Skip to main content

Nanochannels for Genomic DNA Analysis: The Long and the Short of It

  • Chapter
Integrated Biochips for DNA Analysis

Abstract

This review will discuss the theory of confined polymers in nanochannels and present our experiments, which test the theory and explore use of nanochannels for genomic analysis. Genomic length DNA molecules contained in nanochannels, which are less than one persistence length in diameter, are highly elongated. Thus, nanochannels can be used to analyze genomic length DNA molecules with very high linear spatial resolution. Also, nanochannels can be used to study the position and dynamics of proteins such as transcription factors that bind to DNA with high specificity. In order to realize these goals not only must nanochannels be constructed whose radius is less than the persistence length of DNA, but it is also necessary to understand the dynamics of polymers within nanochannels and develop experimental tools to study the dynamics of polymers in such confined volumes, tools which we review here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin RH, Tegenfeldt JO, Cao H et al. Scanning the controls: Genomics and nanotechnology. IEEE Transactions on Nanotechnology 2002; 1(1):12–18.

    Article  Google Scholar 

  2. Bakajin O, Duke TAJ, Tegenfeldt J et al. Separation of 100-kilobase DNA molecules in 10 seconds. Anal Chem 2001; 73(24):6053–6056.

    Article  PubMed  CAS  Google Scholar 

  3. Bakajin OB, Duke TAJ, Chou CF et al. Electrohydrodynamic stretching of DNA in confined environments. Phys Rev Lett 1998; 80(12):2737–2740.

    Article  CAS  Google Scholar 

  4. A. D. Bates and A. Maxwell. DNA Topology. Oxford University Press 2005.

    Google Scholar 

  5. Bolzan AD, Bianchi MS. Telomeres, interstitial telomeric repeat sequences and chromosomal aberrations. Mutat Res 2006; 612(3):189–214.

    Article  PubMed  CAS  Google Scholar 

  6. Brochard-Wyart F, Tanaka T, Borghi N et al. Semi-flexible polymers confined in soft tubes. Langmuir 2005; 21:4144.

    Article  PubMed  CAS  Google Scholar 

  7. Campell LC, Wilkinson MJ, Manz A et al. Electrophoretic, manipulation of single DNA molecules in nanofabricated capillaries. Lab Chip 2004; 3:225–229.

    Article  CAS  Google Scholar 

  8. Cao H, Tegenfeldt JO, Austin RH et al. Gradient nanostructures for interfacing microfluidics and nanofluidics. Appl Phys Lett 2002; 81(16):3058–3060.

    Article  CAS  Google Scholar 

  9. Cao H, Yu ZN, Wang J et al. Fabrication of 10 nm enclosed nanofluidic channels. Appl Phys Lett 2002; 81(1):174–176.

    Article  CAS  Google Scholar 

  10. Chan EY, Goncalves NM, Haeusler RA et al. DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Res 2004; 14(6):1137–1146.

    Article  PubMed  CAS  Google Scholar 

  11. Chou CF, Tegenfeldt JO, Bakajin OB et al. Electrodeless dielectrophoresis of single-and double-stranded DNA. Biophys J 2002; 83(4):2170–2179.

    Article  PubMed  CAS  Google Scholar 

  12. Daoud M, de Gennes PG. Dynamics of Confined Polymer Chains. J Chem Phys 1977; 67:52.

    Article  Google Scholar 

  13. Daoud M, de Gennes PG. Statistics of Macromolecular Chains Trapped in Small Pores. J Physique 1977; 38:85.

    CAS  Google Scholar 

  14. P.G. de Gennes. Scaling Concepts in Polymer Physics. Cornell University Press 1979.

    Google Scholar 

  15. M. Doi and S. F. Edwards. The Theory of Polymer Dynamics. Oxford University Press 1986.

    Google Scholar 

  16. Fan R, Karnik R, Yue M et al. DNA translocation in inorganic nanotubes. Nano Lett 2005; 5(9):1633–1637.

    Article  PubMed  CAS  Google Scholar 

  17. Fologea D, Gershow M, Ledden B et al. Detecting single stranded DNA with a solid state nanopore. Nano Lett 2005; 5(10):1905–1909.

    Article  PubMed  CAS  Google Scholar 

  18. Ghosh K, Carri G, Muthukumar M. Configurational Properties of a Single Semiflexible, Polyelectrolyte. J Chem Phys 1991; 115:4367–4375.

