Skip to main content

Beyond Microtechnology—Nanotechnology in Molecular Diagnosis

  • Chapter
Book cover Integrated Biochips for DNA Analysis

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Advances in technology have led to significant improvements in our ability to detect and diagnose disease. In particular, the advent of nucleic acid technology has allowed unparalleled insight into the genetic basis of disease and a highly specific means to detect and diagnose infectious disease. A further technological advance, dating back to the 1980s, has been the use of microfabrication techniques widely utilized in the microelectronics imdustry to fabricate the use of microfabrication techniques widely utilized in the microelectronics industry to fabricate microminiaturized analyzers1,2. These devices have simplified and improved various steps in typical genetic test procedures, such as cell isolation and selection, nucleic acid extraction, amplification (PCR, RTR-PCR, LCR) and quantitation of nucleic acids (e.g., quantitative microchip capillary electrophoresis of PCR amplicons)35. More importantly integration of the analytical steps in nucleic acid assays can be achieved in a microchip format (lab-on-a-chip)6. For example, an integrated microchip was developed that performs cell isolation, cell lysis, nucleic acid purification and recovery in nanoliter volumes 7,8. Other microchips combine various steps such as DNA amplification and capillary electrophoresis9 or electrochemical detection10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harrison DJ, Manz A, Fan ZH et al. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem 1992; 64:1926–1932.

    Article  CAS  Google Scholar 

  2. Cheng J, Kricka LJ eds. Biochip Technology. Philadelphia, Pa: Harwood Academic, 2001:1–372.

    Google Scholar 

  3. Dolnik V, Liu S. Applications of capillary electrophoresis on microchip. J Sep Sci 2005; 28:1994–2009.

    Article  PubMed  CAS  Google Scholar 

  4. Kricka LJ, Wilding P, Microchip PCR. Anal Bioanal Chem 2003; 377:820–825.

    Article  PubMed  CAS  Google Scholar 

  5. Lin YW, Huang MF, Chang HT. Nanomaterials and chip-based nanostructures for capillary electrophoretic separations of DNA. Electrophoresis 2005; 26:320–330.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson RC, Su X, Bogdan GJ et al. A miniature integrated device for automated multistep genetic assays. Nucleic Acids Res 2000; 28:e60.

    Article  Google Scholar 

  7. Hong JW, Quake SR. Integrated nanoliter systems. Nat Biotechnol 2003; 21:1179–1183.

    Article  PubMed  CAS  Google Scholar 

  8. Hong JW, Studer V, Hang G et al. A nanoliter-scale nucleic acid processor with parallel architecture. Nat Biotechnol 2004; 22:435–439.

    Article  PubMed  CAS  Google Scholar 

  9. Lagally ET, Emrich CA, Mathies RA. Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab Chip 2001;1:102–107.

    Article  PubMed  CAS  Google Scholar 

  10. Lee TM, Carles MC, Hsing IM. Microfabricated PCR-electrochemical device for simultaneous DNA amplification and detection. Lab Chip 2003; 3:100–105.

    Article  PubMed  CAS  Google Scholar 

  11. Taniguchi N. On the basic concept of nano-technology. Proc Intl Conf Prod Eng 1974; Tokyo, Part II, Japan Soc Precision Engineering.

    Google Scholar 

  12. Keiper A. Nanotechnology History: A Non-technical Primer. The New Atlantis 2003; Summer:17–34 (www.The NewAtlantis.com)

    Google Scholar 

  13. Drexler KE. Engines of Creation: The Coming Era of Nanotechnology, New York: Anchor Books, 1986.

    Google Scholar 

  14. Drexler KE. Nanosystems: Molecular Machinery, Manufacturing and Computation. New York: Wiley, 1991.

    Google Scholar 

  15. Eigler DM, Schweizer EK. Positioning single atoms with a scanning tunneling microscope. Nature 1990; 344:524–526.

    Article  CAS  Google Scholar 

  16. Berg P, Baltimore D, Brenner S et al. Summary statement of the Asilomar Conference on recombinant DNA molecules. Proc Natl Acad Sci USA 1975; 72:1981–1984.

