Beyond Microtechnology—Nanotechnology in Molecular Diagnosis

  • Paolo Fortina
  • Joseph Wang
  • Saul Surrey
  • Jason Y. Park
  • Larry J. Kricka
Part of the Biotechnology Intelligence Unit book series (BIOIU)


Advances in technology have led to significant improvements in our ability to detect and diagnose disease. In particular, the advent of nucleic acid technology has allowed unparalleled insight into the genetic basis of disease and a highly specific means to detect and diagnose infectious disease. A further technological advance, dating back to the 1980s, has been the use of microfabrication techniques widely utilized in the microelectronics imdustry to fabricate the use of microfabrication techniques widely utilized in the microelectronics industry to fabricate microminiaturized analyzers1,2. These devices have simplified and improved various steps in typical genetic test procedures, such as cell isolation and selection, nucleic acid extraction, amplification (PCR, RTR-PCR, LCR) and quantitation of nucleic acids (e.g., quantitative microchip capillary electrophoresis of PCR amplicons)3, 4, 5. More importantly integration of the analytical steps in nucleic acid assays can be achieved in a microchip format (lab-on-a-chip)6. For example, an integrated microchip was developed that performs cell isolation, cell lysis, nucleic acid purification and recovery in nanoliter volumes 7,8. Other microchips combine various steps such as DNA amplification and capillary electrophoresis9 or electrochemical detection10.


Human Immunodeficiency Virus Type Gold Nanoparticle Molecular Diagnosis Nanoscale Material Nucleic Acid Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harrison DJ, Manz A, Fan ZH et al. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem 1992; 64:1926–1932.CrossRefGoogle Scholar
  2. 2.
    Cheng J, Kricka LJ eds. Biochip Technology. Philadelphia, Pa: Harwood Academic, 2001:1–372.Google Scholar
  3. 3.
    Dolnik V, Liu S. Applications of capillary electrophoresis on microchip. J Sep Sci 2005; 28:1994–2009.PubMedCrossRefGoogle Scholar
  4. 4.
    Kricka LJ, Wilding P, Microchip PCR. Anal Bioanal Chem 2003; 377:820–825.PubMedCrossRefGoogle Scholar
  5. 5.
    Lin YW, Huang MF, Chang HT. Nanomaterials and chip-based nanostructures for capillary electrophoretic separations of DNA. Electrophoresis 2005; 26:320–330.PubMedCrossRefGoogle Scholar
  6. 6.
    Anderson RC, Su X, Bogdan GJ et al. A miniature integrated device for automated multistep genetic assays. Nucleic Acids Res 2000; 28:e60.CrossRefGoogle Scholar
  7. 7.
    Hong JW, Quake SR. Integrated nanoliter systems. Nat Biotechnol 2003; 21:1179–1183.PubMedCrossRefGoogle Scholar
  8. 8.
    Hong JW, Studer V, Hang G et al. A nanoliter-scale nucleic acid processor with parallel architecture. Nat Biotechnol 2004; 22:435–439.PubMedCrossRefGoogle Scholar
  9. 9.
    Lagally ET, Emrich CA, Mathies RA. Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab Chip 2001;1:102–107.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee TM, Carles MC, Hsing IM. Microfabricated PCR-electrochemical device for simultaneous DNA amplification and detection. Lab Chip 2003; 3:100–105.PubMedCrossRefGoogle Scholar
  11. 11.
    Taniguchi N. On the basic concept of nano-technology. Proc Intl Conf Prod Eng 1974; Tokyo, Part II, Japan Soc Precision Engineering.Google Scholar
  12. 12.
    Keiper A. Nanotechnology History: A Non-technical Primer. The New Atlantis 2003; Summer:17–34 (www.The Scholar
  13. 13.
    Drexler KE. Engines of Creation: The Coming Era of Nanotechnology, New York: Anchor Books, 1986.Google Scholar
  14. 14.
    Drexler KE. Nanosystems: Molecular Machinery, Manufacturing and Computation. New York: Wiley, 1991.Google Scholar
  15. 15.
    Eigler DM, Schweizer EK. Positioning single atoms with a scanning tunneling microscope. Nature 1990; 344:524–526.CrossRefGoogle Scholar
  16. 16.
