Advertisement

Reelin and the Cerebellum

  • Robert F. Hevner

The cerebellum is a large, complex brain structure that mediates essential functions for movement, balance, cognition, and language (Ito, 2005). Development of the cerebellum critically depends on Reelin signaling. Complete deficiency of Reelin causes a severe cerebellar malformation, with extensive cellular disorganization and hypoplasia. Identical cerebellar defects are observed in mice lacking downstream components of the Reelin signaling pathway, including Reelin receptors VLDLR and ApoER2, adapter protein Dab1, or kinases Fyn and Src. The brain malformation results in ataxia and loss of balance, manifesting as a reeling gait in mice (hence the name Reelin) and multiple neurological problems in humans. More subtle abnormalities of Reelin signaling may underlie important neurobehavioral disorders in humans. In particular, some studies have linked RELN gene polymorphisms and reduced Reelin expression to autism. Since cerebellar defects are frequently observed in autistic brains, an attractive hypothesis is that Reelin signaling abnormalities may cause autism by perturbing cerebellar development or plasticity.

Despite growing biomedical significance, our understanding of how Reelin regulates cerebellar morphogenesis is far from complete. Reelin, its receptors, and downstream effectors are expressed by different cohorts of cells at different time points throughout cerebellar development. Most Reelin-producing cells are located near the surface of the developing cerebellar cortex, including cells of the rostral rhombic lip migratory stream (RLS), the nuclear transitory zone (NTZ), and the external granular layer (EGL). Other Reelin-producing cells are located deeper in the cerebellum, including some neurons of the deep cerebellar nuclei (DCN) and internal granular layer. Much evidence suggests that one important function of Reelin is to promote detachment of Purkinje cells from radial glia in the mantle zone of the embryonic cerebellar cortex, thus allowing multiple Purkinje cells to migrate along the same radial glia. The migrating Purkinje cells respond to Reelin signaling by activating a signaling cascade that includes Reelin receptors (VLDLR and ApoER2), adapter protein Dab1, and kinases Src and Fyn. Besides promoting Purkinje cell detachment from radial glia, Reelin may also regulate Purkinje cell spreading and monolayer formation, radial glia morphology, granule cell proliferation, unipolar brush cell migration, DCN cytoarchitecture, axon guidance, dendrite morphology, and synaptic plasticity. These mechanisms will require further basic research.

