Nanochannels for Genomic DNA Analysis: The Long and the Short of It

  • Robert Riehn
  • Walter Reisner
  • Jonas O. Tegenfeldt
  • Yan Mei Wang
  • Chih-Kuan Tung
  • Shuang-Fang Lim
  • Edward Cox
  • James C. Sturm
  • Keith Morton
  • Steven Y. Chou
  • Robert H. Austin
Part of the Biotechnology Intelligence Unit book series (BIOIU)


This review will discuss the theory of confined polymers in nanochannels and present our experiments, which test the theory and explore use of nanochannels for genomic analysis. Genomic length DNA molecules contained in nanochannels, which are less than one persistence length in diameter, are highly elongated. Thus, nanochannels can be used to analyze genomic length DNA molecules with very high linear spatial resolution. Also, nanochannels can be used to study the position and dynamics of proteins such as transcription factors that bind to DNA with high specificity. In order to realize these goals not only must nanochannels be constructed whose radius is less than the persistence length of DNA, but it is also necessary to understand the dynamics of polymers within nanochannels and develop experimental tools to study the dynamics of polymers in such confined volumes, tools which we review here.


Friction Factor Wide Channel Spring Constant Narrow Channel Effective Diameter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Austin RH, Tegenfeldt JO, Cao H et al. Scanning the controls: Genomics and nanotechnology. IEEE Transactions on Nanotechnology 2002; 1(1):12–18.CrossRefGoogle Scholar
  2. 2.
    Bakajin O, Duke TAJ, Tegenfeldt J et al. Separation of 100-kilobase DNA molecules in 10 seconds. Anal Chem 2001; 73(24):6053–6056.PubMedCrossRefGoogle Scholar
  3. 3.
    Bakajin OB, Duke TAJ, Chou CF et al. Electrohydrodynamic stretching of DNA in confined environments. Phys Rev Lett 1998; 80(12):2737–2740.CrossRefGoogle Scholar
  4. 4.
    A. D. Bates and A. Maxwell. DNA Topology. Oxford University Press 2005.Google Scholar
  5. 5.
    Bolzan AD, Bianchi MS. Telomeres, interstitial telomeric repeat sequences and chromosomal aberrations. Mutat Res 2006; 612(3):189–214.PubMedCrossRefGoogle Scholar
  6. 6.
    Brochard-Wyart F, Tanaka T, Borghi N et al. Semi-flexible polymers confined in soft tubes. Langmuir 2005; 21:4144.PubMedCrossRefGoogle Scholar
  7. 7.
    Campell LC, Wilkinson MJ, Manz A et al. Electrophoretic, manipulation of single DNA molecules in nanofabricated capillaries. Lab Chip 2004; 3:225–229.CrossRefGoogle Scholar
  8. 8.
    Cao H, Tegenfeldt JO, Austin RH et al. Gradient nanostructures for interfacing microfluidics and nanofluidics. Appl Phys Lett 2002; 81(16):3058–3060.CrossRefGoogle Scholar
  9. 9.
    Cao H, Yu ZN, Wang J et al. Fabrication of 10 nm enclosed nanofluidic channels. Appl Phys Lett 2002; 81(1):174–176.CrossRefGoogle Scholar
  10. 10.
    Chan EY, Goncalves NM, Haeusler RA et al. DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Res 2004; 14(6):1137–1146.PubMedCrossRefGoogle Scholar
  11. 11.
    Chou CF, Tegenfeldt JO, Bakajin OB et al. Electrodeless dielectrophoresis of single-and double-stranded DNA. Biophys J 2002; 83(4):2170–2179.PubMedCrossRefGoogle Scholar
  12. 12.
    Daoud M, de Gennes PG. Dynamics of Confined Polymer Chains. J Chem Phys 1977; 67:52.CrossRefGoogle Scholar
  13. 13.
    Daoud M, de Gennes PG. Statistics of Macromolecular Chains Trapped in Small Pores. J Physique 1977; 38:85.Google Scholar
  14. 14.
    P.G. de Gennes. Scaling Concepts in Polymer Physics. Cornell University Press 1979.Google Scholar
  15. 15.
    M. Doi and S. F. Edwards. The Theory of Polymer Dynamics. Oxford University Press 1986.Google Scholar
  16. 16.
    Fan R, Karnik R, Yue M et al. DNA translocation in inorganic nanotubes. Nano Lett 2005; 5(9):1633–1637.PubMedCrossRefGoogle Scholar
  17. 17.
