The Reelin Gene and Its Functions in Brain Development

  • Cheng-Chiu Huang
  • Gabriella D’Arcangelo

Brain development and function requires the coordinated genesis, migration, and maturation of all of its cellular components. The product of the Reelin (Reln) gene has been identified as a major determinant of neuronal migration that also plays a significant role in cellular maturation and synaptic function. Thus, the Reln gene controls multiple aspects of brain development over the entire life span of a mammalian organism, from pre- to postnatal ages, and exerts distinct functions on migrating neuroblasts, radial progenitors, and postmigratory neurons. Some of the molecular mechanisms that mediate these functions have been elucidated by the analysis of mutant mice and biochemical interactions, but much remains to be discovered. In this chapter we will summarize the current state of our knowledge of Reln and its function in brain development.


Neuronal Migration Cortical Plate Cellular Layer External Granular Layer Reeler Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcantara, S., Ruiz, M., D’Arcangelo, G., Ezan, F., de Lecea, L., Curran, T., Sotelo, C., and Soriano, E. (1998). Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J. Neurosci. 18:7779-7799.PubMedGoogle Scholar
  2. Anderson, S. A., Eisenstat, D. D., Shi, L., and Rubenstein, J. L. R. (1997). Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474-476.CrossRefPubMedGoogle Scholar
  3. Angevine, J. G., and Sidman, R. L. (1961). Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766-768.CrossRefPubMedGoogle Scholar
  4. Arnaud, L., Ballif, B. A., and Cooper, J. A. (2003a). Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol. Cell. Biol. 23:9293-9302.CrossRefPubMedGoogle Scholar
  5. Arnaud, L., Ballif, B. A., Forster, E., and Cooper, J. A. (2003b). Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr. Biol. 13:9-17.CrossRefPubMedGoogle Scholar
  6. Assadi, A. H., Zhang, G., Beffert, U., McNeil, R. S., Renfro, A. L., Niu, S., Quattrocchi, C. C., Antalffy, B. A., Sheldon, M., Armstrong, D. D., Wynshaw-Boris, A., Herz, J., D’Arcangelo, G., and Clark, G. D. (2003). Interaction of reelin signaling and Lis1 in brain development. Nat. Genet. 35:270-276.CrossRefPubMedGoogle Scholar
  7. Ballif, B. A., Arnaud, L., and Cooper, J. A. (2003). Tyrosine phosphorylation of disabled-1 is essential for reelin-stimulated activation of Akt and Src family kinases. Brain Res. Mol. Brain Res. 117:152-159.CrossRefPubMedGoogle Scholar
  8. Ballif, B. A., Arnaud, L., Arthur, W. T., Guris, D., Imamoto, A., and Cooper, J. A. (2004). Activation of a Dab1/CrkL/C3G/Rap1 pathway in reelin-stimulated neurons. Curr. Biol. 14:606-610.CrossRefPubMedGoogle Scholar
  9. Beffert, U., Morfini, G., Bock, H. H., Reyna, H., Brady, S. T., and Herz, J. (2002). Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J. Biol. Chem. 277:49958-49964.CrossRefPubMedGoogle Scholar
  10. Beffert, U., Weeber, E. J., Durudas, A., Qiu, S., Masiulis, I., Sweatt, J. D., Li, W.-P., Adelmann, G., Frotscher, M., Hammer, R. E., and Herz, J. (2005). Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor ApoER2. Neuron 47:567-579.CrossRefPubMedGoogle Scholar
  11. Benhayon, D., Magdaleno, S., and Curran, T. (2003). Binding of purified reelin to ApoER2 and VLDLR mediates tyrosine phosphorylation of disabled-1. Mol. Brain Res. 112:33-45.CrossRefPubMedGoogle Scholar
  12. Bock, H. H., and Herz, J. (2003). Reelin activates SRC family tyrosine kinases in neurons. Curr. Biol. 13:18-26.CrossRefPubMedGoogle Scholar
  13. Bock, H. H., Jossin, Y., Liu, P., Forster, E., May, P., Goffinet, A. M., and Herz, J. (2003). PI3-kinase interacts with the adaptor protein Dab1 in response to reelin signaling and is required for normal cortical lamination. J. Biol. Chem. 278:38772-38779.CrossRefPubMedGoogle Scholar
  14. Brich, J., Shie, F. S., Howell, B. W., Li, R., Tus, K., Wakeland, E. K., Jin, L. W., Mumby, M., Churchill, G., Herz, J., and Cooper, J. A. (2003). Genetic modulation of tau phosphorylation in the mouse. J. Neurosci. 23:187-192.PubMedGoogle Scholar
  15. Caviness, V. S. J. (1973). Time of neuron origin in the hippocampus and dentate gyrus of normal and reeler mutant mice: an autoradiographic analysis. J. Comp. Neurol. 151113-120.CrossRefPubMedGoogle Scholar
  16. Caviness, V. S. J., and Sidman, R. L. (1973). Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J. Comp. Neurol. 148:141-152.CrossRefPubMedGoogle Scholar
  17. Chen, Y., Beffert, U., Ertunc, M., Tang, T. S., Kavalali, E. T., Bezprozvanny, I., and Herz, J. (2005). Reelin modulates NMDA receptor activity in cortical neurons. J. Neurosci. 25:8209-8216.CrossRefPubMedGoogle Scholar
  18. Chin, J., Massaro, C. M., Palop, J. J., Thwin, M. T., Yu, G. Q., Bien-Ly, N., Bender, A., and Mucke, L. (2007). Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer’s disease. J. Neurosci. 27:2727-2733.CrossRefPubMedGoogle Scholar
  19. D’Arcangelo, G. (2005). Reelin mouse mutants as models of cortical development disorders. Epilepsy Behav. 8:81-90.CrossRefPubMedGoogle Scholar
  20. D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719-723.CrossRefPubMedGoogle Scholar
  21. D’Arcangelo, G., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., and Curran, T. (1997). Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17:23-31.PubMedGoogle Scholar
  22. D’Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon, M., and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24:471-479.CrossRefPubMedGoogle Scholar
  23. de Bergeyck, V., Nakajima, K., Lambert de Rouvroit, C., Naerhuyzen, B., Goffinet, A. M., Miyata, T., Ogawa, M., and Mikoshiba, K. (1997). A truncated reelin protein is produced but not secreted in the “Orleans” reeler mutation (Relnrl-Orl). Mol. Brain Res. 50:85-90.CrossRefPubMedGoogle Scholar
  24. DeSilva, U., D’Arcangelo, G., Braden, V. V., Chen, J., Miao, G., Curran, T., and Green, E. D. (1997). The human reelin gene: isolation, sequencing, and mapping on chromosome 7. Genome Res. 7:157-164.CrossRefPubMedGoogle Scholar
  25. Dong, E., Caruncho, H., Liu, W. S., Smalheiser, N. R., Grayson, D. R., Costa, E., and Guidotti, A. (2003). A reelin-integrin receptor interaction regulates Arc mRNA translation in synaptoneurosomes. Proc. Natl. Acad. Sci. USA 100:5479-5484.CrossRefPubMedGoogle Scholar
  26. Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27:33-44.CrossRefPubMedGoogle Scholar
  27. Fatemi, S. H., Earle, J. A., and McMenomy, T. (2000). Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry 571:654-663.CrossRefGoogle Scholar
  28. Fatemi, S. H., Stary, J. M., Halt, A. R., and Realmuto, G. R. (2001). Dysregulation of reelin and Bcl-2 proteins in autistic cerebellum. J. Autism Dev. Disord. 31:529-535.CrossRefPubMedGoogle Scholar
