Skip to main content

Reelin and Radial Glial Cells

  • Chapter
Reelin Glycoprotein

Defects of the radial glial scaffold in reeler mice were detected and characterized after the radial neuronal migration defects in this mutant had been described (Caviness and Rakic, 1978; Caviness et al., 1988; Pinto-Lord et al., 1982). Based on these findings, it has been hypothesized that radial glial defects contribute to the malpositioning of radially migrating neurons. Experimental evidence that Reelin may directly influence the development of radial glial cells is quite recent (Förster et al., 2002; Weiss et al., 2003; Hartfuss et al., 2003; Luque et al., 2003). The question as to why Reelin should simultaneously act on two different cell types, neurons and radial glial cells, turned out to be a semantic problem when radial glial cells were shown to be precursors of radially migrating neurons (Malatesta et al., 2000; Noctor et al., 2001; Miyata et al., 2001). Thus, when discussing a role of Reelin in the formation of the radial glial scaffold, the changing view of radial glial cell function in cortical development has to be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez-Buylla, A., Garcia-Verdugo, J. M., and Tramóntin, A. D. (2001). A unified hypothesis on the lineage of neural stem cells. Nature Rev. Neurosci. 2:287-293.

    Google Scholar 

  • Angevine, J. B. (1965). Time of origin in the hippocampal region. An autoradiographic study in the mouse. Exp. Neurol. Suppl. 2:1-70.

    Google Scholar 

  • Bayer, S. A. (1980). Development of the hippocampal region in the rat. I. Neurogenesis examined with (3H) thymidine autoradiography. J. Comp. Neurol. 190:87-114.

    Google Scholar 

  • Berry, M., and Rogers, A. W. (1965). The migration of neuroblasts in the developing cerebral cor-tex. J. Anat. 99:691-709.

    PubMed  Google Scholar 

  • Caviness, V. S., and Sidman, R. L. (1973). Time of origin of corresponding cell classes in the cer-ebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J. Comp. Neurol. 148:141-151.

    Article  PubMed  Google Scholar 

  • Caviness, V. S., Jr., and Rakic, P. (1978). Mechanisms of cortical development: a view from muta-tions in mice. Annu. Rev. Neurosci. 1:297-326.

    Article  PubMed  Google Scholar 

  • Caviness, V.S., Crandall, J. E., and Edwards, M. A. (1988). The reeler malformation. Implications for neocortical histogenesis. Cereb. Cortex 7:59-89.

    Google Scholar 

  • Cowan, W. M., Stanfield, B., and Kishi, K. (1980). The development of the dentate gyrus. Curr. Top. Dev. Biol. 15 Part 1:103-157.

    Article  Google Scholar 

  • Cowan, W. M., Stanfield, B. B., and Amaral, D. G. (1981). Further observations on the develop-ment of the dentate gyrus. In Cowan, W.M. (ed.), Studies in Developmental Neurobiology. Oxford University Press, New York, pp. 395-435.

    Google Scholar 

  • Deller, T., Drakew, A., Heimrich, B., Förster, E., Tielsch, A., and Frotscher, M. (1999). The hip-pocampus of the reeler mutant mouse: fiber segregation in area CA1 depends on the position of the postsynaptic target cells. Exp. Neurol. 156:254-267.

    Article  PubMed  Google Scholar 

  • Del Rio, J. A., Heimrich, B., Supér, H., Borrell, V., Frotscher, M., and Soriano, E. (1996). Differential survival of Cajal-Retzius cells in organotypic cultures of hippocampus and neocor-tex. J. Neurosci. 16:6896-6907.

    PubMed  Google Scholar 

  • Del Rio, J. A., Heimrich, B., Borrell, V., Förster, E., Drakew, A., Alcántara, S., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., Derer, P., Frotscher, M., and Soriano, E. (1997). A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385:70-74.