    Article  CAS  Google Scholar 

  19. Godde R, Akkad DA, Arning L et al. Electrophoresis of DNA in human genetic diagnostics-state-of-the-art, alternatives and future prospects. Electrophoresis 2006; 27(5–6):939–946.

    Article  PubMed  CAS  Google Scholar 

  20. Guo LJ, Cheng X, Chou CF. Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano Lett 2004; 4(1):69–73.

    Article  CAS  Google Scholar 

  21. Ha B, Thirumalai D. Persistence Length of Flexible Polyelectrolyte Chains. J Chem Phys 1999; 110:7533–7541.

    Article  CAS  Google Scholar 

  22. Han J, Craighead HG. Separation of long DNA molecules in a microfabricated entropic trap array. Science 2000; 288(5468):1026–1029.

    Article  PubMed  CAS  Google Scholar 

  23. Han JY, Craighead HG. Characterization and optimization of an entropic trap for DNA separation. Anal Chem 2002; 74(2):394–401.

    Article  PubMed  CAS  Google Scholar 

  24. Hansen LF, Jensen LK, Jacobsen JP. Bis-intercalation of a homodimeric thiazole orange dye in DNA in symmetrical pyrimidinepyrimidine-purine-purine oligonucleotides. Nucleic Acids Res 1996; 24(5):859–867.

    Article  PubMed  CAS  Google Scholar 

  25. Hatfield J, Quake S. Dynamic Properties of an Extended Polymer in Solution. Phys Rev Lett 1998; 82:3548.

    Article  Google Scholar 

  26. Hogan M, LeGrange J, Austin B. Dependence of DNA helix flexibility on base composition. Nature 1983; 304:752–754.

    Article  PubMed  CAS  Google Scholar 

  27. Huang LR, Tegenfeldt JO, Kraeft JJ et al. A DNA prism for high-speed continuous fractionation of large DNA molecules. Nature Biotechnol 2002; 20(10):1048–1051.

    Article  CAS  Google Scholar 

  28. Isambert H., Maggs H. Dynamics and Rheology of Actin Solutions. Macromolecules 1996; 29:1036.

    Article  CAS  Google Scholar 

  29. Jendrejack R, Dimalanta E, Schwartz D et al. DNA Dynamics in a Microchannel. Phys Rev Lett 2003; 91:038102.

    Article  PubMed  CAS  Google Scholar 

  30. Jendrejack R, Schwartz D, Graham M et al. Effect of Confinement on DNA Dynamics in Microfluidic Devices. J Chem Phys 2003; 119:1165.

    Article  CAS  Google Scholar 

  31. Keyser UF, Koeleman BN, Van Dorp S et al. Direct force measurements on DNA in a solid-state nanopore. Nature Phys 2006; 2(7):473–477.

    Article  CAS  Google Scholar 

  32. Kremer K, Binder K. Dynamics of Polymer Chains Confined in Tubes:Scaling Theory and Monte Carlo Simulations. J Chem Physics 1984; 81:6381.

    Article  Google Scholar 

  33. Landau L and Lifshitz E. Fluid Mechanics. Butterworth Heinmann 1998.

    Google Scholar 

  34. Landau L and Lifshitz E. M. Statistical Physics. Addison-Wesley, Reading, PA 1958.

    Google Scholar 

  35. Li JL, Gershow M, Stein D et al. JA DNA molecules and configurations in a solid-state nanopore microscope. Nature Mater 2003; 2(9):611–615.

    Article  CAS  Google Scholar 

  36. Li WL, Tegenfeldt JO, Chen L et al. Sacrificial polymers for nanofluidic channels in biological applications. Nanotechnology 2003; 14:578–583.

    Article  CAS  Google Scholar 

  37. Mannion JT, Reccius CH, Cross JD et al. Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels. Biophys J 2006; 90(12):4538–4545.

    Article  PubMed  CAS  Google Scholar 

  38. Martin-Molina A, Quesada-Perez M, Galisteo-Gonzalez F et al. Electrophoretic mobility and primitive models: Surface charge density effect. J Phys Chem B 2002; 106(27):6881–6886.

    Article  CAS  Google Scholar 

  39. Meng X, Cai WW, Schwartz DC. Inhibition of restriction endonucleases activity by DNA binding fluorochromes. J Biomol Struct Dyn 1996; 13(6):945–951.

    PubMed  CAS  Google Scholar 

  40. Milchev A, Paul W, Binder K. Polymer Chains Confined into Tubes with Attractive Walls: A Monte Carlo Simulation. Macromol. Theory Simul 1994; 3:305.