    Berg P, Baltimore D, Brenner S et al. Summary statement of the Asilomar Conference on recombinant DNA molecules. Proc Natl Acad Sci USA 1975; 72:1981–1984.PubMedCrossRefGoogle Scholar
  17. 17.
    Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113:823–839.PubMedCrossRefGoogle Scholar
  18. 18.
    Nel A, Xia T, Madler L et al. Toxic potential of material at the nanolevel. Science 2006; 311:622–627.PubMedCrossRefGoogle Scholar
  19. 19.
    Oberdorster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 2004; 112:1058–1062.PubMedGoogle Scholar
  20. 20.
    Brown DM, Wilson MR, MacNee W et al. Size-dependent pro-inflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 2001; 175:191–199.PubMedCrossRefGoogle Scholar
  21. 21.
    Gates BD, Xu Q, Stewart M et al. New approaches to nanofabrication: molding, printing and other techniques. Chem Rev 2005; 105:1171–1196.PubMedCrossRefGoogle Scholar
  22. 22.
    Ginger DS, Zhang H, Mirkin CA. The evolution of dip-pen nanolithography. Angew Chem Int Ed 2004; 43:30–45.CrossRefGoogle Scholar
  23. 23.
    Tang Q, Shi SQ, Zhou L. Nanofabrication with atomic force microscopy. J Nanosci Nanotech 2004; 4:948–963.CrossRefGoogle Scholar
  24. 24.
    Lee KB, Kim EY, Mirkin CA et al. The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus type I in plasma. Nano Lett 2004; 4:1869–1872.CrossRefGoogle Scholar
  25. 25.
    Lee KB, Park SJ, Mirkin CA et al. Protein nanoarrays generated by pip-pen nanolithography. Science 2002; 295:1702–1705.PubMedCrossRefGoogle Scholar
  26. 26.
    Johanson J, Abravaya K, Caminiti W et al. A new ultrasensitive assay for quantitation of HIV-1 RNA in plasma. J Virol Methods 2001; 95:81–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Demers LM, Ginger DS, Park SJ et al. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 2002; 296:1836–1838.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang H, Li Z, Mirkin CA. Dip-pen nanolithography-based methodology for preparing arrays of nanostructures functionalized with oligonucleotides. Adv Mater 2002; 14:1472–1474.CrossRefGoogle Scholar
  29. 29.
    Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties and applications. Angew Chem Int Ed 2004; 43:6042–6108.CrossRefGoogle Scholar
  30. 30.
    Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev 2005; 105: 1547–1562.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang J. Nanomaterial-based amplified trnasduction of biomolecular interactions. Small 2005; 1:1036–1043.PubMedCrossRefGoogle Scholar
  32. 32.
    Storhoff JJ, Elghanian R, Mucic R et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Am Chem Soc 1998; 120:1959–1964.CrossRefGoogle Scholar
  33. 33.
    Willner I, Patolsky F, Weizmann Y et al. Amplified detection of single-base mismatches in DNA using microgravimetric quartz-crystal-microbalance transduction. Talanta 2002; 56:847–856.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang J, Liu G, Polsky R. Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem Comm 2002; 4:722–726.CrossRefGoogle Scholar
  35. 35.
    Wang J, Xu D, Kawde AN et al. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem 2001; 73:5576–5581.PubMedCrossRefGoogle Scholar
  36. 36.
    Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassay based on a colloidal gold label. Anal Chem 2000; 72:5521–5528.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang J, Polsky R, Danke X. Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization. Langmuir 2001; 17:5739–5741.CrossRefGoogle Scholar
  38. 38.
    Authier L, Grossiord C, Brossier P. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem 2001; 73:4450–4456.PubMedCrossRefGoogle Scholar
  39. 39.
    Cai H, Wang Y, He P et al. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal Chim Acta 2002; 469:165–172.CrossRefGoogle Scholar
  40. 40.
    Lee TM, Li L, Hsing IM. Enhanced electrochemical detection of DNA hybridization based on electrode-surface modification. Langmuir 2003; 19:4338–4343.CrossRefGoogle Scholar
  41. 41.
