Reelin and Radial Glial Cells

  • Eckart Förster
  • Shanting Zhao
  • Michael Frotscher

Defects of the radial glial scaffold in reeler mice were detected and characterized after the radial neuronal migration defects in this mutant had been described (Caviness and Rakic, 1978; Caviness et al., 1988; Pinto-Lord et al., 1982). Based on these findings, it has been hypothesized that radial glial defects contribute to the malpositioning of radially migrating neurons. Experimental evidence that Reelin may directly influence the development of radial glial cells is quite recent (Förster et al., 2002; Weiss et al., 2003; Hartfuss et al., 2003; Luque et al., 2003). The question as to why Reelin should simultaneously act on two different cell types, neurons and radial glial cells, turned out to be a semantic problem when radial glial cells were shown to be precursors of radially migrating neurons (Malatesta et al., 2000; Noctor et al., 2001; Miyata et al., 2001). Thus, when discussing a role of Reelin in the formation of the radial glial scaffold, the changing view of radial glial cell function in cortical development has to be taken into account.


Dentate Gyrus Marginal Zone Ventricular Zone Domoic Acid Radial Glia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez-Buylla, A., Garcia-Verdugo, J. M., and Tramóntin, A. D. (2001). A unified hypothesis on the lineage of neural stem cells. Nature Rev. Neurosci. 2:287-293.Google Scholar
  2. Angevine, J. B. (1965). Time of origin in the hippocampal region. An autoradiographic study in the mouse. Exp. Neurol. Suppl. 2:1-70.Google Scholar
  3. Bayer, S. A. (1980). Development of the hippocampal region in the rat. I. Neurogenesis examined with (3H) thymidine autoradiography. J. Comp. Neurol. 190:87-114.Google Scholar
  4. Berry, M., and Rogers, A. W. (1965). The migration of neuroblasts in the developing cerebral cor-tex. J. Anat. 99:691-709.PubMedGoogle Scholar
  5. Caviness, V. S., and Sidman, R. L. (1973). Time of origin of corresponding cell classes in the cer-ebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J. Comp. Neurol. 148:141-151.CrossRefPubMedGoogle Scholar
  6. Caviness, V. S., Jr., and Rakic, P. (1978). Mechanisms of cortical development: a view from muta-tions in mice. Annu. Rev. Neurosci. 1:297-326.CrossRefPubMedGoogle Scholar
  7. Caviness, V.S., Crandall, J. E., and Edwards, M. A. (1988). The reeler malformation. Implications for neocortical histogenesis. Cereb. Cortex 7:59-89.Google Scholar
  8. Cowan, W. M., Stanfield, B., and Kishi, K. (1980). The development of the dentate gyrus. Curr. Top. Dev. Biol. 15 Part 1:103-157.CrossRefGoogle Scholar
  9. Cowan, W. M., Stanfield, B. B., and Amaral, D. G. (1981). Further observations on the develop-ment of the dentate gyrus. In Cowan, W.M. (ed.), Studies in Developmental Neurobiology. Oxford University Press, New York, pp. 395-435.Google Scholar
  10. Deller, T., Drakew, A., Heimrich, B., Förster, E., Tielsch, A., and Frotscher, M. (1999). The hip-pocampus of the reeler mutant mouse: fiber segregation in area CA1 depends on the position of the postsynaptic target cells. Exp. Neurol. 156:254-267.CrossRefPubMedGoogle Scholar
  11. Del Rio, J. A., Heimrich, B., Supér, H., Borrell, V., Frotscher, M., and Soriano, E. (1996). Differential survival of Cajal-Retzius cells in organotypic cultures of hippocampus and neocor-tex. J. Neurosci. 16:6896-6907.PubMedGoogle Scholar
  12. Del Rio, J. A., Heimrich, B., Borrell, V., Förster, E., Drakew, A., Alcántara, S., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., Derer, P., Frotscher, M., and Soriano, E. (1997). A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385:70-74.CrossRefPubMedGoogle Scholar
  13. Drakew, A., Deller, T., Heimrich, B., Gebhardt, C., Del Turco, D., Tielsch, A., Förster, E., Herz, J., and Frotscher, M. (2002). Dentate granule cells in reeler mutants and VLDLR and ApoER2 knockout mice. Exp. Neurol. 176:12-24.CrossRefPubMedGoogle Scholar
  14. Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds α3β1 integrin and inhibits neuronal migration. Neuron 27:33-44.CrossRefPubMedGoogle Scholar
  15. Eckenhoff, M. F., and Rakic, P. (1984). Radial organization of the hippocampal dentate gyrus: A Golgi, ultrastructural, and immunocytochemical analysis in the developing rhesus monkey. J. Comp. Neurol. 223:1-21.CrossRefPubMedGoogle Scholar
  16. Förster, E., Tielsch, A., Saum, B., Weiss, K. H., Johanssen, C., Graus-Porta, D., Müller, U., and Frotscher, M. (2002). Reelin, disabled 1, and β1-integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc. Natl. Acad. Sci. USA 99:13178-13183.CrossRefPubMedGoogle Scholar
  17. Förster, E., Zhao, S., and Frotscher, M. (2006). Laminating the hippocampus. Nature Rev. Neurosci. 7:259-267.Google Scholar
  18. Frotscher, M., Haas, C., and Förster, E. (2003). Reelin controls granule cell migration in the den-tate gyrus by acting on the radial glial scaffold. Cereb. Cortex 13:634-640.CrossRefPubMedGoogle Scholar
  19. Gebhardt, C., del Turco, D., Drakew, A., Tielsch, A., Herz, J., Frotscher, M., and Deller, T. (2002). Abnormal positioning of granule cells alters afferent fiber distribution in the mouse fascia dentata: morphologic evidence from reeler, apolipoprotein E receptor 2-, and very low density lipoprotein receptor knockout mice. J. Comp. Neurol. 445:278-292.CrossRefPubMedGoogle Scholar
  20. Hartfuss, E., Förster, E., Bock, H. H., Hack, M. A., Leprince, P., Luque, J. M., Herz, J., Frotscher, M., and Götz, M. (2003). Reelin signaling directly affects radial glial morphology and biochemical maturation. Development 130:4597-4609.CrossRefPubMedGoogle Scholar
  21. Hartmann, D., Sievers, J., Pehlemann, F. W., and Berry, M. (1992). Destruction of meningeal cells over the medial cerebral hemisphere of newborn hamsters prevents the formation of the infrapyramidal blade of the dentate gyrus. J. Comp. Neurol. 320:33-61.CrossRefPubMedGoogle Scholar
  22. Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyro-sine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481-489.CrossRefPubMedGoogle Scholar
  23. His, W. (1889). Die Neuroblasten und deren Entstehung im embryonalen Marke. Abh. Math. Phys. Cl. Kgl. Sächs. Ges. Wiss. 15:313-372.Google Scholar
  24. Howell, B. W., Hawkes, R., Soriano, P., and Cooper, J. A. (1997). Neuronal positioning in the developing brain is regulated by mouse disabled-1. Nature 389:733-737.CrossRefPubMedGoogle Scholar
  25. Hunter-Schaedle, K. E. (1997). Radial glial cell development and transformation are disturbed in the reeler forebrain. J. Neurobiol. 33:459-472.CrossRefPubMedGoogle Scholar
  26. Jacobson, M. (1991). Developmental Neurobiology, 2nd ed. Plenum Press, New York.Google Scholar
  27. Kölliker, A. (1896). Handbuch der Gewebelehre des Menschen, 6th ed. W. Engelmann, Leipzig.Google Scholar
  28. Levitt, P., and Rakic, P. (1980). Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey. J. Comp. Neurol. 193:815-840.CrossRefPubMedGoogle Scholar