    Article  PubMed  CAS  Google Scholar 

  17. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113:823–839.

    Article  PubMed  CAS  Google Scholar 

  18. Nel A, Xia T, Madler L et al. Toxic potential of material at the nanolevel. Science 2006; 311:622–627.

    Article  PubMed  CAS  Google Scholar 

  19. Oberdorster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 2004; 112:1058–1062.

    PubMed  CAS  Google Scholar 

  20. Brown DM, Wilson MR, MacNee W et al. Size-dependent pro-inflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 2001; 175:191–199.

    Article  PubMed  CAS  Google Scholar 

  21. Gates BD, Xu Q, Stewart M et al. New approaches to nanofabrication: molding, printing and other techniques. Chem Rev 2005; 105:1171–1196.

    Article  PubMed  CAS  Google Scholar 

  22. Ginger DS, Zhang H, Mirkin CA. The evolution of dip-pen nanolithography. Angew Chem Int Ed 2004; 43:30–45.

    Article  CAS  Google Scholar 

  23. Tang Q, Shi SQ, Zhou L. Nanofabrication with atomic force microscopy. J Nanosci Nanotech 2004; 4:948–963.

    Article  CAS  Google Scholar 

  24. Lee KB, Kim EY, Mirkin CA et al. The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus type I in plasma. Nano Lett 2004; 4:1869–1872.

    Article  CAS  Google Scholar 

  25. Lee KB, Park SJ, Mirkin CA et al. Protein nanoarrays generated by pip-pen nanolithography. Science 2002; 295:1702–1705.

    Article  PubMed  CAS  Google Scholar 

  26. Johanson J, Abravaya K, Caminiti W et al. A new ultrasensitive assay for quantitation of HIV-1 RNA in plasma. J Virol Methods 2001; 95:81–92.

    Article  PubMed  CAS  Google Scholar 

  27. Demers LM, Ginger DS, Park SJ et al. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 2002; 296:1836–1838.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang H, Li Z, Mirkin CA. Dip-pen nanolithography-based methodology for preparing arrays of nanostructures functionalized with oligonucleotides. Adv Mater 2002; 14:1472–1474.

    Article  CAS  Google Scholar 

  29. Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties and applications. Angew Chem Int Ed 2004; 43:6042–6108.

    Article  CAS  Google Scholar 

  30. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev 2005; 105: 1547–1562.

    Article  PubMed  CAS  Google Scholar 

  31. Wang J. Nanomaterial-based amplified trnasduction of biomolecular interactions. Small 2005; 1:1036–1043.

    Article  PubMed  CAS  Google Scholar 

  32. Storhoff JJ, Elghanian R, Mucic R et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Am Chem Soc 1998; 120:1959–1964.

    Article  CAS  Google Scholar 

  33. Willner I, Patolsky F, Weizmann Y et al. Amplified detection of single-base mismatches in DNA using microgravimetric quartz-crystal-microbalance transduction. Talanta 2002; 56:847–856.

    Article  PubMed  CAS  Google Scholar 

  34. Wang J, Liu G, Polsky R. Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem Comm 2002; 4:722–726.

    Article  CAS  Google Scholar 

  35. Wang J, Xu D, Kawde AN et al. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem 2001; 73:5576–5581.

    Article  PubMed  CAS  Google Scholar 

  36. Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassay based on a colloidal gold label. Anal Chem 2000; 72:5521–5528.

    Article  PubMed  CAS  Google Scholar 

  37. Wang J, Polsky R, Danke X. Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization. Langmuir 2001; 17:5739–5741.

    Article  CAS  Google Scholar 

  38. Authier L, Grossiord C, Brossier P. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem 2001; 73:4450–4456.

    Article  PubMed  CAS  Google Scholar 

  39. Cai H, Wang Y, He P et al. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal Chim Acta 2002; 469:165–172.

    Article  CAS  Google Scholar 

  40. Lee TM, Li L, Hsing IM. Enhanced electrochemical detection of DNA hybridization based on electrode-surface modification. Langmuir 2003; 19:4338–4343.