    Wang J, Polsky R, Merkoci A et al. Electroactive beads for ultrasensitive DNA detection. Langmuir 2003; 19:989–991.CrossRefGoogle Scholar
  42. 42.
    Ozsoz M, Erdem A, Kerman K et al. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Anal Chem 2003; 75:2181–2187.PubMedCrossRefGoogle Scholar
  43. 43.
    Kawde A, Wang J. Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis 2004; 16:101–107.CrossRefGoogle Scholar
  44. 44.
    Wang J, Li J, Baca AJ et al. Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 2003; 75:3941–3945.PubMedCrossRefGoogle Scholar
  45. 45.
    Park SJ, Taton TA, Mirkin CA. Array-based electrical detection of DNA with nanoparticle probes. Science 2002; 295:1503–1506.PubMedCrossRefGoogle Scholar
  46. 46.
    Han M, Gao X, Su JZ et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 2001; 19:631–635PubMedCrossRefGoogle Scholar
  47. 47.
    Wang J, Liu G, Jan R et al. Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem Comm 2003; 5:1000–1004.CrossRefGoogle Scholar
  48. 48.
    Wang J, Liu G, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc 2003; 125:3214–3215.PubMedCrossRefGoogle Scholar
  49. 49.
    Liu G, Lee TM, Wang J. Nanocrystal-based bioelectronic coding of single nucleotide polymorphisms. J Am Chem Soc 2005; 127:38–39.PubMedCrossRefGoogle Scholar
  50. 50.
    Kerman K, Saito M, Morita Y et al. Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Anal Chem 2004; 76:1877–1884.PubMedCrossRefGoogle Scholar
  51. 51.
    Liu G, Wang J, Kim J et al. Electrochemical coding for multiplexed immunoassays of proteins. Anal Chem 2004; 76:7126–7130.PubMedCrossRefGoogle Scholar
  52. 52.
    Trau D, Yang W, Seydack M et al. Nanoencapsulated microcrystalline, particles for superamplified biochemical assays. Anal Chem 2002; 74:5480–5486.PubMedCrossRefGoogle Scholar
  53. 53.
    Mak WC, Cheung KY, Trau D et al. Electrochemical bioassay utilizing encapsulated electrochemical active microcrystal biolabels. Anal Chem 2005; 77:2835–2841.PubMedCrossRefGoogle Scholar
  54. 54.
    Deamer DW, Branton D. Characterization of nucleic acids by nanopore analysis. Acc Chem Res 2002; 35:817–825.PubMedCrossRefGoogle Scholar
  55. 55.
    Deamer DW, Akeson M. Nanopores and nucleic acids: prospects for ultrarapid sequencing. Trends Biotechnol 2000; 18:147–151.PubMedCrossRefGoogle Scholar
  56. 56.
    Li J, Gershow M, Stein D et al. DNA molecules and configurations in a solid state nanopore microscope. Nat Mater 2003; 2:611–615.PubMedCrossRefGoogle Scholar
  57. 57.
    Sauer JR, Zeghbroeck J van. Ultra-fast nucleic acid sequencing device and a method for making the same. US Patent 2002; 6:413–792.Google Scholar
  58. 58.
    Kasianowicz JJ, Brandin E, Branton D et al. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 1996; 93:13770–13777.PubMedCrossRefGoogle Scholar
  59. 59.
    Li J, Ng T, Cassell A et al. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 2003; 3:597–602.CrossRefGoogle Scholar
  60. 60.
    Margulies M, Eghold M, Altman WE et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437:326–330.CrossRefGoogle Scholar
  61. 61.
    Austin R. Nanopores: the art of sucking spaghetti. Nat Mater 2003; 2:567–568PubMedCrossRefGoogle Scholar
  62. 62.
    Zheng GF, Patolsky F, Cui Y et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol 2005; 23:1294–1301.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Paolo Fortina
    • 1
  • Joseph Wang
    • 2
  • Saul Surrey
    • 3
  • Jason Y. Park
    • 4
  • Larry J. Kricka
    • 4
  1. 1.Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Department of Chemical and Materials Engineering and ChemistryArizona State UniversityTempeUSA
  3. 3.Department of MedicineThomas Jefferson UniversityPhiladelphiaUSA
  4. 4.Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations