Self-Contained, Fully Integrated Biochips for Sample Preparation, PCR Amplification and DNA Microarray Analysis

  • Robin Hui Liu
  • Piotr Grodzinski
  • Jianing Yang
  • Ralf Lenigk
Part of the Biotechnology Intelligence Unit book series (BIOIU)


Rapid developments in back-end detection platforms (such as DNA microarrays, capillary electrophoresis, real-time polymerase chain reaction and mass spectroscopy) for genetic analysis have shifted the bottleneck to front-end sample preparation where the ‘real’ samples are used. In this chapter, we present a fully integrated biochip device that can perform on-chip sample preparation (including magnetic bead-based cell capture, cell preconcentration and purification and cell lysis) of complex biological sample solutions (such as whole blood), polymerase chain reaction, DNA hybridization and electrochemical detection. This fully automated and miniature device consists of microfluidic mixers, valves, pumps, channels, chambers, heaters and DNA microarray sensors. Cavitation microstreaming was implemented to enhance target cell capture from whole blood samples using immunomagnetic beads and accelerate DNA hybridization reaction. Thermally actuated paraffin-based microvalves were developed to regulate flows. Electrochemical pumps and thermopneumatic pumps were integrated on the chip to provide pumping of liquid solutions. The device is completely self-contained: no external pressure sources, fluid storage, mechanical pumps, or valves are necessary for fluid manipulation, thus eliminating possible sample contamination and simplifying device operation. Pathogenic bacteria detection from ≈ mL whole blood samples and single-nucleotide polymorphism analysis directly from diluted blood were demonstrated. The device provides a cost-effective solution to direct sample-to-answer genetic analysis and thus has a potential impact in the fields of point-of-care genetic analysis, environmental testing and biological warfare agent detection.


Polymerase Chain Reaction Cell Capture Polymerase Chain Reaction Thermal Cycling Molten Paraffin Polymerase Chain Reaction Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burns MA, Johnson BN, Brahmasandra SN et al. An integrated nanoliter DNA analysis device. Science 1998; 282(5388):484–487.PubMedCrossRefGoogle Scholar
  2. 2.
    Wilding P, Kricka LJ, Cheng J et al. Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal Biochem 1998; 257(2):95–100.PubMedCrossRefGoogle Scholar
  3. 3.
    Kricka L. Miniaturization of analytical systems. Clin Chem 1998; 44(9):2008=2014.PubMedGoogle Scholar
  4. 4.
    Shi YN, Simpson PC, Scherer JR et al. Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis. Anal Chem 1999; 71(23):5354–5361.PubMedCrossRefGoogle Scholar
  5. 5.
    Fodor SPA, Read JL, Pirrung MC et al. Light-Directed, Spatially Addressable Parallel Chemical Synthesis. Science 1991; 251:767–773.PubMedCrossRefGoogle Scholar
  6. 6.
    Harrison DJ, Fluri K, Seiler K et al. Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical-Analysis System on a Chip. Science 1993; 261(5123):895–897.PubMedCrossRefGoogle Scholar
  7. 7.
    Simpson PC, Roach D, Woolley AT et al. High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates. Proc Natl Acad Sci USA 1998; 95(5):2256–2261.PubMedCrossRefGoogle Scholar
  8. 8.
    Anderson RC, Su X, Bogdan GJ et al. A miniature integrated device for automated multistep genetic assays. Nucleic Acids Res 2000; 28(12):e60.PubMedCrossRefGoogle Scholar
  9. 9.
    Lenigk R, Liu RH, Athavale M et al. Plastic biochannel hybridization devices: a new concept for microfluidic DNA arrays. Anal Biochem 2002; 311(1):40–49.PubMedCrossRefGoogle Scholar
  10. 10.
    Taylor MT, Belgrader P, Joshi R et al. Fully Automated Sample Preparation for Pathogen Detection Performed in a Microfluidic Cassette. Micro Total Analysis Systems 2001:670–672.Google Scholar
  11. 11.