    Article  CAS  Google Scholar 

  41. Moon J, Nakanishi H. Onset of the Exeluded Volume Effect for the Statistics of Stiff Chains. Phys Rev A 1991; 44:6427–6442.

    Article  PubMed  CAS  Google Scholar 

  42. Morse D. Viscoelasticity of Concentrated Isotropic Solutions of Semiflexible Polymers. 1. Model and Stress Tensor. Macromolecules 1998; 31:7030.

    Article  CAS  Google Scholar 

  43. Morse D. Viscoelasticity of Concentrated Isotropic Solutions of Semi-flexible Polymers. 2. Linear Reponse. Macromolecules 1998; 31:7044.

    Article  CAS  Google Scholar 

  44. Odijk T. Polyelectrolytes near the Rod Limit. J Polym Phys Ed 1977; 15:477–483.

    Article  CAS  Google Scholar 

  45. Odijk T. On the Statistics and Dynamics of Confined or Entangled Stiff Polymers. Macromolecules 1983; 16:1340.

    Article  CAS  Google Scholar 

  46. Odijk T. Similarity Applied to the Statistics of Confined Stiff Polymers. Macromolecules 1984; 17:502.

    Article  CAS  Google Scholar 

  47. Perkins TT, Quake SR, Smith DE et al. Relaxation of a single DNA molecule observed by optical microscopy. Science 1994; 264(5160):822–826.

    Article  PubMed  CAS  Google Scholar 

  48. Quake S, Babcock H, Chu S. The Dynamics of Partially Extended Single Molecules of DNA. Nature 1997; 388:151.

    Article  PubMed  CAS  Google Scholar 

  49. Quake SR, Scherer A. From micro-to nanofabrication with soft materials. Science 2000; 290(5496):1536–1540.

    Article  PubMed  CAS  Google Scholar 

  50. Receius CH, Mannion JT, Cross JD et al. Compression and free expansion of single DNA molecules in nanochannels. Phys Rev Lett 2005; 95(26):268101.

    Article  CAS  Google Scholar 

  51. Reisner WW, Morton K, Riehn R et al. Statics and Dynamics of Single DNA Molecules Confined in Nanochannels. Phys Rev Lett 2005; 94:196101.

    Article  PubMed  CAS  Google Scholar 

  52. Riehn R, Austin RH, Sterm JC. A nanofluidic railroad switch for DNA. Nano Lett 2006; 6(9):1973–1976.

    Article  PubMed  CAS  Google Scholar 

  53. Riehn R, Lu M, Wang Y et al. Restriction Mapping in Nanofluidic Devices. Proc Natl Acad Sci USA 2005; 102:10012–10016.

    Article  PubMed  CAS  Google Scholar 

  54. Riehn R, Austin RH, Wetting Micro-and Nanofluidic Devices Using Supercritical Water. Anal Chem 2006; 78(16):5933–5944.

    Article  PubMed  CAS  Google Scholar 

  55. Rybenkov V, Cozzarelli N, Vologodskii A. Probability of DNA Knotting and the Effective Diameter of the DNA Double Helix. Proc Natl Acad Sci USA 1993; 90:5307–5311.

    Article  PubMed  CAS  Google Scholar 

  56. Saleh OA, Sohn LL. An artificial nanopore for molecular sensing. Nano Lett 2003; 3(1):37–38.

    Article  CAS  Google Scholar 

  57. Schaefer DW, Curro JG. Statistics of a single polymer-chain. Ferroelectrics 1980; 30(1–4):49–56.

    CAS  Google Scholar 

  58. Schaefer DW, Joanny JF, Pincus P. Dynamics of Semiflexible Polymer Chains in Solution. Macromolecules 1980; 13:1280–1289.

    Article  CAS  Google Scholar 

  59. Schwartz DC, Cantor CR. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel-electrophoresis. Cell 1984; 37(1):67–75.

    Article  PubMed  CAS  Google Scholar 

  60. Skolnick J, Fixman M. Electrostatic Persistence Length of a Wormlike Polyelectrolyte. Macromolecules 1977; 10:944–948.

    Article  CAS  Google Scholar 

  61. Slater GW, Desrulsseaux C, Hubert SJ et al. Theory of DNA electrophoresis: A look at some current challenges. Electrophoresis 2000; 21(18):3873–3887.