  29. Luque, J. M., Morante-Oria, J., and Fairen, A. (2003). Localization of ApoER2, VLDLR and Dab1 in radial glia: groundwork for a new model of reelin action during cortical development. Dev. Brain Res. 140:195-203.CrossRefGoogle Scholar
  30. Magdaleno, S., Keshvara, L., and Curran, T. (2002). Rescue of ataxia and preplate splitting by ectopic expression of reelin in reeler mice. Neuron 33:573-586.CrossRefPubMedGoogle Scholar
  31. Magini, J. (1888a). Sur la névroglie et les cellules nerveuses cerebrales chez les fœtus. Arch. Ital. Biol. 9:59-60.Google Scholar
  32. Magini, J. (1888b). Nouvelles recherches histologiques sur le cerveau du foetus. Arch. Ital. Biol. 10:384-387.Google Scholar
  33. Malatesta, P., Hartfuss, E., and Götz, M. (2000). Isolation of radial glial cells by fluorescent-acti-vated cell sorting reveals a neuronal lineage. Development 127:5253-5263.PubMedGoogle Scholar
  34. Mission, J. P., Takahashi, T., and Caviness, V. S. (1991). Ontogeny of radial and other astroglial cells in the murine cerebral cortex. Glia 4:138-148.CrossRefPubMedGoogle Scholar
  35. Miyata, T., Kawaguchi, A., Okano, H., and Ogawa, M. (2001). Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727-741.CrossRefPubMedGoogle Scholar
  36. Morest, D. K. (1970). A study of neurogenesis in the forebrain of opossum pouch young. Z. Anat. Entwicklungsgesch. 130:265-305.CrossRefPubMedGoogle Scholar
  37. Nadarajah, B., and Parnavelas, J. G. (2002). Modes of neuronal migration in the developing cere-bral cortex. Nature Rev. Neurosci. 3:423-432.Google Scholar
  38. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., and Kriegstein, A. R. (2001). Neurons derived from radial units in neocortex. Nature 409:714-720.CrossRefPubMedGoogle Scholar
  39. Noctor, S. C., Flint, A. C., Weissman, T. A., Wong, W. S., Clinton, B. K., and Kriegstein, A. R. (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphologi-cal and molecular characteristics of radial glia. J. Neurosci. 22:3161-3173.PubMedGoogle Scholar
  40. Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., Yamamoto, H., and Mikoshiba, K. (1995). The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14:899-912.CrossRefPubMedGoogle Scholar
  41. Pinto-Lord, M. C., Evrard, P., and Caviness, V. S. (1982). Obstructed neuronal migration along radial glia fibers in the neocortex of the reeler mouse: a Golgi-EM analysis. Dev. Brain Res. 4:379-393.CrossRefGoogle Scholar
  42. Rakic, P. (1971). Neuron-glia relationship during granule cell migration in the developing cere-bellar cortex. A Golgi and electron microscopic study in Macacus rhesus. J. Comp. Neurol. 141:283-312.CrossRefPubMedGoogle Scholar
  43. Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145:61-84.CrossRefPubMedGoogle Scholar
  44. Rakic, P. (1988). Specification of cerebral cortical areas. Science 241:170-176.CrossRefPubMedGoogle Scholar
  45. Ramón y Cajal, S. (1911). Histologie du Système Nerveux de l’Homme et des Vertébrés, Vol. 2. Maloine, Paris.Google Scholar
  46. Retzius, G. (1893). Die Cajalschen Zellen der Grosshirnrinde beim Menschen und bei Säugetieren. Biol. Unters. 5:1-9.Google Scholar
  47. Rickmann, M., Amaral, D. G., and Cowan, M. (1987). Organization of radial glia cells during the development of the rat dentate gyrus. J. Comp. Neurol. 264:449-479.CrossRefPubMedGoogle Scholar
  48. Schlessinger, A. R., Cowan, W. M., and Gottlieb, D. I. (1975). An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J. Comp. Neurol. 159:149-176.CrossRefPubMedGoogle Scholar