    Liu YJ, Rauch CB, Stevens RL et al. DNA amplification and hybridization assays in integrated plastic monolithic devices. Anal Chem 2002; 74(13):3063–3070.PubMedCrossRefGoogle Scholar
  12. 12.
    Thorsen T, Maerkl SJ, Quake SR. Microfluidic large-scale integration. Science 2002; 298(5593):580–584.PubMedCrossRefGoogle Scholar
  13. 13.
    Yuen PK, Kricka LJ, Fortina P et al. Microchip module for blood sample preparation and nucleic acid amplification reactions. Genome Res 2001; 11(3):405–412.PubMedCrossRefGoogle Scholar
  14. 14.
    Khandurina J, McKnight TE, Jacobson SC et al. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem 2000; 72(13):2995–3000.PubMedCrossRefGoogle Scholar
  15. 15.
    Waters LC, Jacobson SC, Kroutchinina N et al. Microchip device for cell lysis, multiplex PCR amplification and electrophoretic sizing. Anal Chem 1998; 70(1):158–162.PubMedCrossRefGoogle Scholar
  16. 16.
    Whitesides GM, Stroock AD. Flexible Methods For Microfluidics. Physics Today 2001; 54(6):42–48.CrossRefGoogle Scholar
  17. 17.
    Boone T, Fan ZH, Hooper H et al. Plastic advances microfluidic devices. Anal Chem 2002; 74(3):78A–86A.PubMedCrossRefGoogle Scholar
  18. 18.
    Cheng J, Sheldon EL, Wu L et al. Preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips. Nat Biotechnol 1998; 16(6):541–546.PubMedCrossRefGoogle Scholar
  19. 19.
    Beebe DJ, Moore JS, Bauer JM et al. Functional structures for autonomous flow control inside microfluidic channels. Nature 2000; 404:588–590.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu RH, Yu Q, Beebe DJ. Fabrication and Characterization of Hydrogel-based Microvalves. J Microelectromechan Syst 2002; 11:45–53.CrossRefGoogle Scholar
  21. 21.
    Zeng SL, Chen CH, Santiago JG et al. Electroosmotic flow pumps with polymer frits. Sens Actuators B Chem 2002; 82(2–3):209–212.CrossRefGoogle Scholar
  22. 22.
    Dodson JM, Feldstein MJ, Leatzow DM et al. Fluidics cube for biosensor miniaturization. Anal Chem 2001; 73(15):3776–3780.PubMedCrossRefGoogle Scholar
  23. 23.
    Tsai JH, Lin LW. A thermal-bubble-actuated micronozzle-diffuser pump. J Microelectromechan Syst 2002; 11(6):665–671.CrossRefGoogle Scholar
  24. 24.
    Bohm S, Olthuis W, Bergveld P. A plastic micropump constructed with conventional techniques and materials. Sens Actuators A Phys 1999; 77(3):223–228.CrossRefGoogle Scholar
  25. 25.
    Harrison DJ, Manz A, Fan Z et al. Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip. Anal Chem 1992; 64:1926–1932.CrossRefGoogle Scholar
  26. 26.
    Wilding P, Pfahler J, Bau HH et al. Manipulation and Flow of Biological-Fluids in Straight Channels Micromachined in Silicon. Clin Chem 1994; 40(1):43–47.PubMedGoogle Scholar
  27. 27.
    Xia YN, Whitesides GM. Soft lithography. Annual Review of Materials Science 1998; 28:153–184.CrossRefGoogle Scholar
  28. 28.
    Piner RD, Zhu J, Xu F et al. “Dip-pen” nanolithography. Science 1999; 283(5402):661–663.PubMedCrossRefGoogle Scholar
  29. 29.
    Alonso-Amigo MG, Becker H. Microdevices fabricated by polymer hot embossing. Abstr Pap Am Chem Soc 2000; 219:468–COLL.Google Scholar
  30. 30.
    Becker H, Dietz W, Dannberg P. Microfluidic Manifolds by Polymer Hot Embossing for Micro Total Analysis System Applications. Paper presented at: uTas 98, 1998; Banff, Canada.Google Scholar
  31. 31.