  29. Fatemi, S. H., Snow, A. V., Stary, J. M., Araghi-Niknam, M., Reutiman, T. J., Lee, S., Brooks, A. I., and Pearce, D. A. (2005). Reelin signaling is impaired in autism. Biol. Psychiatry 57:777-787.CrossRefPubMedGoogle Scholar
  30. Goffinet, A. M. (1983). The embryonic development of the cerebellum in normal and reeler mutant mice. Anat. Embryol. (Berl.) 168:73-86.CrossRefGoogle Scholar
  31. Graus-Porta, D., Blaess, S., Senften, M., Littlewood-Evans, A., Damsky, C., Huang, Z., Orban, P., Klein, R., Schittny, J. C., and Muller, U. (2001). Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31:367-379.CrossRefPubMedGoogle Scholar
  32. Grayson, D. R., Jia, X., Chen, Y., Sharma, R. P., Mitchell, C. P., Guidotti, A., and Costa, E. (2005). Reelin promoter hypermethylation in schizophrenia. Proc. Natl. Acad. Sci. USA 102:9341-9346.CrossRefPubMedGoogle Scholar
  33. Guidotti, A., Auta, J., Davis, J. M., DiGiorgi Gerevini, V., Dwivedi, Y., Grayson, D. R., Impagnatiello, F., Pandey, G., Pesold, C., Sharma, R., Uzunov, D., and Costa, E. (2000). Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch. Gen. Psychiatry 57:1061-1069.CrossRefPubMedGoogle Scholar
  34. Herz, J., and Chen, Y. (2006). Reelin, lipoprotein receptors and synaptic plasticity. Nature Rev. 7:850-859.CrossRefGoogle Scholar
  35. Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A. M., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481-489.CrossRefPubMedGoogle Scholar
  36. Hoe, H. S., Tran, T. S., Matsuoka, Y., Howell, B. W., and Rebeck, G. W. (2006). DAB1 and reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing. J. Biol. Chem. 281:35176-35185.CrossRefPubMedGoogle Scholar
  37. Hong, S. E., Shugart, Y. Y., Huang, D. T., Al Shahwan, S., Grant, P. E., Hourihane, J. O. B., Martin, N. D. T., and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26:93-96.CrossRefPubMedGoogle Scholar
  38. Howell, B. W., Hawkes, R., Soriano, P., and Cooper, J. A. (1997). Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389:733-736.CrossRefPubMedGoogle Scholar
  39. Howell, B. W., Herrick, T. M., and Cooper, J. A. (1999). Reelin-induced tyrosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13:643-648.CrossRefPubMedGoogle Scholar
  40. Howell, B. W., Herrick, T. M., Hildebrand, J. D., Zhang, Y., and Cooper, J. A. (2000). Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development. Curr. Biol. 10:877-885.CrossRefPubMedGoogle Scholar
  41. Huang, Y., Magdaleno, S., Hopkins, R., Slaughter, C., Curran, T., and Keshvara, L. (2004). Tyrosine phosphorylated disabled 1 recruits Crk family adapter proteins. Biochem. Biophys. Res. Commun. 318:204-212.CrossRefPubMedGoogle Scholar
  42. Impagnatiello, F., Guidotti, A. R., Pesold, C., Dwivedi, Y., Caruncho, H., Pisu, M. G., Uzunov, D. P., Smalheiser, N. R., Davis, J. M., Pandey, G. N., Pappas, G. D., Tueting, P., Sharma, R. P., and Costa, E. (1998). A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc. Natl. Acad. Sci. USA 95:15718-15723.CrossRefPubMedGoogle Scholar
  43. Jossin, Y., Ignatova, N., Hiesberger, T., Herz, J., Lambert de Rouvroit, C., and Goffinet, A. M. (2004). The central fragment of reelin, generated by proteolytic processing in vivo, is critical to its function during cortical plate development. J. Neurosci. 24:514-521.CrossRefPubMedGoogle Scholar
