Chip-Based Genotyping by Mass Spectrometry

  • Kai Tang
Part of the Biotechnology Intelligence Unit book series (BIOIU)


DNA analysis by mass spectrometry has the advantage of being the most accurate method for genotyping. Since the mass of molecular ions is measured and each allele has its own intrinsic mass, this method provides direct readout of allele types without the need for any labeling. Coupled with different chip-based platforms, it has also become one of the highest throughput and most accurate quantitative methods for determining allele frequency. Matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOFMS) is the most commonly used genotyping method. Silicon chips have been used as a sample positioning and concentration device for MALDI-MS. Alternatively, it can also be functionalized and used as a capturing device for DNA template. Subsequent enzymatic reactions and MALDI-MS can be performed on the chip surface. Electrospray ionization (ESI) has also been used for genotyping, mainly for the analysis of microsatellites. It could also be coupled with chip-based nano-electrospray nozzles to increase sensitivity and throughput.


Chip Surface Short Tandem Repeat Locus Primer Extension Reaction Primer Extension Product Determine Allele Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weber JL, May PE. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 1989; 44(3):388–396.PubMedGoogle Scholar
  2. 2.
    Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 1989; 44(3):397–401.PubMedGoogle Scholar
  3. 3.
    Edwards A, Civitello A, Hammond HA et al. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 1991; 49(4):746–756.PubMedGoogle Scholar
  4. 4.
    Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 1989; 17(16):6463–6471.PubMedCrossRefGoogle Scholar
  5. 5.
    Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265(5181):2037–2048.PubMedCrossRefGoogle Scholar
  6. 6.
    Weber JL. Human DNA polymorphisms and methods of analysis. Curr Opin Biotechnol 1990; 1(2):166–171.PubMedCrossRefGoogle Scholar
  7. 7.
    Hammond HA, Jin L, Zhong Y et al. Evaluation of 13 short tandem repeat loci for use in personal identification applications. Am J Hum Genet 1994; 55(1):175–189.PubMedGoogle Scholar
  8. 8.
    Fregeau CJ, Fourney RM. DNA typing with fluorescently tagged short tandem repeats: a sensitive and accurate approach to human identification. Biotechniques 1993; 15(1):100–119.PubMedGoogle Scholar
  9. 9.
    Zhu H, Clark SM, Benson SC et al. High-sensitivity capillary electrophoresis of double-stranded DNA fragments using monomeric and dimeric fluorescent intercalating dyes. Anal Chem 1994; 66(13):1941–1948.PubMedCrossRefGoogle Scholar
  10. 10.
    Sprecher CJ, Puers C, Lins AM et al. General approach to analysis of polymorphic short tandem repeat loci. Biotechniques 1996; 20(2):266–276.PubMedGoogle Scholar
  11. 11.
    Lahiri DK, Zhang A, Nurnberger JI, Jr. High-resolution detection of PCR products from a microsatellite marker using a nonradioisotopic technique. Biochem Mol Med 1997; 60(1):70–75.PubMedCrossRefGoogle Scholar
  12. 12.
    Cooper DN, Smith BA, Cooke HJ et al. An estimate of unique DNA sequence heterozygosity in the human genome. Hum Genet 1985; 69(3):201–205.PubMedCrossRefGoogle Scholar
  13. 13.
    Sachidanandam R, Weissman D, Schmidt SC et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409(6822):928–933.PubMedCrossRefGoogle Scholar
  14. 14.
    Kwok PY. Methods for genotyping single nucleotide polymorphisms. Ann Rev Genomics Hum Genet 2001; 2:235–258.CrossRefGoogle Scholar
  15. 15.
    Syvanen AC. Accessing genetic variation: Genotyping single nucleotide polymorphisms. Nature Rev Genet 2001; 2(12):930–942.CrossRefGoogle Scholar
  16. 16.
    Kirk BW, Feinsod M, Favis R et al. Single nucleotide polymorphism seeking long term association with complex disease. Nucleic Acids Res 2002; 30(15):3295–3311.PubMedCrossRefGoogle Scholar
  17. 17.
    Tanaka K, Waki H, Ido Y et al. Protein and polymer analysis up to m/z 100,000 by laser desorption time-of-flight mass spectrometry. Rapid Comm Mass Spectrom 1988; 2:151–153.CrossRefGoogle Scholar
  18. 18.
    Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exeeding 10,000 daltons. Anal Chem 1988; 60(20):2299–2301.PubMedCrossRefGoogle Scholar
  19. 19.
    Fenn JB, Mann M, Meng CK et al. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989; 246(4926):64–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Henry KD, Williams ER, Wang BH et al. Fourier-transform mass spectrometry of large molecules by electrospray ionization. Proc Natl Acad Sci USA 1989; 86(23):9075–9078.PubMedCrossRefGoogle Scholar
  21. 21.
    Mclafferty FW. High-Resolution Tandem FT Mass-Spectometry above 10-Kda. Acc Chem Res 1994; 27(11):379–386.CrossRefGoogle Scholar
  22. 22.