    Grodzinski P, Liu RH, Chen H et al. Development of Plastic Microfluidic Devices for Sample Preparation. Biomed Microdevices 2001; 3(4):275.CrossRefGoogle Scholar
  32. 32.
    Waters LC, Jacobson SC, Kroutchinina N et al. Microchip Device for Cell Lysis, Multiplex PCR Amplification and Electrophoretic Sizing. Anal Chem 1998; 70:158–162.PubMedCrossRefGoogle Scholar
  33. 33.
    Woollery AT, Hadley D, Landre P et al. Functional integration of PCR amplification and capillary electrophresis in a microfabricated DNA analysis device. Anal Chem 1996; 68(23):4081–4086.CrossRefGoogle Scholar
  34. 34.
    Liu RH, Yang J, Lenigk R et al. Self-contained, Fully Integrated Biochip for Sample preparation, PCR amplification and DNA Microarray Detection. Anal Chem 2004; 76:1824–1832.PubMedCrossRefGoogle Scholar
  35. 35.
    Farkas DH. Bioelectronic DNA chips for the clinical laboratory. Clin Chem 2001; 47(10):1871–1872.PubMedGoogle Scholar
  36. 36.
    Umek RM, Lin SW, Vielmetter J et al. Electronic detection of nucleic acids-A versatile platform for molecular diagnostics. J Mol Diagn 2001; 3(2):74–84.PubMedGoogle Scholar
  37. 37.
    Liu RH, Stremler M, Sharp KV et al. A Passive Micromixer: 3-D C-shape Serpentine Microchannel. J Microelectromechan Syst 2000; 9(2):190–197.CrossRefGoogle Scholar
  38. 38.
    Oddy MH, Santiago JG, Mikkelsen JC. Electrokinetic Instability Micromixing. Anal Chem 2001; 73(24):5822–5832.PubMedCrossRefGoogle Scholar
  39. 39.
    Branebjerg J, Gravesen P, Krog JP et al. Fast mixing by lamination. Paper presented at: MEMS’96, 1996: San Diego, CA.Google Scholar
  40. 40.
    Stroock AD, Dertinger SKW, Ajdari A et al. Chaotic mixer for microchannels. Science 2002; 295(5555):647–651.PubMedCrossRefGoogle Scholar
  41. 41.
    Moroney RM, White RM, Howe RT. Ultrasonically induced microtransport. Paper presented at: MEMS’95, 1995; The Netherlands.Google Scholar
  42. 42.
    Zhu X, Kim ES. Microfluidic Motion Generation with Acoustic Waves. Sens Actuators A Phys 1998; 66(1–3):355–360.CrossRefGoogle Scholar
  43. 43.
    Liu RH, Yang J, Pindera MZ et al. Bubble-Induced Acoustic Micromixing. Lab Chip 2002; 2(3):151–157.PubMedCrossRefGoogle Scholar
  44. 44.
    Liu RH, Lenigk R, Yang J et al. Hybridization Enhancement Using Cavitation Microstreaming. Anal Chem 2003; 75:1911–1917.PubMedCrossRefGoogle Scholar
  45. 45.
    Nyborg WL. Acoustic streaming near a boundary. J Acoust Soc Am 1958; 30:329–339.CrossRefGoogle Scholar
  46. 46.
    Henning AK, Fitch J, Falsken E et al. A thermopneumatically actuated microvalve for liquid expansion and proportional control. Paper presented at: Technical Digest of TRANSDUCERS’97: the 1997 International Conference on Solid-State Sensors and Actuators 1997, 1997; Chicago, IL.Google Scholar
  47. 47.
    Selvaganapathy P, Carlen ET, Mastrangelo CH. Electrothermally actuated inline microfluidic valve. Sens Actuators A Phys 2003; 104:275–282.CrossRefGoogle Scholar
  48. 48.
    Jerman H. Electrically-activated, normally-closed diaphragm valves. J Micromech Microeng 1994; 4:210–216.CrossRefGoogle Scholar
  49. 49.
    Barth PW, Beatty CC, Field LA et al. A robust normally closed silicon microvalve. Paper presented at: IEEE Solid-State Sensors and Actuator Workshop 1994, 1994; Hilton Head, SC.Google Scholar
  50. 50.