  44. Jossin, Y., Gui, L., and Goffinet, A. M. (2007). Processing of reelin by embryonic neurons is important for function in tissue, but not in dissociated cultured neurons. J. Neurosci. 27:4243-4352.CrossRefPubMedGoogle Scholar
  45. Keshvara, L., Benhayon, D., Magdaleno, S., and Curran, T. (2001). Identification of reelin-induced sites of tyrosyl phosphorylation on disabled 1. J. Biol. Chem. 276:16008-16014.CrossRefPubMedGoogle Scholar
  46. Krueger, D. D., Howell, J. L., Hebert, B. F., Olausson, P., Taylor, J. R., and Nairn, A. C. (2006). Assessment of cognitive function in the heterozygous reeler mouse. Psychopharmacology 189:95-104.CrossRefPubMedGoogle Scholar
  47. Kubo, K., Mikoshiba, K., and Nakajima, K. (2002). Secreted reelin molecules form homodimers. Neurosci. Res. 43:381-388.CrossRefPubMedGoogle Scholar
  48. Kuo, G., Arnaud, L., Kronstad-O’Brien, P., and Cooper, J. A. (2005). Absence of Fyn and Src causes a reeler-like phenotype. J. Neurosci. 25:8578-8586.CrossRefPubMedGoogle Scholar
  49. Lambert de Rouvroit, C., and Goffinet, A. M. (1998). The reeler mouse as a model of brain development. Adv. Anat. Embryol. Cell Biol. 150:1-108.PubMedGoogle Scholar
  50. Lambert de Rouvroit, C., de Bergeyck, V., Cortvrindt, C., Bar, I., Eeckhout, Y., and Goffinet, A. M. (1999). Reelin, the extracellular matrix protein deficient in reeler mutant mice, is processed by a metalloproteinase. Exp. Neurol. 156:214-217.CrossRefPubMedGoogle Scholar
  51. Larson, J., Hoffman, J. S., Guidotti, A., and Costa, E. (2003). Olfactory discrimination learning deficit in heterozygous reeler mice. Brain Res. 971:40-46.CrossRefPubMedGoogle Scholar
  52. Lavdas, A. A., Grigoriou, M., Pachnis, V., and Parnavelas, J. G. (1999). The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 99:7881-7888.Google Scholar
  53. Liu, W. S., Pesold, C., Rodriguez, M. A., Carboni, G., Auta, J., Lacor, P., Larson, J., Condie, B. G., Guidotti, A., and Costa, E. (2001). Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc. Natl. Acad. Sci. USA 98:3477-3482.CrossRefPubMedGoogle Scholar
  54. Malatesta, P., Hartfuss, E., and Gotz, M. (2000). Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253-5263.PubMedGoogle Scholar
  55. Morimura, T., Hattori, M., Ogawa, M., and Mikoshiba, K. (2005). Disabled1 regulates the intracellular trafficking of reelin receptors. J. Biol. Chem. 280:16901-16908.CrossRefPubMedGoogle Scholar
  56. Niu, S., Renfro, A., Quattrocchi, C. C., Sheldon, M., and D’Arcangelo, G. (2004). Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 41:71-84.CrossRefPubMedGoogle Scholar
  57. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., and Kriegstein, A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714-720.CrossRefPubMedGoogle Scholar
  58. Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., Yamamoto, H., and Mikoshiba, K. (1995). The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14:899-912.CrossRefPubMedGoogle Scholar
  59. Ognibene, E., Adriani, W., Granstrem, O., Pieretti, S., and Laviola, G. (2007). Impulsivity-anxiety-related behavior and profiles of morphine-induced analgesia in heterozygous reeler mice. Brain Res. 1131:173-180.CrossRefPubMedGoogle Scholar
  60. Ohkubo, N., Lee, Y. D., Morishima, A., Terashima, T., Kikkawa, S., Tohyama, M., Sakanaka, M., Tanaka, J., Maeda, N., Vitek, M. P., and Mitsuda, N. (2003). Apolipoprotein E and reelin ligands modulate tau phosphorylation through an apolipoprotein E receptor/disabled-1/glycogen synthase kinase-3beta cascade. FASEB J. 17:295-297.PubMedGoogle Scholar