    Article  PubMed  Google Scholar 

  • Drakew, A., Deller, T., Heimrich, B., Gebhardt, C., Del Turco, D., Tielsch, A., Förster, E., Herz, J., and Frotscher, M. (2002). Dentate granule cells in reeler mutants and VLDLR and ApoER2 knockout mice. Exp. Neurol. 176:12-24.

    Article  PubMed  Google Scholar 

  • Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds α3β1 integrin and inhibits neuronal migration. Neuron 27:33-44.

    Article  PubMed  Google Scholar 

  • Eckenhoff, M. F., and Rakic, P. (1984). Radial organization of the hippocampal dentate gyrus: A Golgi, ultrastructural, and immunocytochemical analysis in the developing rhesus monkey. J. Comp. Neurol. 223:1-21.

    Article  PubMed  Google Scholar 

  • Förster, E., Tielsch, A., Saum, B., Weiss, K. H., Johanssen, C., Graus-Porta, D., Müller, U., and Frotscher, M. (2002). Reelin, disabled 1, and β1-integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc. Natl. Acad. Sci. USA 99:13178-13183.

    Article  PubMed  Google Scholar 

  • Förster, E., Zhao, S., and Frotscher, M. (2006). Laminating the hippocampus. Nature Rev. Neurosci. 7:259-267.

    Google Scholar 

  • Frotscher, M., Haas, C., and Förster, E. (2003). Reelin controls granule cell migration in the den-tate gyrus by acting on the radial glial scaffold. Cereb. Cortex 13:634-640.

    Article  PubMed  Google Scholar 

  • Gebhardt, C., del Turco, D., Drakew, A., Tielsch, A., Herz, J., Frotscher, M., and Deller, T. (2002). Abnormal positioning of granule cells alters afferent fiber distribution in the mouse fascia dentata: morphologic evidence from reeler, apolipoprotein E receptor 2-, and very low density lipoprotein receptor knockout mice. J. Comp. Neurol. 445:278-292.

    Article  PubMed  Google Scholar 

  • Hartfuss, E., Förster, E., Bock, H. H., Hack, M. A., Leprince, P., Luque, J. M., Herz, J., Frotscher, M., and Götz, M. (2003). Reelin signaling directly affects radial glial morphology and biochemical maturation. Development 130:4597-4609.

    Article  PubMed  Google Scholar 

  • Hartmann, D., Sievers, J., Pehlemann, F. W., and Berry, M. (1992). Destruction of meningeal cells over the medial cerebral hemisphere of newborn hamsters prevents the formation of the infrapyramidal blade of the dentate gyrus. J. Comp. Neurol. 320:33-61.

    Article  PubMed  Google Scholar 

  • Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyro-sine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481-489.

    Article  PubMed  Google Scholar 

  • His, W. (1889). Die Neuroblasten und deren Entstehung im embryonalen Marke. Abh. Math. Phys. Cl. Kgl. Sächs. Ges. Wiss. 15:313-372.

    Google Scholar 

  • Howell, B. W., Hawkes, R., Soriano, P., and Cooper, J. A. (1997). Neuronal positioning in the developing brain is regulated by mouse disabled-1. Nature 389:733-737.

    Article  PubMed  Google Scholar 

  • Hunter-Schaedle, K. E. (1997). Radial glial cell development and transformation are disturbed in the reeler forebrain. J. Neurobiol. 33:459-472.

    Article  PubMed  Google Scholar 

  • Jacobson, M. (1991). Developmental Neurobiology, 2nd ed. Plenum Press, New York.

    Google Scholar 

  • Kölliker, A. (1896). Handbuch der Gewebelehre des Menschen, 6th ed. W. Engelmann, Leipzig.

    Google Scholar 

  • Levitt, P., and Rakic, P. (1980). Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey. J. Comp. Neurol. 193:815-840.

    Article  PubMed  Google Scholar 

  • Luque, J. M., Morante-Oria, J., and Fairen, A. (2003). Localization of ApoER2, VLDLR and Dab1 in radial glia: groundwork for a new model of reelin action during cortical development. Dev. Brain Res. 140:195-203.

