Advertisement

Integrated Molecular Analyses of Biological Samples on a Bead-Based Microarray Platform

  • Joanne M. Yeakley
  • Daniel A. Peiffer
  • Marina Bibikova
  • Tim McDaniel
  • Kevin L. Gunderson
  • Richard Shen
  • Bahram G. Kermani
  • Lixin Zhou
  • Eugene Chudin
  • Shawn C. Baker
  • Kenneth M. Kuhn
  • Frank Steemers
  • Mark Hansen
  • Michael Graige
  • Celeste McBride
  • Steven Barnard
  • Bob Kain
  • David Barker
  • Jian-Bing Fan
Part of the Biotechnology Intelligence Unit book series (BIOIU)

Abstract

Molecular analyses of biological samples have traditionally been pursued in parallel, with those researchers studying genetic diversity having few technical approaches in common with those studying gene expression. Increasingly, scientists recognize the importance of integrating analytical technologies to further research, particularly into emerging fields such as epigenetics and the genetics of gene expression. In this chapter, we describe a suite of applications that take advantage of the Illumina® bead-based microarrays, all of which are read out on a single analytical instrument. The integration of whole genome genotyping, high throughput focused genotyping, whole transcriptome expression profiling, focused expression profiling of fresh or preserved tissues, allele-specific expression profiling and DNA methylation assays on the BeadArray™ Reader allows researchers to expand their perspectives, from whole genomes to single bases, from genetics to expression and on to epigenetics.