  61. Pesold, C., Impagnatiello, F., Pisu, M. G., Uzunov, D. P., Costa, E., Guidotti, A., and Caruncho, H. J. (1998). Reelin is preferentially expressed in neurons synthesizing g-aminobutyric acid in cortex and hippocampus of adult rats. Proc. Natl. Acad. Sci. USA 95:3221-3226.CrossRefPubMedGoogle Scholar
  62. Pramatarova, A., Ochalski, P. G., Chen, K., Gropman, A., Myers, S., Min, K. T., and Howell, B. W. (2003). Nck beta interacts with tyrosine-phosphorylated disabled 1 and redistributes in reelin-stimulated neurons. Mol. Cell Biol. 23:7210-7221.CrossRefPubMedGoogle Scholar
  63. Qiu, S., and Weeber, E. J. (2007). Reelin signaling facilitates maturation of CA1 glutamatergic synapses. J. Neurophys. 97:2312-2321.CrossRefGoogle Scholar
  64. Qiu, S., Korwek, K. M., Pratt-Davis, A. R., Peters, M., Bergman, M. Y., and Weeber, E. J. (2006a). Cognitive disruption and altered hippocampus synaptic function in reelin haploinsufficient mice. Neurobiol. Learning Memory 85:228-242.CrossRefGoogle Scholar
  65. Qiu, S., Zhao, L. F., Korwek, K. M., and Weeber, E. J. (2006b). Differential reelin-induced enhancement of NMDA and AMPA receptor activity in the adult hippocampus. J. Neurosci. 26:12943-12955.CrossRefPubMedGoogle Scholar
  66. Rice, D. S., Nusinowitz, S., Azimi, A. M., Martinez, A., Soriano, E., and Curran, T. (2001). The reelin pathway modulates the structure and function of retinal synaptic circuitry. Neuron 31:929-941.CrossRefPubMedGoogle Scholar
  67. Rodriguez, M. A., Pesold, C., Liu, W. S., Khrino, V., Guidotti, A., Pappas, G. D., and Costa, E. (2000). Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex. Proc. Natl. Acad. Sci. USA 97:3550-3555.CrossRefPubMedGoogle Scholar
  68. Royaux, I., Lambert de Rouvroit, C., D’Arcangelo, G., Demirov, D., and Goffinet, A. M. (1997). Genomic organization of the mouse reelin gene. Genomics 46:240-250.CrossRefPubMedGoogle Scholar
  69. Sanada, K., Gupta, A., and Tsai, L. H. (2004). Disabled-1-regulated adhesion of migrating neurons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron 42:197-211.CrossRefPubMedGoogle Scholar
  70. Schiffmann, S. N., Bernier, B., and Goffinet, A. M. (1997). Reelin mRNA expression during mouse brain development. Eur. J. Neurosci. 9:1055-1071.CrossRefPubMedGoogle Scholar
  71. Schmid, R. S., Shelton, S., Stanco, A., Yokota, Y., Kreidberg, J. A., and Anton, E. S. (2004). alpha3beta1 integrin modulates neuronal migration and placement during early stages of cerebral cortical development. Development 131:6023-6031.CrossRefPubMedGoogle Scholar
  72. Schmid, R. S., Jo, R., Shelton, S., Kreidberg, J. A., and Anton, E. S. (2005). Reelin, integrin and Dab1 interactions during embryonic cerebral cortical development. Cerebral Cortex 15:1632-1636.CrossRefPubMedGoogle Scholar
  73. Sheldon, M., Rice, D. S., D’Arcangelo, G., Yoneshima, H., Nakajima, K., Mikoshiba, K., Howell, B. W., Cooper, J. A., Goldowitz, D., and Curran, T. (1997). Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730-733.CrossRefPubMedGoogle Scholar
  74. Sinagra, M., Verrier, D., Frankova, D., Korwek, K. M., Blahos, J., Weeber, E. J., Manzoni, O. J., and Chavis, P. (2005). Reelin, very-low-density lipoprotein receptor, and apolipoprotein E receptor 2 control somatic NMDA receptor composition during hippocampal maturation in vitro. J. Neurosci. 25:6127-6136.CrossRefPubMedGoogle Scholar