Keywords

Purkinje Cell Radial Glia Deep Cerebellar Nucleus Cerebellar Development External Granular Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikawa, H., Nonaka, I., Woo, M., Tsugane, T., and Esaki, K. (1988). Shaking rat Kawasaki (SRK): a new neurological mutant in the Wistar strain. Acta Neuropathol. (Berl.) 76:366-372.Google Scholar
  2. Altman, J., and Bayer, S. A. (1985a). Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements. J. Comp. Neurol. 231:1-26.CrossRefPubMedGoogle Scholar
  3. Altman, J., and Bayer, S. A. (1985b). Embryonic development of the rat cerebellum. II. Translocation and regional distribution of the deep neurons. J. Comp. Neurol. 231:27-41.CrossRefPubMedGoogle Scholar
  4. Altman, J., and Bayer, S. A. (1985c). Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and settling of Purkinje cells. J. Comp. Neurol. 231:42-65.CrossRefPubMedGoogle Scholar
  5. Bauman, M. L., and Kemper, T. L. (2005). Neuroanatomic observations of the brain in autism: a review and future directions. Int. J. Del. Neurosci. 23:183-187CrossRefGoogle Scholar
  6. Borrell, V., Del Río, J. A., Alcántara, S., Derer, M., Martínez, A., D’Arcangelo, G., Nakajima, K., Mikoshiba, K., Derer, P., Curran, T., and Soriano, E. (1999). Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. J. Neurosci. 19:1345-1358.PubMedGoogle Scholar
  7. Carper, R. A., and Courchesne, E. (2000). Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain 123:836-844.CrossRefPubMedGoogle Scholar
  8. Chang, B. S., Duzcan, F., Kim, S., Cinbis, M., Aggarwal, A., Apse, K. A., Ozdel, O., Atmaca, M., Zencir, S., Bagci, H., and Walsh, C. A. (2007). The role of RELN in lissencephaly and neu-ropsychiatric disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144:58-63.Google Scholar
  9. Cheng, L., Samad, O. A., Xu, Y., Mizuguchi, R., Luo, P., Shirasawa, S., Goulding, M., and Ma, Q. (2005). Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nature Neurosci. 8:1510-1515.CrossRefPubMedGoogle Scholar
  10. Chizhikov, V. V., Lindgren, A. G., Currie, D. S., Rose, M. F., Monuki, E. S., and Millen, K. J. (2006). The roof plate regulates cerebellar cell-type specification and proliferation. Development 133:2793-2804.CrossRefPubMedGoogle Scholar
  11. Corrales, J. D., Blaess, S., Mahoney, E. M., and Joyner, A. L. (2006). The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development 133:1811-1821.CrossRefPubMedGoogle Scholar
  12. Del Río, J. A., Heimrich, B., Borrell, V., Förster, E., Drakew, A., Alcántara, S., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., Derer, P., Frotscher, M., and Soriano, E. (1997). A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385:70-74.CrossRefPubMedGoogle Scholar
  13. Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds α3β1 integrin and inhibits neuronal migration. Neuron 27:33-44.CrossRefPubMedGoogle Scholar
  14. Englund, C., Kowalczyk, T., Daza, R. A. M., Dagan, A., Lau, C., Rose, M. F., and Hevner, R. F. (2006). Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J. Neurosci. 26:9184-9195.CrossRefPubMedGoogle Scholar
  15. Fatemi, S. H. (2005). Reelin glycoprotein: structure, biology and roles in health and disease. Mol. Psychiatry 10:251-257.CrossRefPubMedGoogle Scholar
  16. Fatemi, S. H., Halt, A. R., Realmuto, G., Earle, J., Kist, D. A., and Merz, A. (2002). Purkinje cell size is reduced in cerebellum of patients with autism. Cell. Mol. Neurobiol. 22:171-175.CrossRefPubMedGoogle Scholar
  17. Fatemi, S. H., Snow, A. V., Stary, J. M., Araghi-Niknam, M., Reutiman, T. J., Lee, S., Brooks, A. I., and Pearce, D. A. (2005). Reelin signaling is impaired in autism. Biol. Psychiatry 57:777-787.CrossRefPubMedGoogle Scholar
  18. Fink, A. J., Englund, C., Daza, R. A. M., Pham, D., Lau, C., Nivison, M., Kowalczyk, T., and Hevner, R. F. (2006). Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J. Neurosci. 26:3066-3076.CrossRefPubMedGoogle Scholar
  19. Förster, E., Jossin, Y., Zhao, S., Chai, X., Frotscher, M., and Goffinet, A. M. (2006). Recent progress in understanding the role of reelin in radial neuronal migration, with specific empha-sis on the dentate gyrus. Eur. J. Neurosci. 23:901-909.CrossRefPubMedGoogle Scholar
  20. Goffinet, A. M. (1983). The embryonic development of the cerebellum in normal and reeler mutant mice. Anat. Embryol. 168:73-86.CrossRefPubMedGoogle Scholar