Keywords

Complexity Of500 GoldenGate Assay Bead Type Address Sequence Hemizygous Deletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nelson SF, McCusker JH, Sander MA et al. Genomic mismatch scanning: a new approach to genetic linkage mapping. Nat Genet 1993; 4(1):11–18.PubMedCrossRefGoogle Scholar
  2. 2.
    Schena M, Shalon D, Davis RW et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270:467–470.PubMedCrossRefGoogle Scholar
  3. 3.
    Golub TR, Slonim DK, Tamayo P et al. Molecular classification of cancer: class discovery and cleass prediction by gene expression monitoring. Science 1999; 286:531–537.PubMedCrossRefGoogle Scholar
  4. 4.
    Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumors. Nature 2000; 406:747–752.PubMedCrossRefGoogle Scholar
  5. 5.
    Welsh JB, Sapinoso LM, Su AI et al. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 2001; 61:5974–5978.PubMedGoogle Scholar
  6. 6.
    Fan JB, Chee MS, Gunderson KL. Highly parallel genomic assays. Nat Rev Genet 2006; 7(8):632–644.PubMedCrossRefGoogle Scholar
  7. 7.
    Heller MJ. DNA microarray technology: devices, systems and applications. Annu Rev Biomed Eng 2002; 4:129–153.PubMedCrossRefGoogle Scholar
  8. 8.
    Peeters JK, Van der Spek PJ. Growing applications and advancements in microarray technology and analysis tools. Cell Biochem Biophys 2005; 43(1):149–166.PubMedCrossRefGoogle Scholar
  9. 9.
    Weeraratna AT, Nagel JE, de Mello-Coelho V et al. Gene expression profiling: from microarrays to medicine. J Clin Immunol 2004; 24(3):213–224.PubMedCrossRefGoogle Scholar
  10. 10.
    Bucca G, Carruba G, Sactta A et al. Gene expression profiling of human cancers. Ann NY Acad Sci 2004; 1028:28–37.PubMedCrossRefGoogle Scholar
  11. 11.
    Gibson, G. Microarray analysis: genome-scale hypothesis scanning. PloS Biol 2003; 1(1):E15 Epub 2003.PubMedCrossRefGoogle Scholar
  12. 12.
    Lipshutz RJ, Fodor SP, Gingeras TR et al. High density synthetic oligonucleotide arrays. Nat Genet 1999; 21(1 Suppl):20–24.PubMedCrossRefGoogle Scholar
  13. 13.
    Gunderson KL, Kruglyak S, Graige MS et al. Decoding randomly ordered DNA arrays. Genome Res 2004; 14:870–877.PubMedCrossRefGoogle Scholar
  14. 14.
    Barker DL, Theriault G, Che D et al. Profiling alternatively spliced mRNA isoforms for prostate cancer. BMC Bioinform 2006; 7:202.CrossRefGoogle Scholar
  15. 15.
    Fan JB, Oliphant A, Shen R et al. Highly parallel SNP genotyping. CSHL Symp Quant Biol 2003; 68:69–78.CrossRefGoogle Scholar
  16. 16.
    Shen R, Fan JB, Campbell D et al. High-throughput SNP genotyping on universal bead arrays. Mutation Res 2005; 573(1–2):70–82.PubMedGoogle Scholar
  17. 17.
    Saarela J, Kallio SP, Chen D et al. PRKCA and multiple sclerosis: association in two independent populations. PLoS Genetics 2006; 2(3):e42 Epub 2006.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang C, Cawley S, Liu G et al. Gene expression profiles in formalin-fixed, paraffin-embedded tissues obtained with a novel assay for microarray analysis. Clin Chem 2004; 50(12):2384–2386.CrossRefGoogle Scholar
  19. 19.
    Altshuler D, Brooks LD, Chakravarti A et al. A survey of the human genome. Nature 2005; 437(7063):1299–1320.CrossRefGoogle Scholar
  20. 20.
    Fan JB, Yeakley JM, Bibikova M et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429:457–463.CrossRefGoogle Scholar
  21. 21.
    Li HR, Wang-Rodriquez J, Nair TM et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res 2006; 16:383–393.CrossRefGoogle Scholar
  22. 22.
    Zhang C, Li HR, Fan JB et al. Profiling alternatively spliced mRNA isoforms for prostate cancer. BMC Bioinform 2006; 7:202.CrossRefGoogle Scholar
  23. 23.
    Yeakley JM, Fan JB, Doucet D et al. Profiling alternative splicing on fiber-optic arrays. Nat Biotech 2002; 20:353–358.CrossRefGoogle Scholar
  24. 24.
    Bibikova M, Talantov D, Chudin E et al. NTera2: A model system to study dopaminergic differentiation of human embryonic stem cells. Stem Cells & Devel 2005; 14517–534.CrossRefGoogle Scholar
  25. 25.
    Bova GS, Eltoum IA, Kiernan JA et al. Optimal molecular profiling of tissue and tissue components: defining the best processing and microdissection methods for biomedical applications. Methods Mol Med 2005; 103:15–66.PubMedGoogle Scholar
  26. 26.
    Bibikova M, Yeakley JM, Chudin E et al. Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucl Acids Res 2005; 33(18):5914–5923.CrossRefGoogle Scholar
  27. 27.
    Bibikova M, Chudin E, Arsanjani A et al. Gene Expression Profiles to Predict Relapse of Prostate Cancer. J Mol Diagn 2006 submitted.Google Scholar
  28. 28.
    Knight JC. Allele-specific gene expression uncovered. Trends Genet 2004; 20(3):113–116.PubMedCrossRefGoogle Scholar
  29. 29.
    Pastinen T, Sladek R, Gurd S et al. A survey of genetic and epigenetic variation affecting human gene expression. Physiol Genomics 2003; 16:184–193.CrossRefGoogle Scholar