    Article  CAS  Google Scholar 

  41. Wang J, Polsky R, Merkoci A et al. Electroactive beads for ultrasensitive DNA detection. Langmuir 2003; 19:989–991.

    Article  CAS  Google Scholar 

  42. Ozsoz M, Erdem A, Kerman K et al. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Anal Chem 2003; 75:2181–2187.

    Article  PubMed  CAS  Google Scholar 

  43. Kawde A, Wang J. Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis 2004; 16:101–107.

    Article  CAS  Google Scholar 

  44. Wang J, Li J, Baca AJ et al. Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 2003; 75:3941–3945.

    Article  PubMed  CAS  Google Scholar 

  45. Park SJ, Taton TA, Mirkin CA. Array-based electrical detection of DNA with nanoparticle probes. Science 2002; 295:1503–1506.

    Article  PubMed  CAS  Google Scholar 

  46. Han M, Gao X, Su JZ et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 2001; 19:631–635

    Article  PubMed  CAS  Google Scholar 

  47. Wang J, Liu G, Jan R et al. Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem Comm 2003; 5:1000–1004.

    Article  CAS  Google Scholar 

  48. Wang J, Liu G, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc 2003; 125:3214–3215.

    Article  PubMed  CAS  Google Scholar 

  49. Liu G, Lee TM, Wang J. Nanocrystal-based bioelectronic coding of single nucleotide polymorphisms. J Am Chem Soc 2005; 127:38–39.

    Article  PubMed  CAS  Google Scholar 

  50. Kerman K, Saito M, Morita Y et al. Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Anal Chem 2004; 76:1877–1884.

    Article  PubMed  CAS  Google Scholar 

  51. Liu G, Wang J, Kim J et al. Electrochemical coding for multiplexed immunoassays of proteins. Anal Chem 2004; 76:7126–7130.

    Article  PubMed  CAS  Google Scholar 

  52. Trau D, Yang W, Seydack M et al. Nanoencapsulated microcrystalline, particles for superamplified biochemical assays. Anal Chem 2002; 74:5480–5486.

    Article  PubMed  CAS  Google Scholar 

  53. Mak WC, Cheung KY, Trau D et al. Electrochemical bioassay utilizing encapsulated electrochemical active microcrystal biolabels. Anal Chem 2005; 77:2835–2841.

    Article  PubMed  CAS  Google Scholar 

  54. Deamer DW, Branton D. Characterization of nucleic acids by nanopore analysis. Acc Chem Res 2002; 35:817–825.

    Article  PubMed  CAS  Google Scholar 

  55. Deamer DW, Akeson M. Nanopores and nucleic acids: prospects for ultrarapid sequencing. Trends Biotechnol 2000; 18:147–151.

    Article  PubMed  CAS  Google Scholar 

  56. Li J, Gershow M, Stein D et al. DNA molecules and configurations in a solid state nanopore microscope. Nat Mater 2003; 2:611–615.

    Article  PubMed  CAS  Google Scholar 

  57. Sauer JR, Zeghbroeck J van. Ultra-fast nucleic acid sequencing device and a method for making the same. US Patent 2002; 6:413–792.

    Google Scholar 

  58. Kasianowicz JJ, Brandin E, Branton D et al. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 1996; 93:13770–13777.

    Article  PubMed  CAS  Google Scholar 

  59. Li J, Ng T, Cassell A et al. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 2003; 3:597–602.

    Article  CAS  Google Scholar 

  60. Margulies M, Eghold M, Altman WE et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437:326–330.

    Article  CAS  Google Scholar 

  61. Austin R. Nanopores: the art of sucking spaghetti. Nat Mater 2003; 2:567–568

    Article  PubMed  CAS  Google Scholar 

  62. Zheng GF, Patolsky F, Cui Y et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol 2005; 23:1294–1301.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Fortina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Fortina, P., Wang, J., Surrey, S., Park, J.Y., Kricka, L.J. (2007). Beyond Microtechnology—Nanotechnology in Molecular Diagnosis. In: Liu, R.H., Lee, A.P. (eds) Integrated Biochips for DNA Analysis. Biotechnology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76759-8_13

Download citation

Publish with us

Policies and ethics