    Fologea D, Gershow M, Ledden B et al. Detecting single stranded DNA with a solid state nanopore. Nano Lett 2005; 5(10):1905–1909.PubMedCrossRefGoogle Scholar
  18. 18.
    Ghosh K, Carri G, Muthukumar M. Configurational Properties of a Single Semiflexible, Polyelectrolyte. J Chem Phys 1991; 115:4367–4375.CrossRefGoogle Scholar
  19. 19.
    Godde R, Akkad DA, Arning L et al. Electrophoresis of DNA in human genetic diagnostics-state-of-the-art, alternatives and future prospects. Electrophoresis 2006; 27(5–6):939–946.PubMedCrossRefGoogle Scholar
  20. 20.
    Guo LJ, Cheng X, Chou CF. Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano Lett 2004; 4(1):69–73.CrossRefGoogle Scholar
  21. 21.
    Ha B, Thirumalai D. Persistence Length of Flexible Polyelectrolyte Chains. J Chem Phys 1999; 110:7533–7541.CrossRefGoogle Scholar
  22. 22.
    Han J, Craighead HG. Separation of long DNA molecules in a microfabricated entropic trap array. Science 2000; 288(5468):1026–1029.PubMedCrossRefGoogle Scholar
  23. 23.
    Han JY, Craighead HG. Characterization and optimization of an entropic trap for DNA separation. Anal Chem 2002; 74(2):394–401.PubMedCrossRefGoogle Scholar
  24. 24.
    Hansen LF, Jensen LK, Jacobsen JP. Bis-intercalation of a homodimeric thiazole orange dye in DNA in symmetrical pyrimidinepyrimidine-purine-purine oligonucleotides. Nucleic Acids Res 1996; 24(5):859–867.PubMedCrossRefGoogle Scholar
  25. 25.
    Hatfield J, Quake S. Dynamic Properties of an Extended Polymer in Solution. Phys Rev Lett 1998; 82:3548.CrossRefGoogle Scholar
  26. 26.
    Hogan M, LeGrange J, Austin B. Dependence of DNA helix flexibility on base composition. Nature 1983; 304:752–754.PubMedCrossRefGoogle Scholar
  27. 27.
    Huang LR, Tegenfeldt JO, Kraeft JJ et al. A DNA prism for high-speed continuous fractionation of large DNA molecules. Nature Biotechnol 2002; 20(10):1048–1051.CrossRefGoogle Scholar
  28. 28.
    Isambert H., Maggs H. Dynamics and Rheology of Actin Solutions. Macromolecules 1996; 29:1036.CrossRefGoogle Scholar
  29. 29.
    Jendrejack R, Dimalanta E, Schwartz D et al. DNA Dynamics in a Microchannel. Phys Rev Lett 2003; 91:038102.PubMedCrossRefGoogle Scholar
  30. 30.
    Jendrejack R, Schwartz D, Graham M et al. Effect of Confinement on DNA Dynamics in Microfluidic Devices. J Chem Phys 2003; 119:1165.CrossRefGoogle Scholar
  31. 31.
    Keyser UF, Koeleman BN, Van Dorp S et al. Direct force measurements on DNA in a solid-state nanopore. Nature Phys 2006; 2(7):473–477.CrossRefGoogle Scholar
  32. 32.
    Kremer K, Binder K. Dynamics of Polymer Chains Confined in Tubes:Scaling Theory and Monte Carlo Simulations. J Chem Physics 1984; 81:6381.CrossRefGoogle Scholar
  33. 33.
    Landau L and Lifshitz E. Fluid Mechanics. Butterworth Heinmann 1998.Google Scholar
  34. 34.
    Landau L and Lifshitz E. M. Statistical Physics. Addison-Wesley, Reading, PA 1958.Google Scholar
  35. 35.
    Li JL, Gershow M, Stein D et al. JA DNA molecules and configurations in a solid-state nanopore microscope. Nature Mater 2003; 2(9):611–615.CrossRefGoogle Scholar
  36. 36.
    Li WL, Tegenfeldt JO, Chen L et al. Sacrificial polymers for nanofluidic channels in biological applications. Nanotechnology 2003; 14:578–583.CrossRefGoogle Scholar
  37. 37.
    Mannion JT, Reccius CH, Cross JD et al. Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels. Biophys J 2006; 90(12):4538–4545.PubMedCrossRefGoogle Scholar
  38. 38.
