Integrating Sample Processing and Detection with Microchip Capillary Electrophoresis of DNA

  • Adam T. Woolley
Part of the Biotechnology Intelligence Unit book series (BIOIU)


DNA is the storage medium for inherited information in living systems and thus, techniques for nucleic acid analysis are of great importance. Integrated microchip instrumentation for rapid separation of DNA by capillary electrophoresis (CE) has emerged as an especially promising approach for assaying genetic material. Improvements in separation capabilities and sample capacity have made CE microdevices compatible with the rapid, high-throughput analysis needs in DNA studies. Perhaps the most critical advantage of adopting a microchip format for DNA characterization is the ability to couple sample handling operations, separation and miniaturized detection instrumentation seamlessly on a single device. Indeed, recent work with micromachined, portable PCR-CE systems indicates the exceptional promise of integrated DNA analysis microchips. Lastly, phase-changing sacrificial layer fabrication methods for polymer microdevices should lead to inexpensive, high-performance DNA characterization microchips. Continued progress in integrated microdevices for DNA analysis will enhance capabilities for medical, biological and forensic work.


Capillary Electrophoresis Microfluidic Device Capillary Electrophoresis Microchip Electrophoresis Chip Contactless Conductivity Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mikkers FEP, Everaerts FM, Verheggen TPEM. High-performance zone electrophoresis. J Chromatogr 1979; 169:11–20.CrossRefGoogle Scholar
  2. 2.
    Jorgenson JW, Lukacs KD. Zone electrophoresis in open-tubular glass capillaries. Anal Chem 1981; 53:1298–1302.CrossRefGoogle Scholar
  3. 3.
    Kasper TJ, Melera M, Gozel P et al. Separation and detection of DNA by capillary electrophoresis. J Chromatogr 1988; 458:303–312.PubMedCrossRefGoogle Scholar
  4. 4.
    Cohen AS, Najarian D, Smith JA et al. Rapid separation of DNA restriction fragments using capillary electrophoresis. J Chromatogr 1988; 458:323–333.PubMedCrossRefGoogle Scholar
  5. 5.
    Drossman H, Luckey JA, Kostichka AJ et al. High-speed separations of DNA sequencing reactions by capillary electrophoresis. Anal Chem 1990; 62:900–903.PubMedCrossRefGoogle Scholar
  6. 6.
    Huang XC, Quesada MA, Mathies RA. DNA sequencing using capillary array electrophoresis. Anal Chem 1992; 64:2149–2154.PubMedCrossRefGoogle Scholar
  7. 7.
    Huang XC, Quesada MA, Mathies RA. Capillary array electrophoresis using laser-excited confocal fluorescence detection. Anal Chem 1992; 64:967–972.CrossRefGoogle Scholar
  8. 8.
    Mathies RA, Huang XC. Capillary array electrophoresis: An approach to high-speed, high-throughput DNA sequencing. Nature 1992; 359:167–169.CrossRefGoogle Scholar
  9. 9.
    Manz A, Harrison DJ, Verpoorte EMJ et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip, J Chromatogr 1992; 593:253–258.CrossRefGoogle Scholar
  10. 10.
    Woolley AT, Mathies RA. Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc Natl Acad Sci USA 1994; 91:11348–11352.PubMedCrossRefGoogle Scholar
  11. 11.
    Effenhauser CS, Paulus A, Manz A et al. High-speed separation of antisense oligonucleotides on a micromachined capillary electrophoresis device. Anal Chem 1994; 66:2949–2953.CrossRefGoogle Scholar
  12. 12.
    Woolley AT, Mathies RA. Ultra-high-speed DNA sequencing using capillary electrophoresis chips. Anal Chem 1995; 67:3676–3680.PubMedCrossRefGoogle Scholar
  13. 13.
    Schmalzing D, Adourian A, Koutny L et al. DNA sequencing on microfabricated electrophoretic devices. Anal Chem 1998; 70:2303–2310.PubMedCrossRefGoogle Scholar
  14. 14.
    Carrilho E, Ruiz-Martinez MC, Berka J et al. Rapid DNA sequencing of more than 1000 bases per run by capillary electrophoresis using replaceable linear polyacrylamide solutions. Anal Chem 1996; 68:3305–3313.PubMedCrossRefGoogle Scholar
  15. 15.
    Liu S, Shi Y, Ja WW et al. Optimization of high-speed DNA sequencing on microfabricated capillary electrophoresis channels. Anal Chem 1999; 71:566–573.PubMedCrossRefGoogle Scholar
  16. 16.
    Woolley AT, Sensabaugh GF, Mathies RA. High-speed DNA genotyping using microfabricated capillary array electrophoresis chips. Anal Chem 1997; 69:2181–2186.PubMedCrossRefGoogle Scholar
  17. 17.
    Simpson PC, Roach D, Woolley AT et al. High throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates. Proc Natl Acad Sci USA 1998; 95:2256–2261.PubMedCrossRefGoogle Scholar
  18. 18.