    Article  PubMed  CAS  Google Scholar 

  62. Slater GW, S. Guillouzic S, Gauthier MG et al. Theory of DNA electrophoresis. Electrophoresis 2002; 23(22–23):3791–3816.

    Article  PubMed  CAS  Google Scholar 

  63. Smith D, Perkins TT, Chu S. Dynamical Scaling of DNA Diffusion Coefficients. Macromolecules 1996; 29:1372–1373.

    Article  CAS  Google Scholar 

  64. Stein D, van der Heyden FHJ, Koopmans W et al. Pressure-driven transport of confined DNA polymers in fluidic channels. Proc Natl Acad Sci USA 2006; In Press.

    Google Scholar 

  65. Storm AJ, Storm C, Chen J et al. Fast DNA Translocation through a Solid-State Nanopore. Nano Lett 2005; 5:1193–1197.

    Article  PubMed  CAS  Google Scholar 

  66. Strick T, Allemand JF, Croquette V et al. Twisting and stretching single DNA molecules. Prog Biophys Mol Biol 2000; 74(1–2):115–140.

    Article  PubMed  CAS  Google Scholar 

  67. Takada T. Acoustic and optical methods for measuring electric charge distributions in dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation 1999; 6(5): 519–547.

    Article  CAS  Google Scholar 

  68. Tegenfeldt JO, Prinz C, Cao H et al. The Dynamics of Genomic-Length DNA Molecules in 100nm Channels. Proc Natl Acad Sci USA 2004; 101:10979–10983.

    Article  PubMed  CAS  Google Scholar 

  69. Tegenfeldt JO, Bakajin O, Chou CF et al. Near-field scanner for moving molecules. Phys Rev Lett 2001; 86(7):1378–1381.

    Article  PubMed  CAS  Google Scholar 

  70. Turban L. Conformation of Confined Macromolecular Chains: Cross-Over Between Slit and Capillary. J Physique 1984; 45:347.

    Article  CAS  Google Scholar 

  71. Turner SWP, Cabodi M, Craighead HG. Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure. Phys Rev Lett 2002; 88(12):128103.

    Article  PubMed  CAS  Google Scholar 

  72. Valle F, Favre M, Rios P et al. Scaling Exponents and Probability Distributions of DNA End-to-End Distance. Phys Rev Lett 2005; 95:158105.

    Article  PubMed  CAS  Google Scholar 

  73. Venter JC et al. The sequence of the human genome. Science 2001; 291(5507):1304-+.[75] Viovy JL. Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Rev Modern Phys 2000; 72(3):813–872.

    Article  PubMed  CAS  Google Scholar 

  74. W.D. Volkmuth. Ph.D. Thesis. Princeton University, Princeton, NJ 1994.

    Google Scholar 

  75. Volkmuth WD, Austin RH. DNA Electrophoresis in Microlithographic Arrays. Nature 1992; 358:600–602.

    Article  PubMed  CAS  Google Scholar 

  76. Volkmuth WD, Duke T, Wu MC et al. DNA electrodiffusion in a 2-d array of posts. Phys Rev Lett 1994; 72:2117–2120.

    Article  PubMed  CAS  Google Scholar 

  77. Vologodskii AV, Cozzarelli NR. Modeling of Long-Range Electrostatic Interactions in DNA. Biopolymers 1994; 35:289–296.

    Article  Google Scholar 

  78. Vologodskii AV, Cozzarelli NR. Conformational and Thermodynamic Properties of Supercoiled DNA. Annu Rev Biophys Biomol Struct 1994; 23:609–643.

    Article  PubMed  CAS  Google Scholar 

  79. Wang Y, Tegenfeldt JO, Reisner WW et al. Single-Molecule Studies of Repressor-DNA Interactions Show Long-Range Interactions. Proc Natl Acad Sci USA 2005; 102:9796–9801.

    Article  PubMed  CAS  Google Scholar 

  80. Yamakawa H, Fujii M. Wormlike Chains near the Rod Limit: Path Integral in the WKB Approximation. J Phys Chem 1973; 59:6641.

    Article  CAS  Google Scholar 

  81. Zhu ZQ, Zhang J, Zhu JZ. An overview of Si-based biosensors. Sens Lett 2005; 3(2):71–88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Riehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Riehn, R. et al. (2007). Nanochannels for Genomic DNA Analysis: The Long and the Short of It. In: Liu, R.H., Lee, A.P. (eds) Integrated Biochips for DNA Analysis. Biotechnology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76759-8_12

Download citation

Publish with us

Policies and ethics