    Martin-Molina A, Quesada-Perez M, Galisteo-Gonzalez F et al. Electrophoretic mobility and primitive models: Surface charge density effect. J Phys Chem B 2002; 106(27):6881–6886.CrossRefGoogle Scholar
  39. 39.
    Meng X, Cai WW, Schwartz DC. Inhibition of restriction endonucleases activity by DNA binding fluorochromes. J Biomol Struct Dyn 1996; 13(6):945–951.PubMedGoogle Scholar
  40. 40.
    Milchev A, Paul W, Binder K. Polymer Chains Confined into Tubes with Attractive Walls: A Monte Carlo Simulation. Macromol. Theory Simul 1994; 3:305.CrossRefGoogle Scholar
  41. 41.
    Moon J, Nakanishi H. Onset of the Exeluded Volume Effect for the Statistics of Stiff Chains. Phys Rev A 1991; 44:6427–6442.PubMedCrossRefGoogle Scholar
  42. 42.
    Morse D. Viscoelasticity of Concentrated Isotropic Solutions of Semiflexible Polymers. 1. Model and Stress Tensor. Macromolecules 1998; 31:7030.CrossRefGoogle Scholar
  43. 43.
    Morse D. Viscoelasticity of Concentrated Isotropic Solutions of Semi-flexible Polymers. 2. Linear Reponse. Macromolecules 1998; 31:7044.CrossRefGoogle Scholar
  44. 44.
    Odijk T. Polyelectrolytes near the Rod Limit. J Polym Phys Ed 1977; 15:477–483.CrossRefGoogle Scholar
  45. 45.
    Odijk T. On the Statistics and Dynamics of Confined or Entangled Stiff Polymers. Macromolecules 1983; 16:1340.CrossRefGoogle Scholar
  46. 46.
    Odijk T. Similarity Applied to the Statistics of Confined Stiff Polymers. Macromolecules 1984; 17:502.CrossRefGoogle Scholar
  47. 47.
    Perkins TT, Quake SR, Smith DE et al. Relaxation of a single DNA molecule observed by optical microscopy. Science 1994; 264(5160):822–826.PubMedCrossRefGoogle Scholar
  48. 48.
    Quake S, Babcock H, Chu S. The Dynamics of Partially Extended Single Molecules of DNA. Nature 1997; 388:151.PubMedCrossRefGoogle Scholar
  49. 49.
    Quake SR, Scherer A. From micro-to nanofabrication with soft materials. Science 2000; 290(5496):1536–1540.PubMedCrossRefGoogle Scholar
  50. 50.
    Receius CH, Mannion JT, Cross JD et al. Compression and free expansion of single DNA molecules in nanochannels. Phys Rev Lett 2005; 95(26):268101.CrossRefGoogle Scholar
  51. 51.
    Reisner WW, Morton K, Riehn R et al. Statics and Dynamics of Single DNA Molecules Confined in Nanochannels. Phys Rev Lett 2005; 94:196101.PubMedCrossRefGoogle Scholar
  52. 52.
    Riehn R, Austin RH, Sterm JC. A nanofluidic railroad switch for DNA. Nano Lett 2006; 6(9):1973–1976.PubMedCrossRefGoogle Scholar
  53. 53.
    Riehn R, Lu M, Wang Y et al. Restriction Mapping in Nanofluidic Devices. Proc Natl Acad Sci USA 2005; 102:10012–10016.PubMedCrossRefGoogle Scholar
  54. 54.
    Riehn R, Austin RH, Wetting Micro-and Nanofluidic Devices Using Supercritical Water. Anal Chem 2006; 78(16):5933–5944.PubMedCrossRefGoogle Scholar
  55. 55.
    Rybenkov V, Cozzarelli N, Vologodskii A. Probability of DNA Knotting and the Effective Diameter of the DNA Double Helix. Proc Natl Acad Sci USA 1993; 90:5307–5311.PubMedCrossRefGoogle Scholar
  56. 56.
    Saleh OA, Sohn LL. An artificial nanopore for molecular sensing. Nano Lett 2003; 3(1):37–38.CrossRefGoogle Scholar
  57. 57.
    Schaefer DW, Curro JG. Statistics of a single polymer-chain. Ferroelectrics 1980; 30(1–4):49–56.Google Scholar
  58. 58.
    Schaefer DW, Joanny JF, Pincus P. Dynamics of Semiflexible Polymer Chains in Solution. Macromolecules 1980; 13:1280–1289.CrossRefGoogle Scholar
  59. 59.