    Shi Y, Simpson PC, Scherer JR et al. Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis. Anal Chem 1999; 71:5354–5361.PubMedCrossRefGoogle Scholar
  19. 19.
    Paegel BM, Emrich CA, Wedemayer GJ et al. High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. Proc Natl Acad Sci USA 2002; 99:574–579.PubMedCrossRefGoogle Scholar
  20. 20.
    Emrich CA, Tian H, Medintz IL et al. Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal Chem 2002; 74:5076–5083.PubMedCrossRefGoogle Scholar
  21. 21.
    Woolley AT, Hadley D, Landre P et al. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal Chem 1996; 68:4081–4086.PubMedCrossRefGoogle Scholar
  22. 22.
    Waters LC, Jacobson SC, Kroutchinina N et al. Multiple sample PCR amplification and electrophoretic analysis on a microchip. Anal Chem 1998; 70:5172–5176.PubMedCrossRefGoogle Scholar
  23. 23.
    Giordano BC, Ferrance J, Swedberg S et al. Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. Anal Biochem 2001; 291:124–132.PubMedCrossRefGoogle Scholar
  24. 24.
    Ferrance JP, Wu QR, Giordano B et al. Developments toward a complete micro-total analysis system for Duchenne muscular dystrophy diagnosis. Anal Chim Acta 2003; 500:223–236.CrossRefGoogle Scholar
  25. 25.
    Lagally ET, Emrich CA, Mathies RA. Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab Chip 2001; 1:102–107.PubMedCrossRefGoogle Scholar
  26. 26.
    Lagally ET, Medintz I, Mathies RA. Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal Chem 2001; 73:565–570.PubMedCrossRefGoogle Scholar
  27. 27.
    Kopp MU, de Mello AJ, Manz A. Chemical amplification: Continuous-flow PCR on a chip. Science 1998; 280:1046–1048.PubMedCrossRefGoogle Scholar
  28. 28.
    Krishnan N, Agrawal N, Burns MA et al. Reactions and fluidics in miniaturized natural convection systems. Anal Chem 2004; 76:6254–6265.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen JF, Wabuyele M, Chen HW et al. Electrokinetically synchronized polymerase chain reaction microchip fabricated in polyarbonate. Anal Chem 2005; 77:658–666.PubMedCrossRefGoogle Scholar
  30. 30.
    Breadmore MC, Wolfe KA, Arcibal IG et al. Microchip-based purification of DNA from biological samples. Anal Chem 2003; 75:1880–1886.PubMedCrossRefGoogle Scholar
  31. 31.
    Olsen KG, Ross DJ, Tarlov MJ. Immobilization of DNA hydrogel plugs in microfluidic channels. Anal Chem 2002; 74:1436–1441.PubMedCrossRefGoogle Scholar
  32. 32.
    Paegel BM, Yeung SHI, Mathies RA. Microchip bioprocessor for integrated nanovolume sample purification and DNA sequencing. Anal Chem 2002; 74:5092–5098.PubMedCrossRefGoogle Scholar
  33. 33.
    Lagally ET, Scherer JR, Blazej RG et al. Integrated portable genetic analysis microsystem for pathogen/ infectious disease detection. Anal Chem 2004; 76:3162–3170.PubMedCrossRefGoogle Scholar
  34. 34.
    Woolley AT, Lao K, Glazer AN et al. Capillary electrophoresis chips with integrated electrochemical detection. Anal Chem 1998; 70:684–688.PubMedCrossRefGoogle Scholar
  35. 35.
    Jackson DJ, Naber JF, Roussel TJ et al. Portable high-voltage power supply and electrochemical detection circuits for microchip capillary electrophoresis. Anal Chem 2003; 75:3643–3649.PubMedCrossRefGoogle Scholar
  36. 36.
    Ertl P, Emrich CA, Singhal P et al. Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system. Anal Chem 2004; 76:3749–3755.PubMedCrossRefGoogle Scholar
  37. 37.
    Guijt RM, Baltussen E, van der Steen G et al. New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection. Electrophoresis 2001; 22:235–241.PubMedCrossRefGoogle Scholar
  38. 38.
    Liu Y, Wipf DO, Henry CS. Conductivity detection for monitoring mixing reactions in microfluidic devices. Analyst 2001; 126:1248–1251.PubMedCrossRefGoogle Scholar
  39. 39.
    Galloway M, Stryjewski W, Henry A et al. Contact conductivity detection in poly(methyl methacylate)-based microfluidic devices for analysis of mono-and polyainomic molecules. Anal Chem 2002; 74:2407–2415.PubMedCrossRefGoogle Scholar
  40. 40.
    Guijt RM, Baltussen E, van der Steen G et al. Capillary electrophoresis with on-chip four-electrode capacitively coupled conductivity detection for application in bioanalysis. Electrophoresis 2001; 22:2537–2541.PubMedCrossRefGoogle Scholar
  41. 41.
    Pumera M, Wang J, Opekar F et al. Contactless conductivity detector for microchip capillary electrophoresis. Anal Chem 2002; 74:1968–1971.PubMedCrossRefGoogle Scholar
  42. 42.