    Comisarow MB, Marshall AG. The early development of Fourier transform ion cyclotron resonance (FT-ICR) spectroscopy. J Mass Spectrom 1996; 31(6):581–585.PubMedCrossRefGoogle Scholar
  23. 23.
    He F, Hendrickson CL, Marshall AG. Baseline mass resolution of peptide isobars: a record for molecular mass resolution. Anal Chem 2001; 73(3):647–650.PubMedCrossRefGoogle Scholar
  24. 24.
    Gut IG. Automation in genotyping of single nucleotide polymorphisms. Hum Mutat 2001; 17(6):475–492.PubMedCrossRefGoogle Scholar
  25. 25.
    Lechner D, Lathrop GM, Gut IG. Large-scale genotyping by mass spectrometry: experience, advances and obstacles. Curr Opin Chem Biol 2002; 6(1):31–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Sauer S, Gut IG. Genotyping single-nucleotide polymorphisms by matrix-assisted laser-desorption/ ionization time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 782(1–2):73–87.PubMedGoogle Scholar
  27. 27.
    Tost J, Gut VG. Genotyping single nucleotide polymorphisms by mass spectrometry. Mass Spectrom Rev 2002; 21(6):388–418.PubMedCrossRefGoogle Scholar
  28. 28.
    Chen X, Sullivan PF. Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomies J 2003; 3(2):77–96.CrossRefGoogle Scholar
  29. 29.
    Kim S, Ruparel HD, Gilliam TC et al. Digital genotyping using molecular affinity and mass spectrometry. Nature Rev Genet 2003; 4(12):1001–1008.CrossRefGoogle Scholar
  30. 30.
    Marvin LF, Roberts MA, Fay LB. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin Chim Acta 2003; 337(1–2):11–21.PubMedCrossRefGoogle Scholar
  31. 31.
    Tang K, Opalsky D, Abel K et al. Single nucleotide polymorphism analyses by MALDI-TOF MS. Int J Mass Spectrom 2003; 226(1):37–54.CrossRefGoogle Scholar
  32. 32.
    Gut IG DNA analysis by MALDI-TOF mass spectrometry. Hum Mutat 2004; 23(5):437–441.PubMedCrossRefGoogle Scholar
  33. 33.
    Jurinke C, Oeth P, van den Boom D. MALDI-TOF mass spectrometry-A versatile tool for high-performance DNA analysis. Mol Biotechnol 2004; 26(2):147–163.PubMedCrossRefGoogle Scholar
  34. 34.
    Tost J, Gut IG. Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications. Clin Biochem 2005; 38(4):335–350.PubMedCrossRefGoogle Scholar
  35. 35.
    Null AP, Muddiman DC. Perspectives on the use of electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for short tandem repeat genotyping in the postgenome cra. J Mass Spectrom 2001; 36(6):589–606PubMedCrossRefGoogle Scholar
  36. 36.
    Hofstadler SA, Sannes-Lowery KA, Hannis JC. Analysis of nucleic acids by FTICR MS. Mass Spectrom Rev 2005; 24(2):265–285.PubMedCrossRefGoogle Scholar
  37. 37.
    Ross PL, Belgrader P. Analysis of short tandem repeat polymorphisms in human DNA by matrix-assisted laser desorption ionization mass spectrometry. Anal Chem 1997; 69(19):3966–3972.PubMedCrossRefGoogle Scholar
  38. 38.
    Braun A, Little DP, Reuter D et al. Improved analysis of microsatellites using mass spectrometry. Genomics 1997; 46(1):18–23.PubMedCrossRefGoogle Scholar
  39. 39.
    Butler JM, Li J, Shaler TA et al. Reliable genotyping of short tandem repeat loci without an allelic ladder using time-of-flight mass spectrometry. Int J Legal Med 1998; 112(1):45–49.CrossRefGoogle Scholar
  40. 40.
    Ross PL, Davis PA, Belgrader P. Analysis of DNA fragments from conventional and microfabricated PCR devices using delayed extraction MALDI-TOF mass spectrometry. Anal Chem 1998; 70(10):2067–2073.PubMedCrossRefGoogle Scholar
  41. 41.
    Taranenko NI, Potter NT, Allman SL et al. Detection of trinucleotide expansion in neurodegenerative disease by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Genet Anal 1999; 15(1):25–31.PubMedGoogle Scholar
  42. 42.
    Krebs S, Seichter D, Forster M. Genotyping of dinucleotide tandem repeats by MALDI mass spectrometry of ribozyme-cleaved RNA transcripts. Nature Biotechnol 2001; 19(9):877–880.CrossRefGoogle Scholar
  43. 43.
    Paris M, Jones MGK. Microsatellite genotyping by primer extension and MALDI-ToF mass spectrometry. Plant Mol Biol Rep 2002; 20(3):259–263.CrossRefGoogle Scholar
  44. 44.
    Braun A, Little DP, Koster H. Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin Chem 1997; 43(7):1151–1158.PubMedGoogle Scholar
  45. 45.