  30. 30.
    Bibikova M unpublished results.Google Scholar
  31. 31.
    Egger G, Liang G, Aparicio A et al. Genome-wide associations of gene expression variation in humans. PLoS Genet 2005: 1(6):e78.CrossRefGoogle Scholar
  32. 32.
    Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005; 6(8):597–610.PubMedCrossRefGoogle Scholar
  33. 33.
    Hoque MO, Feng Q, Toure P et al. Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J Clin Oncol 2006; [Epub ahead of print].Google Scholar
  34. 34.
    Bibikova M, Lin Z, Zhou L et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res 2006; 16:383–393.PubMedCrossRefGoogle Scholar
  35. 35.
    Bibikova M, Chudin E, Wu B et al. Human embryonic stem cells have a unique epigenetic signature. Genome Res 2006; [Epub ahead of print].Google Scholar
  36. 36.
    Kuhn K, Baker SC, Chudin E et al. A novel, high-performance random array platform for quantitative gene expression profiling. Genome Res 2004; 14:2347–2356.PubMedCrossRefGoogle Scholar
  37. 37.
    Chudin E, Kruglyak S, Baker SC et al. A model of technical variation of microarray signals. J Comput Biol 2005; 1(6):e65.Google Scholar
  38. 38.
    Schwartz CM, Spivak CE, Baker SC et al. NTera2: A model system to study dopaminergic differentiation of human embryonic stem cells. Stem Cells & Devel 2005; 14:517–534.CrossRefGoogle Scholar
  39. 39.
    Cai J, Chen J, Lui Y et al. Assessing self-renewal and differentiation in hESC lines. Stem Cells 2006; 24(3):516–530, published online 2005.PubMedCrossRefGoogle Scholar
  40. 40.
    Barnes M, Freudenberg J, Thompson S et al. Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucl Acids Res 2005; 33(18):5914–5923.PubMedCrossRefGoogle Scholar
  41. 41.
    Debey S, Zander T, Brors B et al. A highly standardized, robust and cost-effective method for genome-wide transcriptome analysis of peripheral blood applicable to large-scale clinical trials. Genomics 2006; 87(5):653–654.PubMedCrossRefGoogle Scholar
  42. 42.
    Stranger BE, Forrest MS, Clark AG et al. Genome-wide associations of gene expression variation in humans. PLoS Genet 2005; 1(6):c78.CrossRefGoogle Scholar
  43. 43.
    Seal JL, Gornick MC, Gogtay N et al. Segmental uniparental isodisomy on 5q32-qter in a patient with childhood-onset schizophrenia. J Med Genet 2006; epub.Google Scholar
  44. 44.
    Gunderson KL, Steemers FJ, Lee G et al. A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 2005; 37(5):549–554.PubMedCrossRefGoogle Scholar
  45. 45.
    Steemers FJ, Chang W, Lee G et al. Whole-genome genotyping with the single-base extension assay. Nat Methods 2006; 3(1):31–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Gunderson KL, Kuhn KM, Steemers FJ et al. Whole-genome genotyping of haplotype tag single nucleotide polymorphisms. Pharmacogenomics 2006; 7(4):641–648.PubMedCrossRefGoogle Scholar
  47. 47.
    Amos CI, Chen WV, Lee A et al. High-density SNP analysis of 642 Caucasian families with rheumatoid arthritis identifies two new linkage regions on 11p12 and 2q33. Genes Immun 2006; 7(4):277–86 Epub 2006.PubMedCrossRefGoogle Scholar
  48. 48.
    LaFramboise T, Weir BA, Zhao X et al. Allele-specific amplification in cancer revealed by SNP array analysis. PLoS Comput Biol 2005; 1(6):e65.PubMedCrossRefGoogle Scholar
  49. 49.
    Albertson DG, Collins C, McCormick F et al. Chromosome aberrations in solid tumors. Nat Genet 2003; 34(4):369–376.PubMedCrossRefGoogle Scholar
  50. 50.
    Greenwald BD, Harpaz N, Yin J et al. Loss of heterozygosity affecting the p53, Rb and mcc/apc tumor suppressor gene loci in dysplastic and cancerous ulcerative colitis Cancer Res 1992; 52(3):741–745PubMedGoogle Scholar
  51. 51.
    Struski S, Doco-Fenzy M and Cornillet-Lefebvre P. Compilation of published comparative genomic hybridization studies. Cancer Genet Cytogenet 2002; 135(1):63–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Peiffer DA, Le JM, Steemers FJ et al. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 2006; [Epub ahead of print].Google Scholar
  53. 53.
    Schwab M. Oncogene amplification in solid tumors. Semin Cancer Biol 1999; 9(4):319–325.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Joanne M. Yeakley
    • 1
  • Daniel A. Peiffer
    • 1
  • Marina Bibikova
    • 1
  • Tim McDaniel
    • 1
  • Kevin L. Gunderson
    • 1
  • Richard Shen
    • 1
  • Bahram G. Kermani
    • 1
  • Lixin Zhou
    • 1
  • Eugene Chudin
    • 1
  • Shawn C. Baker
    • 1
  • Kenneth M. Kuhn
    • 1
  • Frank Steemers
    • 1
  • Mark Hansen
    • 1
  • Michael Graige
    • 1
  • Celeste McBride
    • 1
  • Steven Barnard
    • 1
  • Bob Kain
    • 1
  • David Barker
    • 1
  • Jian-Bing Fan
    • 1
  1. 1.Illumina, Inc.San DiegoUSA

Personalised recommendations