    Ray CA, Sloan CL, Johnson AD et al. A Silicon-based Shape Memory Alloy Microvalve. Mater Res Soc Symp 1992; 276:161–166.Google Scholar
  51. 51.
    Huff MA, Schmidt MA. Fabrication, Packaging and Testing of a Wafer-Bonded Microvalve. Paper presented at: IEEE Solid-State Sensor and Actuator Workshop 1992; Hilton Head Island, SC.Google Scholar
  52. 52.
    Shoji S, Schoot BVd, Rooij Nd et al. Smallest Dead Volume Microvalves for Integrated Chemical Analyzing Systems. Paper presented at: Tech. Digest, Transducers’ 91: the 1991 International Conference on Solid-State Sensors and Actuators 1991; San Francisco, CA.Google Scholar
  53. 53.
    Meckes J, Behrens J, Benecke W. Electromagnetically Driven Microvalve Fabricated in Silicon. Paper presented at: Transducers’ 97, 1997.Google Scholar
  54. 54.
    Unger MA, Chou H, Thorsen T et al. Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography. Science 2000; 288:113–116.PubMedCrossRefGoogle Scholar
  55. 55.
    Kovacs GTA. Micromachined Transducers Sourcebook. Boston: WCB McGraw-Hill 1998.Google Scholar
  56. 56.
    Liu RH, Bonanno J, Stevens R et al. Thermally Actuated Paraffin Microvalves. Proc Micro Total Analysis Systems 2002, Kluwer Academic Publisher, Dordrecht, The Netherlands 2002:163–165.Google Scholar
  57. 57.
    Yu C, Mutlu S, Selvaganapathy P et al. Flow Control Valves for Analytical Microfluidic Chips without Mechanical Parts Based on Thermally Responsive Monolithic Polymers. Anal Chem 2003; 75:1958–1961.PubMedCrossRefGoogle Scholar
  58. 58.
    Su YC, Lin LW, Pisano AP. A water-powered osmotic microactuator. J Microelectromechan Syst 2002; 11(6):736–742.CrossRefGoogle Scholar
  59. 59.
    Zengerle R, Skluge S, Richter M et al. A Bidirectional Silicon Micropump. Sens Actuators A Phys 1995; 50:81–86.Google Scholar
  60. 60.
    Bohm S, Olthuis W, Bergveld P. An Integrated Micromachined Electrochemical Pump and Dosing System. Biomed Microdevices 1999; 1(2):121–130.PubMedCrossRefGoogle Scholar
  61. 61.
    Fodor SP, Read JL, Pirrung MC et al. Light-directed, spatially addressable parallel chemical synthesis. Science 1991; 251(4995):767–773.PubMedCrossRefGoogle Scholar
  62. 62.
    Fortina P, Delgrosso K, Sakazume T et al. Simple two-color array-based approach for mutation detection. EJHG 2000; 8:884–894.PubMedCrossRefGoogle Scholar
  63. 63.
    Harrison DJ, Fluri K, Seiler K et al. Micromachining a Miniarurized Capillary Electrophoresis-based Chemical Analysis System on a Chip. Science 1993; 261:895–897.PubMedCrossRefGoogle Scholar
  64. 64.
    Manz A, Harrison DJ, Verpoorte E et al. Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring Systems: Capillary Electrophoresis on a Chip. J of Chromatogr 1992; 593:253–258.CrossRefGoogle Scholar
  65. 65.
    Woolley AT, Mathies RA. Ultra-High-Speed DNA Fragment Separations Using Microfabricated Capilary Array Electrophoresis. Proc Natl Acad Sci USA 1994; 91:11348.PubMedCrossRefGoogle Scholar
  66. 66.
    Wilding P, Kricka LJ, Cheng J et al. Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal Biochem 1998; 257(2):95–100.PubMedCrossRefGoogle Scholar
  67. 67.
    Cheng J, Fortina P, Surrey S et al. Microchip-based Devices for Molecular Diagnosis of Genetic Diseases. J Mol Diagn 1996; 1(3):183–200.CrossRefGoogle Scholar
  68. 68.