    Shaler TA, Wickham JN, Sannes KA et al. Effect of impurities on the matrix-assisted laser desorption mass spectra of single-stranded oligodeoxynucleotides. Anal Chem 1996; 68(3):576–579.PubMedCrossRefGoogle Scholar
  46. 46.
    Nordhoff E, Ingendoh A, Cramer R et al. Matrix-assisted laser desorption/ionization mass spectrometry of nucleic acids with wavelengths in the ultraviolet and infrared. Rapid Comm Mass Spectrom 1992; 6(12):771–776.CrossRefGoogle Scholar
  47. 47.
    Wu KJ, Steding A, Becker CH. Matrix-assisted laser desorption time-of-flight mass spectrometry of oligonucleotides using 3-hydroxypicolinic acid as an ultraviolet-sensitive matrix. Rapid Comm Mass Spectrom 1993; 7(2):142–146.CrossRefGoogle Scholar
  48. 48.
    Little DP, Cornish TJ, Odonnell MJ et al. MALDI on a chip: Analysis of arrays of low femtomole to subfemtomole quantities of synthetic oligonucleotides and DNA diagnostic products dispensed by a piezoelectric piper. Anal Chem 1997; 69(22):4540–4546.CrossRefGoogle Scholar
  49. 49.
    Ross P, Hall L, Haff LA. Quantitative approach to single-nucleotide polymorphism analysis using MALDI-TOF mass spectrometry. Biotechniques 2000; 29(3):620–629.PubMedGoogle Scholar
  50. 50.
    Mohlke KL, Erdos MR, Scott LJ et al. High-throughput screening for evidence of association by using mass spectrometry genotyping on DNA pools. Proc Natl Acad Sci USA 2002; 99(26):16928–16933.PubMedCrossRefGoogle Scholar
  51. 51.
    Tang K, Fu DJ, Julien D et al. Chip-based genotyping by mass spectrometry. Proc Natl Acad Sci USA 1999; 96(18):10016–10020.PubMedCrossRefGoogle Scholar
  52. 52.
    ODonnell MJ, Tang K, Koster H et al. High density, covalent attachment of DNA to silicon wafers for analysis by MALDI-TOF mass spectrometry. Anal Chem 1997; 69(13):2438–2443.CrossRefGoogle Scholar
  53. 53.
    Kang C, Kwon Y-S, Kim YT et al. Mass spectrometric methods for sequencing nucleic acids. US Patrend 6,268,131,2001.Google Scholar
  54. 54.
    Koster H, Little DP, Braun A et al. DNA diagnosis based on mass spectrometry. US Patent Application 20020042112 2002.Google Scholar
  55. 55.
    Wenzel T, Elssner T, Fahr K et al. Genosnip: SNP genotyping by MALDI-TOF MS using photocleavable oligonucleotides. Nucleosides Nucleotides Nucleic Acids 2003; 22(5–8):1579–1581.PubMedCrossRefGoogle Scholar
  56. 56.
    Sauer S, Lehrach H, Reinhardt R. MALDI mass spectrometry analysis of single nucleotide polymorphisms by photocleavage and charge-tagging. Nucleic Acids Res 2003; 31(11).Google Scholar
  57. 57.
    Vallone PM, Fahr K, Kostrzewa M. Genotyping SNPs using a UV-photocleavable oligonucleotide in MALDI-TOF MS. Methods Mol Biol 2005; 297:169–178.PubMedGoogle Scholar
  58. 58.
    Oberacher H, Niederstatter H, Casetra B et al. Detection of DNA sequence variations in homo-and heterozygous samples via molecular mass measurement by electrospray ionization time-of-flight mass spectrometry. Anal Chem 2005; 77(15):4999–5008.PubMedCrossRefGoogle Scholar
  59. 59.
    Null AP, Hannis JC, Muddiman DC. Genotyping of simple and compound short tandem repeat loci using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 2001; 73(18):4514–4521.PubMedCrossRefGoogle Scholar
  60. 60.
    Little DP, Speir JP, Senko MW et al. Infrared Multiphoton Dissociation of Large Multiply-Charged Ions for Biomolecule Sequencing. Anal Chem 1994; 66(18):2809–2815.PubMedCrossRefGoogle Scholar
  61. 61.
    Little DP, Aaserud DJ, Valaskovic GA et al. Sequence information from 42-108-mer DNAs (complete for a 50-mer) by tandem mass spectrometry. J Am Chem Soc 1996; 118(39):9352–9359.CrossRefGoogle Scholar
  62. 62.
    Zhang S, Van Pelt CK. Chip-based nanoelectrospray mass spectrometry for protein characterization. Expert Rev Proteomics 2004; 1(4):449–468.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang S, Van Pelt CK, Henion JD. Automated chip-based nanoelectrospray-mass spectrometry for rapid identification of proteins separated by two-dimensional gel electrophoresis. Electrophoresis 2003; 24(21):3620–3632.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  1. 1.School of Biological SciencesNanyang Technological UniversitySingapore

Personalised recommendations