  75. Strasser, V., Fasching, D., Hauser, C., Mayer, H., Bock, H. H., Hiesberger, T., Herz, J., Weeber, E. J., Sweatt, J. D., Pramatarova, A., Howell, B., Schneider, W. J., and Nimpf, J. (2004). Receptor clustering is involved in reelin signaling. Mol. Cell Biol. 24:1378-1386.CrossRefPubMedGoogle Scholar
  76. Suetsugu, S., Tezuka, T., Morimura, T., Hattori, M., Mikoshiba, K., Yamamoto, T., and Takenawa, T. (2004). Regulation of actin cytoskeleton by mDab1 through N-WASP and ubiquitination of mDab1. Biochem. J. 384:1-8.CrossRefPubMedGoogle Scholar
  77. Takahara, T., Ohsumi, T., Kuromitsu, J., Shibata, K., Sasaki, N., Okazaki, Y., Shibata, H., Sato, S., Yoshiki, A., Kusakabe, M., Muramatsu, M., Ueki, M., Okuda, K., and Hayashizaki, Y. (1996). Dysfunction of the Orleans reeler gene arising from exon skipping due to transposition of a full-length copy of an active L1 sequence into the skipped exon. Hum. Mol. Genet. 5:989-993.CrossRefPubMedGoogle Scholar
  78. Trommsdorff, M., Borg, J. P., Margolis, B., and Herz, J. (1998). Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273:33556-33560.CrossRefPubMedGoogle Scholar
  79. Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.CrossRefPubMedGoogle Scholar
  80. Tueting, P., Costa, E., Dwivedi, Y., Guidotti, A., Impagnatiello, F., Manev, R., and Pesold, C. (1999). The phenotypic characteristics of heterozygous reeler mouse. Neuroreport 10:1329-1334.CrossRefPubMedGoogle Scholar
  81. Tueting, P., Doueiri, M. S., Guidotti, A., Davis, J. M., and Costa, E. (2006). Reelin down-regulation in mice and psychosis endophenotypes. Neurosci. Biobehav. Rev. 30:1065-1077.CrossRefPubMedGoogle Scholar
  82. Utsunomiya-Tate, N., Kubo, K., Tate, S., Kainosho, M., Katayama, E., Nakajima, K., and Mikoshiba, K. (2000). Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proc. Natl. Acad. Sci. USA 97:9729-9734.CrossRefPubMedGoogle Scholar
  83. Veldic, M., Caruncho, H. J., Liu, W. S., Davis, J., Satta, R., Grayson, D.R., Guidotti, A., and Costa, E. (2004). DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc. Natl. Acad. Sci. USA 101:348-353.CrossRefPubMedGoogle Scholar
  84. Ware, M., Fox, J. W., Gonzales, J. L., Davis, N. M., Lambert de Rouvroit, C., Russo, C. J., Chua, S. C. J., Goffinet, A. M., and Walsh, C. A. (1997). Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19:239-249.CrossRefPubMedGoogle Scholar
  85. Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., and Herz, J. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277:39944-39952.CrossRefPubMedGoogle Scholar
  86. Yoneshima, H., Nagata, E., Matsumoto, M., Yamada, M., Nakajima, K., Miyata, T., Ogawa, M., and Mikoshiba, K. (1997). A novel neurological mutation of mouse, yotari, which exhibits reeler-like phenotype but expresses reelin. Neurosci. Res. 29:217-223.CrossRefPubMedGoogle Scholar
  87. Zhang, G., Assadi, A. H., McNeil, R. S., Beffert, U., Wynshaw-Boris, A., Herz, J., Clark, G. D., and D’Arcangelo, G. (2007). The PAFAH1B complex interacts with the reelin receptor VLDLR. PlosOne 2:e252.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Cheng-Chiu Huang
    • 1
  • Gabriella D’Arcangelo
    • 2
  1. 1.Graduate Program in Developmental BiologyBaylor College of MedicineHouston
  2. 2.Department of Cell Biology and Neuroscience, RutgersThe State University of New JerseyPiscataway

Personalised recommendations