  21. Goffinet, A. M., So, K.-F., Yamamoto, M., Edwards, M., and Caviness, V. S., Jr. (1984). Architectonic and hodological organization of the cerebellum in reeler mutant mice. Brain Res. Dev. Brain Res. 16:263-276.CrossRefGoogle Scholar
  22. Goldowitz, D., Cushing, R. C., Laywell, E., D’Arcangelo, G., Sheldon, M., Sweet, H. O., Davisson, M., Steindler, D., and Curran, T. (1997). Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J. Neurosci. 17:8767-8777.PubMedGoogle Scholar
  23. Hatten, M. E. (1999). Central nervous system neuronal migration. Annu. Rev. Neurosci. 22:511-539.CrossRefPubMedGoogle Scholar
  24. Hevner, R. F., Shi, L., Justice, N., Hsueh, Y.-P., Sheng, M., Smiga, S., Bulfone, A., Goffinet, A. M., Campagnoni, A. T., and Rubenstein, J. L. R. (2001). Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29:353-366.CrossRefPubMedGoogle Scholar
  25. Hong, S. E., Shugart, Y. Y., Huang, D. T., Al Shahwan, S., Grant, P. E., Hourihane, J. O’B., Martin, N. D. T., and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26:93-96.Google Scholar
  26. Hoshino, M., Nakamura, S., Mori, K., Kawauchi, T., Terao, M., Nishimura, Y. V., Fukuda, A., Fuse, T., Matsuo, N., Sone, M., Watanabe, M., Bito, H., Terashima, T., Wright, C. V. E., Kawaguchi, Y., Nakao, K., and Nabeshima, Y. (2005). Ptf1a, a bHLH transcription gene, defines GABAergic neuronal fates in the cerebellum. Neuron 47:201-213.CrossRefPubMedGoogle Scholar
  27. Ilijic, E., Guidotti, A., and Mugnaini, E. (2005). Moving up or moving down? Malpositioned cer-ebellar unipolar brush cells in reeler mouse. Neuroscience 136:633-647.CrossRefPubMedGoogle Scholar
  28. Ito, M. (2005). Bases and implications of learning in the cerebellum—adaptive control and inter-nal model mechanism. Prog. Brain Res. 148:95-109.CrossRefPubMedGoogle Scholar
  29. Jensen, P., Zoghbi, H. Y., and Goldowitz, D. (2002). Dissection of the cellular and molecular events that position cerebellar Purkinje cells: a study of the math1 null-mutant mouse. J. Neurosci. 22:8110-8116.PubMedGoogle Scholar
  30. Kemper, T. L., and Bauman, M. (1998). Neuropathology of infantile autism. J. Neuropathol. Exp. Neurol. 57:645-652.CrossRefPubMedGoogle Scholar
  31. Kikkawa, S., Yamamoto, T., Misaki, K., Ikeda, Y., Okado, H., Ogawa, M., Woodhams, P. L., and Terashima, T. (2003). Missplicing resulting from a short deletion in the reelin gene causes reeler-like neuronal disorders in the mutant Shaking Rat Kawasaki. J. Comp. Neurol. 463:303-315.CrossRefPubMedGoogle Scholar
  32. Kuemerle, B., Gulden, F., Cherosky, N., Williams, E., and Herrup, K. (2007). The mouse Engrailed genes: a window into autism. Behav. Brain Res. 176:121-132.CrossRefPubMedGoogle Scholar
  33. Kuo, G., Arnaud, L., Kronstad-O’Brien, P., and Cooper, J. A. (2005). Absence of Fyn and Src causes a reeler-like phenotype. J. Neurosci. 25:8578-8586.CrossRefPubMedGoogle Scholar
  34. Laurence, J. A., and Fatemi, S. H. (2005). Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 4:206-210.CrossRefPubMedGoogle Scholar
  35. Machold, R., and Fishell, G. (2005). Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17-24.CrossRefPubMedGoogle Scholar
  36. Mariani, J., Crepel, F., Mikoshiba, K., Changeux, J. P., and Sotelo, C. (1977). Anatomical, physi-ological and biochemical studies of the cerebellum from reeler mutant mouse. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 281:1-28.CrossRefGoogle Scholar
  37. Maricich, S. M., and Herrup, K. (1999). Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J. Neurobiol. 41:281-294.CrossRefPubMedGoogle Scholar
  38. Miale, I. L., and Sidman, R. L. (1961). An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp. Neurol. 4:277-296.CrossRefPubMedGoogle Scholar
  39. Mills, J., Niewmierzycka, A., Oloumi, A., Rico, B., St-Arnaud, R., Mackenzie, I. R., Mawji, N. M., Wilson, J., Reichardt, L. F., and Dedhar, S. (2006). Critical role of integrin-linked kinase in granule cell precursor proliferation and cerebellar development. J. Neurosci. 26:830-840.CrossRefPubMedGoogle Scholar
  40. Miyata, T., Nakajima, K., Aruga, J., Takahashi, S., Ikenaka, K., Mikoshiba, K., and Ogawa, M. (1996). Distribution of a reeler gene-related antigen in the developing cerebellum: an immu-nohistochemical study with an allogeneic antibody CR-50 on normal and reeler mice. J. Comp. Neurol. 372:215-228.CrossRefPubMedGoogle Scholar