    Cheng J, Shoffner MA, Hvichia GE et al. II. Investigation of different PCR amplification systems in microbabricated silicon-glass chips. Nucleic Acids Res 1996; 24(2):380–385.PubMedCrossRefGoogle Scholar
  69. 69.
    Becker FF, Wang X-B, Huang Y et al. Separation of human breast cancer cells from blood by differential diectric affinity. Proc Nat Acad Sci USA 1995; 92:860–864.PubMedCrossRefGoogle Scholar
  70. 70.
    Gascoyne PRC, Vykoukal J. Particle separation by dielectrophoresis. Electrophoresis 2002; 23:1973.PubMedCrossRefGoogle Scholar
  71. 71.
    Cheng J, Sheldon EL, Wu L et al. Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip. Anal Chem 1998; 70(11):2321–2326.PubMedCrossRefGoogle Scholar
  72. 72.
    Ward MD, Quan J, Grodzinski P. Metal-Polymer Hybrid Microchannels for Microfluidic High Gradient Separations. Eur Cell Mater 2002; 3:123.Google Scholar
  73. 73.
    Saito M, Kitamura F, Terauchi M. Ultrasonic Manipulation of locomotive microorganisms and evaluation of their activity. J Appl Phys 2002; 92(12):7581–7586.CrossRefGoogle Scholar
  74. 74.
    Cheng J, Kricka LJ, Sheldon EL et al. Sample preparation in microstructured devices. Microsystem Technology in Chemistry and Life Science Vol 194; 1998:215–231.CrossRefGoogle Scholar
  75. 75.
    Kopp M, De Mello A, Manz A. Chemical amplification: Continuous-Flow PCR on a chip. Science 1998; 280:1046–1048.PubMedCrossRefGoogle Scholar
  76. 76.
    Wilding P, Shoffner MA, Kricka LJ. PCR in a silicon microstructure. Clin Chem 1994; 40(9):1815–1818.PubMedGoogle Scholar
  77. 77.
    Belgrader P, Benett W, Hadley D et al. PCR detection of bacteria in seven minutes. Science 1999; 284(5413):449–450.PubMedCrossRefGoogle Scholar
  78. 78.
    Boone T, Hooper H, Soane D. Integrated chemical analysis on plastic microfluidic devices. Paper presented at: Solid-State Sensor and Actuator 1998, 1998; Hilton head Island, South Carolina.Google Scholar
  79. 79.
    Kricka L, Fortina P, Panaro N et al. Fabrication of plastic microchips by hot embossing. Lab Chip 2002; 2:1–4.PubMedCrossRefGoogle Scholar
  80. 80.
    Yu H, Sethu P, Chan T et al. A Miniaturized and Integrated Plastic Thermal Chemical Reactor for Genetic Analysis. Paper presented at: uTAS 2000, 2000; The Netherlands.Google Scholar
  81. 81.
    Lagally ET, Simpson PC, Mathies RA. Monolithic integrated microfluidic DNA amplification and capillary electrophoresisanalysis system. Sens Actuators B Chem 2000; 63:138–146.CrossRefGoogle Scholar
  82. 82.
    Giordano B, Ferrance J, Swedberg S et al. Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. Anal Biochem 2001; 291:124–132.PubMedCrossRefGoogle Scholar
  83. 83.
    Lagally ET, Medintz I, Mathies RA. Single-Molecule DNA Amplification and Analysis in an Integrated Microfluidic Device. Anal Chem 2001; 73:565–570.PubMedCrossRefGoogle Scholar
  84. 84.
    Nagai H, Murakami Y, Morita Y et al. Development of a microchamber array for picoliter PCR. Anal Chem 2001; 73:1043–1047.PubMedCrossRefGoogle Scholar
  85. 85.
    Khandurina J, Meknight TE, Jacobson SC et al. Integrated System for Rapid PCR-Based DNA Analysis in Microfluidic Devices. Anal Chem 2000; 72:2995–3000.PubMedCrossRefGoogle Scholar
  86. 86.