    Article  Google Scholar 

  • Magdaleno, S., Keshvara, L., and Curran, T. (2002). Rescue of ataxia and preplate splitting by ectopic expression of reelin in reeler mice. Neuron 33:573-586.

    Article  PubMed  Google Scholar 

  • Magini, J. (1888a). Sur la névroglie et les cellules nerveuses cerebrales chez les fœtus. Arch. Ital. Biol. 9:59-60.

    Google Scholar 

  • Magini, J. (1888b). Nouvelles recherches histologiques sur le cerveau du foetus. Arch. Ital. Biol. 10:384-387.

    Google Scholar 

  • Malatesta, P., Hartfuss, E., and Götz, M. (2000). Isolation of radial glial cells by fluorescent-acti-vated cell sorting reveals a neuronal lineage. Development 127:5253-5263.

    PubMed  Google Scholar 

  • Mission, J. P., Takahashi, T., and Caviness, V. S. (1991). Ontogeny of radial and other astroglial cells in the murine cerebral cortex. Glia 4:138-148.

    Article  PubMed  Google Scholar 

  • Miyata, T., Kawaguchi, A., Okano, H., and Ogawa, M. (2001). Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727-741.

    Article  PubMed  Google Scholar 

  • Morest, D. K. (1970). A study of neurogenesis in the forebrain of opossum pouch young. Z. Anat. Entwicklungsgesch. 130:265-305.

    Article  PubMed  Google Scholar 

  • Nadarajah, B., and Parnavelas, J. G. (2002). Modes of neuronal migration in the developing cere-bral cortex. Nature Rev. Neurosci. 3:423-432.

    Google Scholar 

  • Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., and Kriegstein, A. R. (2001). Neurons derived from radial units in neocortex. Nature 409:714-720.

    Article  PubMed  Google Scholar 

  • Noctor, S. C., Flint, A. C., Weissman, T. A., Wong, W. S., Clinton, B. K., and Kriegstein, A. R. (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphologi-cal and molecular characteristics of radial glia. J. Neurosci. 22:3161-3173.

    PubMed  Google Scholar 

  • Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., Yamamoto, H., and Mikoshiba, K. (1995). The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14:899-912.

    Article  PubMed  Google Scholar 

  • Pinto-Lord, M. C., Evrard, P., and Caviness, V. S. (1982). Obstructed neuronal migration along radial glia fibers in the neocortex of the reeler mouse: a Golgi-EM analysis. Dev. Brain Res. 4:379-393.

    Article  Google Scholar 

  • Rakic, P. (1971). Neuron-glia relationship during granule cell migration in the developing cere-bellar cortex. A Golgi and electron microscopic study in Macacus rhesus. J. Comp. Neurol. 141:283-312.

    Article  PubMed  Google Scholar 

  • Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145:61-84.

    Article  PubMed  Google Scholar 

  • Rakic, P. (1988). Specification of cerebral cortical areas. Science 241:170-176.

    Article  PubMed  Google Scholar 

  • Ramón y Cajal, S. (1911). Histologie du Système Nerveux de l’Homme et des Vertébrés, Vol. 2. Maloine, Paris.

    Google Scholar 

  • Retzius, G. (1893). Die Cajalschen Zellen der Grosshirnrinde beim Menschen und bei Säugetieren. Biol. Unters. 5:1-9.

    Google Scholar 

  • Rickmann, M., Amaral, D. G., and Cowan, M. (1987). Organization of radial glia cells during the development of the rat dentate gyrus. J. Comp. Neurol. 264:449-479.

    Article  PubMed  Google Scholar 

  • Schlessinger, A. R., Cowan, W. M., and Gottlieb, D. I. (1975). An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J. Comp. Neurol. 159:149-176.

    Article  PubMed  Google Scholar 

  • Schmechel, S. E., and Rakic, P. (1979). A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat. Embryol. 156:115-152.