  41. Miyata, T., Nakajima, K., Mikoshiba, K., and Ogawa, M. (1997). Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J. Neurosci. 17:3599-3609.PubMedGoogle Scholar
  42. Nolte, J. (1999). The Human Brain: An Introduction to Its Functional Anatomy, 4th ed. Mosby, St. Louis.Google Scholar
  43. Palmen, S. J. M. C., van Engeland, H., Hof, P. R., and Schmitz, C. (2004). Neuropathological findings in autism. Brain 127:2572-2583.CrossRefPubMedGoogle Scholar
  44. Perez-Garcia, C. G., Tissir, F., Goffinet, A. M., and Meyer, G. (2004). Reelin receptors in develop-ing laminated brain structures of mouse and human. Eur. J. Neurosci. 20:2827-2832.CrossRefPubMedGoogle Scholar
  45. Pickett, J., and London, E. (2005). The neuropathology of autism: a review. J. Neuropathol. Exp. Neurol. 64:925-935.CrossRefPubMedGoogle Scholar
  46. Rakic, P. (1988). Specification of cerebral cortical areas. Science 241:170-176.CrossRefPubMedGoogle Scholar
  47. Rakic, P. (1995). A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18:383-388.CrossRefPubMedGoogle Scholar
  48. Rice, D. S., and Curran, T. (2001). Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24:1005-1039.CrossRefPubMedGoogle Scholar
  49. Rice, D. S., Sheldon, M., D’Arcangelo, G., Nakajima, K., Goldowitz, D., and Curran, T. (1998). Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organiza-tion in the mammalian brain. Development 125:3719-3729.PubMedGoogle Scholar
  50. Ruiz i Altaba, A., Palma, V., and Dahmane, N. (2002). Hedgehog-Gli signaling and the growth of the brain. Nature Rev. Neurosci. 3:24-33.Google Scholar
  51. Sanada, K., Gupta, A., and Tsai, L.-H. (2004). Disabled-1-regulated adhesion of migrating neu-rons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron 42:197-211.CrossRefPubMedGoogle Scholar
  52. Schuurmans, C., and Guillemot, F. (2002). Molecular mechanisms underlying cell fate specifica-tion in the developing telencephalon. Curr. Opin. Neurobiol. 12:26-34.CrossRefPubMedGoogle Scholar
  53. Sgaier, S. K., Millet, S., Villanueva, M. P., Berenshteyn, F., Song, C., and Joyner, A. L. (2005). Morphogenetic and cellular movements that shape the mouse cerebellum: insights from genetic fate mapping. Neuron 45:27-40.PubMedGoogle Scholar
  54. Sheldon, M., Rice, D. S., D’Arcangelo, G., Yoneshima, H., Nakajima, K., Mikoshiba, K., Howell, B. W., Cooper, J. A., Goldowitz, D., and Curran, T. (1997). Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730-733.CrossRefPubMedGoogle Scholar
  55. Sotelo, C. (2004). Cellular and genetic regulation of the development of the cerebellar system. Prog. Neurobiol. 72:295-339.CrossRefPubMedGoogle Scholar
  56. Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.CrossRefPubMedGoogle Scholar
  57. Wang, V. Y., Rose, M. F., and Zoghbi, H. Y. (2005). Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31-43.CrossRefPubMedGoogle Scholar
  58. Yuasa, S., Kitoh, J., Oda, S., and Kawamura, K. (1993). Obstructed migration of Purkinje cells in the developing cerebellum of the reeler mutant mouse. Anat. Embryol. 188:317-329.CrossRefPubMedGoogle Scholar
  59. Yuasa, S., Kawamura, K., Kuwano, R., and Ono, K. (1996). Neuron-glia interrelations during migration of Purkinje cells in the mouse embryonic cerebellum. Int. J. Dev. Neurosci. 14:429-438.CrossRefPubMedGoogle Scholar
  60. Zervas, M., Millet, S., Ahn, S., and Joyner, A. L. (2004). Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43:345-357.CrossRefPubMedGoogle Scholar
  61. Zhang, L., and Goldman, J. E. (1996). Generation of cerebellar interneurons from dividing pro-genitors in white matter. Neuron 16:47-54.CrossRefPubMedGoogle Scholar
  62. Zhu, Y., Yu, T., Zhang, X.-C., Nagasawa, T., Wu, J. Y., and Rao, Y. (2002). Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nature Neurosci. 5:719-720.CrossRefPubMedGoogle Scholar
  63. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., and Littman, D. R. (1998). Function of the chemokine CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595-599.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Robert F. Hevner
    • 1
  1. 1.Department of Pathology/NeuropathologyUniversity of WashingtonSeattle

Personalised recommendations