  49. Schmechel, S. E., and Rakic, P. (1979). A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat. Embryol. 156:115-152.CrossRefPubMedGoogle Scholar
  50. Sheldon, M., Rice, D. S., d’Arcangelo, G., Yoneshima, H., Nakajima, M., Mikoshiba, K., Howell, B. W., Cooper, J. A., Goldowitz, D., and Curran, T. (1997). Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730-733.CrossRefPubMedGoogle Scholar
  51. Sidman, R. L., and Rakic, P. (1973). Neuronal migration with special reference to developing human brain. Brain Res. 62:1-35.CrossRefPubMedGoogle Scholar
  52. Stanfield, B. B., and Cowan, W. M. (1979a). The development of the hippocampus and dentate gyrus in normal and reeler mice. J. Comp. Neurol. 185:423-460.CrossRefPubMedGoogle Scholar
  53. Stanfield, B. B., and Cowan, W. M. (1979b). The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J. Comp. Neurol. 185:393-422.CrossRefPubMedGoogle Scholar
  54. Supér, H., Martinez, A., and Soriano, E. (1997). Degeneration of Cajal-Retzius cells in the devel-oping cortex of the mouse after ablation of meningeal cells by 6-hydroxydopamine. Dev. Brain Res. 98:15-20.CrossRefGoogle Scholar
  55. Supér, H., Del Rio, J. A., Martinez, A., Perez-Sust, P., and Soriano, E. (2000). Disruption of neu-ronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb. Cortex 10:602-613.CrossRefPubMedGoogle Scholar
  56. Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A., and Davisson, M. T. (1996). Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm. Genome 7:798-802.CrossRefPubMedGoogle Scholar
  57. Utsunomiya-Tate, N., Kubo, K., Tate, S., Kainosho, M., Katayama, E., Nakajima, K., and Mikoshiba, K. (2000). Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proc. Natl. Acad. Sci. USA 97:9729-9734.CrossRefPubMedGoogle Scholar
  58. Ware, M. L., Fox, J. W., Gonzalez, J. L., Davis, N. M., Lambert de Rouvroit, C., Russo, C. J., Chua, S. C., Jr., Goffinet, A. M., and Walsh, C. A. (1997). Aberrant splicing of a mouse disa-bled homolog, mdab1, in the scrambler mouse. Neuron 19:239-249.CrossRefPubMedGoogle Scholar
  59. Weiss, K.-H., Johanssen, C., Tielsch, A., Saum, B., Frotscher, M., and Förster, E. (2003). Malformation of the radial glial scaffold in the dentate gyrus of reeler mice, scrambler mice and ApoER2/VLDLR deficient mice. J. Comp. Neurol. 460:56-65.CrossRefPubMedGoogle Scholar
  60. Woodhams, E. B., Basco, E., Hajos, F., Csillag, A., and Balazs, R. (1981). Radial glia in the developing mouse cerebral cortex and hippocampus. Anat. Embryol. 163:331-343.CrossRefPubMedGoogle Scholar
  61. Yuasa, S., Kitoh, J., Oda, S., and Kawamura, K. (1993). Obstructed migration of Purkinje cells in the developing cerebellum of the reeler mutant mouse. Anat. Embryol. 188:317-329.CrossRefPubMedGoogle Scholar
  62. Zhao, S., Chai, X., Förster, E., and Frotscher, M. (2004). Reelin is a positional signal for dentate granule cells. Development 131:5117-5125.CrossRefPubMedGoogle Scholar
  63. Zhao, S., Chai, X., Bock, H., Brunne, B., Förster, E., and Frotscher, M. (2006). Rescue of the reeler phenotype in the dentate gyrus by wildtype coculture is mediated by lipoprotein receptors for reelin and disabled1. J. Comp. Neurol. 495:1-9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Eckart Förster
    • 1
  • Shanting Zhao
    • 2
  • Michael Frotscher
    • 2
  1. 1.Institut für Anatomie I, Zelluläre NeurobiologieUniversität HamburgHamburgGermany
  2. 2.Institut für Anatomie und Zellbiologie, Abteilung für NeuroanatomieUniversität FreiburgFreiburgGermany

Personalised recommendations