stabilization of learning-induced synaptic modifications. Neuron 41:185-192.PubMedGoogle Scholar
  86. Ramos-Moreno, T., Galazo, M. J., Porrero, C., Martinez-Cerdeno, V., and Clasca, F. (2006). Extracellular matrix molecules and synaptic plasticity: immunomapping of intracellular and secreted reelin in the adult rat brain. Eur. J. Neurosci. 23:401-422.PubMedGoogle Scholar
  87. Roberts, R. C., Xu, L., Roche, J. K., and Kirkpatrick, B. (2005). Ultrastructural localization of reelin in the cortex in post-mortem human brain. J. Comp. Neurol. 482:294-308.PubMedGoogle Scholar
  88. Salinger, W. L., Ladrow, P., and Wheeler, C. (2003). Behavioral phenotype of the reeler mutant mouse: effects of RELN gene dosage and social isolation. Behav. Neurosci. 117:1257-1275.PubMedGoogle Scholar
  89. Salter, M. W., and Kalia, L. V. (2004). Src kinases: a hub for NMDA receptor regulation. Nature Rev. Neurosci. 5:317-328.Google Scholar
  90. Sarnat, H. B., and Flores-Sarnat, L. (2002). Cajal-Retzius and subplate neurons: their role in corti-cal development. Eur. J. Paediatr. Neurol. 6:91-97.PubMedGoogle Scholar
  91. Scoville, W. B., and Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. J. Neurochem. 20:11-21.Google Scholar
  92. Senokuchi, T., Matsumura, T., Sakai, M., Matsuo, T., Yano, M., Kiritoshi, S., Sonoda, K., Kukidome, D., Nishikawa, T., and Araki, E. (2004). Extracellular signal-regulated kinase and p38 mitogen-activated protein kinase mediate macrophage proliferation induced by oxidized low-density lipoprotein. Atherosclerosis 176:233-245.PubMedGoogle Scholar
  93. Sheng, M., Cummings, J., Roldan, L. A., Jan, Y. N., and Jan, L. Y. (1994). Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368:144-147.PubMedGoogle Scholar
  94. Shi, S. H., Hayashi, Y., Petralia, R. S., Zaman, S. H., Wenthold, R. J., Svoboda, K., and Malinow, R. (1999). Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284:1811-1816.PubMedGoogle Scholar
  95. Shi, Y., and Ethell, I. M. (2006). Integrins control dendritic spine plasticity in hippocampal neu-rons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J. Neurosci. 26:1813-1822.PubMedGoogle Scholar
  96. Sinagra, M., Verrier, D., Frankova, D., Korwek, K. M., Blahos, J., Weeber, E. J., Manzoni, O. J., and Chavis, P. (2005). Reelin, very-low-density lipoprotein receptor, and apolipoprotein E receptor 2 control somatic NMDA receptor composition during hippocampal maturation in vitro. J. Neurosci. 25:6127-6136.PubMedGoogle Scholar
  97. Soda, T., Nakashima, R., Watanabe, D., Nakajima, K., Pastan, I., and Nakanishi, S. (2003). Segregation and coactivation of developing neocortical layer 1 neurons. J. Neurosci. 3:6272-6279.Google Scholar
  98. Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., and Roses, A. D. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90:1977-1981.PubMedGoogle Scholar
  99. Tozer, E. C., Hughes, P. E., and Loftus, J. C. (1996). Ligand binding and affinity modulation of integrins. Biochem. Cell. Biol. 74:785-798.PubMedGoogle Scholar
  100. Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.PubMedGoogle Scholar
  101. Tueting, P., Costa, E., Dwivedi, Y., Guidotti, A., Impagnatiello, F., Manev, R., and Pesold, C. (1999). The phenotypic characteristics of heterozygous reeler mouse. Neuroreport 10:1329-1334.PubMedGoogle Scholar
  102. Wang, Y. T., and Salter, M. W. (1994). Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369:233-235.PubMedGoogle Scholar
  103. Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., and Herz, J. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277:39944-39952.PubMedGoogle Scholar
  104. Weeber, E. J., Jiang, Y. H., Elgersma, Y., Varga, A. W., Carrasquillo, Y., Brown, S. E., Christian, J. M., Mirnikjoo, B., Silva, A., Beaudet, A. L., and Sweatt, J. D. (2003). Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J. Neurosci. 23:2634-2644.PubMedGoogle Scholar
  105. West, H. L., Rebeck, G. W., and Hyman, B. T. (1994). Frequency of the apolipoprotein E epsilon 2 allele is diminished in sporadic Alzheimer disease. Neurosci. Lett. 175:46-48.PubMedGoogle Scholar
  106. Won, S. J., Kim, S. H., Xie, L., Wang, Y., Mao, X. O., Jin, K., and Greenberg, D. A. (2006). Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp. Neurol. 198:250-259.PubMedGoogle Scholar
  107. Ye, S., Huang, Y., Mullendorff, K., Dong, L., Giedt, G., Meng, E. C., Cohen, F. E., Kuntz, I. D., Weisgraber, K. H., and Mahley, R. W. (2005). Apolipoprotein (apo) E4 enhances amyloid beta peptide production in cultured neuronal cells: apoE structure as a potential therapeutic target. Proc. Natl. Acad. Sci. USA 102:18700-18705.PubMedGoogle Scholar
  108. Yu, X.M., Askalan, R., Keil, G. J., 2nd, and Salter, M. W. (1997). NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275:674-678.PubMedGoogle Scholar
  109. Zhao, S., Chai, X., Forster, E., and Frotscher, M. (2004). Reelin is a positional signal for the lami-nation of dentate granule cells. Development 131:5117-5125.PubMedGoogle Scholar
  110. Zhuo, M., Holtzman, D. M., Li, Y., Osaka, H., DeMaro, J., Jacquin, M., and Bu, G. (2000). Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J. Neurosci. 20:542-549.PubMedGoogle Scholar
  111. Zimmer, J., and Gahwiler, B. H. (1984). Cellular and connective organization of slice cultures of the rat hippocampus and fascia dentata. J. Comp. Neurol. 228:432-446.PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Shenfeng Qiu
    • 1
  • Edwin John Weeber
    • 2
  1. 1.Department of Molecular Physiology and BiophysicsVanderbilt University Medical CenterNashville
  2. 2.Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampa

Personalised recommendations