    Article  PubMed  Google Scholar 

  • Sheldon, M., Rice, D. S., d’Arcangelo, G., Yoneshima, H., Nakajima, M., Mikoshiba, K., Howell, B. W., Cooper, J. A., Goldowitz, D., and Curran, T. (1997). Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730-733.

    Article  PubMed  Google Scholar 

  • Sidman, R. L., and Rakic, P. (1973). Neuronal migration with special reference to developing human brain. Brain Res. 62:1-35.

    Article  PubMed  Google Scholar 

  • Stanfield, B. B., and Cowan, W. M. (1979a). The development of the hippocampus and dentate gyrus in normal and reeler mice. J. Comp. Neurol. 185:423-460.

    Article  PubMed  Google Scholar 

  • Stanfield, B. B., and Cowan, W. M. (1979b). The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J. Comp. Neurol. 185:393-422.

    Article  PubMed  Google Scholar 

  • Supér, H., Martinez, A., and Soriano, E. (1997). Degeneration of Cajal-Retzius cells in the devel-oping cortex of the mouse after ablation of meningeal cells by 6-hydroxydopamine. Dev. Brain Res. 98:15-20.

    Article  Google Scholar 

  • Supér, H., Del Rio, J. A., Martinez, A., Perez-Sust, P., and Soriano, E. (2000). Disruption of neu-ronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb. Cortex 10:602-613.

    Article  PubMed  Google Scholar 

  • Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A., and Davisson, M. T. (1996). Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm. Genome 7:798-802.

    Article  PubMed  Google Scholar 

  • Utsunomiya-Tate, N., Kubo, K., Tate, S., Kainosho, M., Katayama, E., Nakajima, K., and Mikoshiba, K. (2000). Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proc. Natl. Acad. Sci. USA 97:9729-9734.

    Article  PubMed  Google Scholar 

  • Ware, M. L., Fox, J. W., Gonzalez, J. L., Davis, N. M., Lambert de Rouvroit, C., Russo, C. J., Chua, S. C., Jr., Goffinet, A. M., and Walsh, C. A. (1997). Aberrant splicing of a mouse disa-bled homolog, mdab1, in the scrambler mouse. Neuron 19:239-249.

    Article  PubMed  Google Scholar 

  • Weiss, K.-H., Johanssen, C., Tielsch, A., Saum, B., Frotscher, M., and Förster, E. (2003). Malformation of the radial glial scaffold in the dentate gyrus of reeler mice, scrambler mice and ApoER2/VLDLR deficient mice. J. Comp. Neurol. 460:56-65.

    Article  PubMed  Google Scholar 

  • Woodhams, E. B., Basco, E., Hajos, F., Csillag, A., and Balazs, R. (1981). Radial glia in the developing mouse cerebral cortex and hippocampus. Anat. Embryol. 163:331-343.

    Article  PubMed  Google Scholar 

  • Yuasa, S., Kitoh, J., Oda, S., and Kawamura, K. (1993). Obstructed migration of Purkinje cells in the developing cerebellum of the reeler mutant mouse. Anat. Embryol. 188:317-329.

    Article  PubMed  Google Scholar 

  • Zhao, S., Chai, X., Förster, E., and Frotscher, M. (2004). Reelin is a positional signal for dentate granule cells. Development 131:5117-5125.

    Article  PubMed  Google Scholar 

  • Zhao, S., Chai, X., Bock, H., Brunne, B., Förster, E., and Frotscher, M. (2006). Rescue of the reeler phenotype in the dentate gyrus by wildtype coculture is mediated by lipoprotein receptors for reelin and disabled1. J. Comp. Neurol. 495:1-9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Förster, E., Zhao, S., Frotscher, M. (2008). Reelin and Radial Glial Cells. In: Fatemi, S.H. (eds) Reelin Glycoprotein. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76761-1_11

Download citation

Publish with us

Policies and ethics