    Alonso-Amigo G. Polymer Microfabrication for Microarrays, Microreactors and Microfluidics. J Assoc Lab Aut 2000; 5:96–101.CrossRefGoogle Scholar
  87. 87.
    Grodzinski P, Liu RH, Chen H et al. Development of Plastic Microfluidic Devices for Sample Preparation. Biomed Microdevices 2001; 3(4):275.CrossRefGoogle Scholar
  88. 88.
    Yang J, Liu Y, Rauch CB et al. High sensitivity PCR assay in plastic micro reactors. Lab Chip 2002; 2:179–187.PubMedCrossRefGoogle Scholar
  89. 89.
    Cheng J, Waters LC, Fortina P et al. Degenerate oligonucleotide primed-polymerase chain reaction and capillary electrophoretic analysis of human DNA on microchip-based devices. Anal Biochem 1998; 257(2):101–106.PubMedCrossRefGoogle Scholar
  90. 90.
    Northrup MA, al e. A Miniature Analytical Instrument for Nucleic Acids Based on Micromachined Silicon Reaction Chambers. Anal Chem 1998; 70:918–922.PubMedCrossRefGoogle Scholar
  91. 91.
    Cheek BJ, Steel AB, Torres MP et al. Chemiluminescence Detection for Hybridization Assays on the Flow-Thru Chip, a Three-Dimensional Microchannel Biochip. Anal Chem 2001; 73:5777–5783.PubMedCrossRefGoogle Scholar
  92. 92.
    Sosnowski R, Tu E, Butler W et al. Rapid Determination of Single Base Mismatch Mutations in DNA Hybrids by Direct Electric Field Control. Proc Natl Acad Sci USA 1997; 94:1119–1123.PubMedCrossRefGoogle Scholar
  93. 93.
    Edman C, Raymond D, Wu D et al. Electric Field Directed Nucleic Acid Hybridization on Microchips. Nucl Acids Res 1998; 25:4907–4914.CrossRefGoogle Scholar
  94. 94.
    Moroney RM, White RM, Howe RT. Microtransport Induced by Ultrasonic Lamb Waves. Appl Phys Lett 1991; 59:774–776.CrossRefGoogle Scholar
  95. 95.
    Ward MD, Quan J, Grodzinski P. High gradient magnetic separation microchannels for integrated microfluidic devices. Eur Cell Mater 2002; 3:123–125.Google Scholar
  96. 96.
    Burckhardt J. Amplification of DNA from Whole-Blood. PCR-Methods and Applications. 1994; 3(4):239–243.PubMedGoogle Scholar
  97. 97.
    Panaccio M, Georgesz M, Lew AM. FoLT PCR: a simple PCR protocol for amplifying DNA directly from whole blood. Biotechniques. 1993; 14(2):238–243.PubMedGoogle Scholar
  98. 98.
    Woolley AT, Hadley D, Landre P et al. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal Chem 1996; 68(23):4081–4086.PubMedCrossRefGoogle Scholar
  99. 99.
    Ibrahim MS, Lofts RS, Jahrling PB et al. Real-time microchip PCR for detecting single-base differences in viral and human DNA. Anal Chem 1998; 70(9):2013–2017.PubMedCrossRefGoogle Scholar
  100. 100.
    Klein D. Quantification using real-time PCR technology: applications and limitations. Trends Mol Med 2002; 8(6):257–260.PubMedCrossRefGoogle Scholar
  101. 101.
    Umek RM, Lin SS, Chen YP et al. Bioelectronic detection of point mutations using discrimination of the H63D polymorphism of the Hfe gene as a model. Mol Diagn 2000; 5(4):321–328.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Robin Hui Liu
    • 1
  • Piotr Grodzinski
    • 2
  • Jianing Yang
    • 3
  • Ralf Lenigk
    • 3
  1. 1.Osmetech Molecular DiagnosticsPasadenaUSA
  2. 2.National Cancer InstituteBethesdaUSA
  3. 3.Applied NanoBioscience CenterArizona State UniversityTempeUSA

Personalised recommendations