    Abad-Villar EM, Kuban P, Hauser PC. Determination of biochemical species on electrophoresis chips with an external contactless conductivity detector. Electrophoresis 2005; 26:3609–3614.PubMedCrossRefGoogle Scholar
  43. 43.
    Burns MA, Johnson BN, Brahmasandra SN et al. An integrated nanoliter DNA analysis device. Science 1998; 282:484–487.PubMedCrossRefGoogle Scholar
  44. 44.
    Webster JR, Burns MA, Burke DT et al. Monolithic capillary electrophoresis device with integrated fluorescence detector. Anal Chem 2001; 73:1622–1626PubMedCrossRefGoogle Scholar
  45. 45.
    Uchiyama K, Xu W, Qiu JM et al. Polyester microchannel chip for electrophoresis—incorporation of a blue LED as light source. Fresenius J Anal Chem 2001; 371:209–211.PubMedCrossRefGoogle Scholar
  46. 46.
    Chabinyc ML, Chiu DT, McDonald JC et al. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem 2001;73:4491–4498.PubMedCrossRefGoogle Scholar
  47. 47.
    Xu F, Jabasini M, Baba Y. DNA separation by microchip electrophoresis using low-viscosity hydroxypro-pylecellulose-50 solutions enhanced by polyhydroxy compounds. Electrophoresis 2002; 23:3608–3614.PubMedCrossRefGoogle Scholar
  48. 48.
    Wainright A, Nguyen UT, Bjornson T et al. Preconcentration and separation of double-stranded DNA fragments by electrophoresis in plastic microfluidic devices. Electrophoresis 2003; 24:3784–3792.PubMedCrossRefGoogle Scholar
  49. 49.
    Llopis SD, Stryjewski W, Soper SA Near-infrared time-resolved fluorescence lifetime determinations in poly(methylmethacrylate) microchip electrophoresis devices. Electrophoresis 2004; 25:3810–3819.PubMedCrossRefGoogle Scholar
  50. 50.
    Buch JS, Kimball C, Rosenberger F et al. DNA mutation detection in a polymer microfluidic network using temperature gradient gel electrophoresis. Anal Chem 2004; 76:874–881.PubMedCrossRefGoogle Scholar
  51. 51.
    Shi Y, Anderson RC. High-resolution single-stranded DNA analysis on 4.5 cm plastic electrophoretic microchannels. Electrophoresis 2003; 24:3371–3377.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhu L, Stryjewski WJ, Soper SA. Multiplexed fluorescence detection in microfabricated devices with both time-resolved and spectral-discrimination capabilities using near-infrared fluorescence. Anal Biochem 2004; 330:206–218.PubMedCrossRefGoogle Scholar
  53. 53.
    Kelly RT, Pan T, Woolley AT. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips. Anal Chem 2005; 77:3536–3541.PubMedCrossRefGoogle Scholar
  54. 54.
    Scherer JR, Paegel BM, Wedemayer GJ et al. High-pressure gel loader for capillary array electrophoresis microchannel plates. BioTechniques 2001; 31:1150–1154.PubMedGoogle Scholar
  55. 55.
    Liu J, Pan T, Woolley AT et al. Surface-modified poly(methyl methacrylate) capillary electrophoresis microchips for protein and peptide analysis. Anal Chem 2004; 76:6948–6955.PubMedCrossRefGoogle Scholar
  56. 56.
    Xiao D, Le TV, Wirth MJ. Surface modification of the channels of poly(dimethylsiloxane) microfluidic chips with polyacrylamide for fast electrophoretic separations of proteins. Anal Chem 2004; 76:2055–2061.PubMedCrossRefGoogle Scholar
  57. 57.
    Liu J, Sun X, Lee ML. Surface-reactive acrylic copolymer for fabrication of microfluidic devices. Anal Chem 2005; 77:6280–6287.PubMedCrossRefGoogle Scholar
  58. 58.
    Kelly RT, Woolley AT. Electric field gradient focusing. J Sep Sci 2005; 28:1985–1993.PubMedCrossRefGoogle Scholar
  59. 59.
    Kelly RT, Li Y, Woolley AT. Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable hydrogels. Anal Chem 2006; 78:2565–2570.PubMedCrossRefGoogle Scholar
  60. 60.
    Khandurina J, Jacobson SC, Waters LC et al. Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Anal Chem 1999; 71:1815–1819.PubMedCrossRefGoogle Scholar
  61. 61.
    Khandurina J, McKnight TE, Jacobson SC et al. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem 2000; 72:2995–3000.PubMedCrossRefGoogle Scholar
  62. 62.
    Simpson PC, Woolley AT, Mathies RA. Microfabrication technology for the production of capillary array electrophoresis chips. J Biomed Microdevices 1998; 1:7–26.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  1. 1.C100 BNSN, Department of Chemistry and BiochemistryBrigham Young UniversityProvoUSA

Personalised recommendations