    Schwartz DC, Cantor CR. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel-electrophoresis. Cell 1984; 37(1):67–75.PubMedCrossRefGoogle Scholar
  60. 60.
    Skolnick J, Fixman M. Electrostatic Persistence Length of a Wormlike Polyelectrolyte. Macromolecules 1977; 10:944–948.CrossRefGoogle Scholar
  61. 61.
    Slater GW, Desrulsseaux C, Hubert SJ et al. Theory of DNA electrophoresis: A look at some current challenges. Electrophoresis 2000; 21(18):3873–3887.PubMedCrossRefGoogle Scholar
  62. 62.
    Slater GW, S. Guillouzic S, Gauthier MG et al. Theory of DNA electrophoresis. Electrophoresis 2002; 23(22–23):3791–3816.PubMedCrossRefGoogle Scholar
  63. 63.
    Smith D, Perkins TT, Chu S. Dynamical Scaling of DNA Diffusion Coefficients. Macromolecules 1996; 29:1372–1373.CrossRefGoogle Scholar
  64. 64.
    Stein D, van der Heyden FHJ, Koopmans W et al. Pressure-driven transport of confined DNA polymers in fluidic channels. Proc Natl Acad Sci USA 2006; In Press.Google Scholar
  65. 66.
    Storm AJ, Storm C, Chen J et al. Fast DNA Translocation through a Solid-State Nanopore. Nano Lett 2005; 5:1193–1197.PubMedCrossRefGoogle Scholar
  66. 67.
    Strick T, Allemand JF, Croquette V et al. Twisting and stretching single DNA molecules. Prog Biophys Mol Biol 2000; 74(1–2):115–140.PubMedCrossRefGoogle Scholar
  67. 68.
    Takada T. Acoustic and optical methods for measuring electric charge distributions in dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation 1999; 6(5): 519–547.CrossRefGoogle Scholar
  68. 69.
    Tegenfeldt JO, Prinz C, Cao H et al. The Dynamics of Genomic-Length DNA Molecules in 100nm Channels. Proc Natl Acad Sci USA 2004; 101:10979–10983.PubMedCrossRefGoogle Scholar
  69. 70.
    Tegenfeldt JO, Bakajin O, Chou CF et al. Near-field scanner for moving molecules. Phys Rev Lett 2001; 86(7):1378–1381.PubMedCrossRefGoogle Scholar
  70. 71.
    Turban L. Conformation of Confined Macromolecular Chains: Cross-Over Between Slit and Capillary. J Physique 1984; 45:347.CrossRefGoogle Scholar
  71. 72.
    Turner SWP, Cabodi M, Craighead HG. Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure. Phys Rev Lett 2002; 88(12):128103.PubMedCrossRefGoogle Scholar
  72. 73.
    Valle F, Favre M, Rios P et al. Scaling Exponents and Probability Distributions of DNA End-to-End Distance. Phys Rev Lett 2005; 95:158105.PubMedCrossRefGoogle Scholar
  73. 74.
    Venter JC et al. The sequence of the human genome. Science 2001; 291(5507):1304-+.[75] Viovy JL. Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Rev Modern Phys 2000; 72(3):813–872.PubMedCrossRefGoogle Scholar
  74. 76.
    W.D. Volkmuth. Ph.D. Thesis. Princeton University, Princeton, NJ 1994.Google Scholar
  75. 77.
    Volkmuth WD, Austin RH. DNA Electrophoresis in Microlithographic Arrays. Nature 1992; 358:600–602.PubMedCrossRefGoogle Scholar
  76. 78.
    Volkmuth WD, Duke T, Wu MC et al. DNA electrodiffusion in a 2-d array of posts. Phys Rev Lett 1994; 72:2117–2120.PubMedCrossRefGoogle Scholar
  77. 79.
    Vologodskii AV, Cozzarelli NR. Modeling of Long-Range Electrostatic Interactions in DNA. Biopolymers 1994; 35:289–296.CrossRefGoogle Scholar
  78. 80.
    Vologodskii AV, Cozzarelli NR. Conformational and Thermodynamic Properties of Supercoiled DNA. Annu Rev Biophys Biomol Struct 1994; 23:609–643.PubMedCrossRefGoogle Scholar
  79. 81.
    Wang Y, Tegenfeldt JO, Reisner WW et al. Single-Molecule Studies of Repressor-DNA Interactions Show Long-Range Interactions. Proc Natl Acad Sci USA 2005; 102:9796–9801.PubMedCrossRefGoogle Scholar
  80. 82.
    Yamakawa H, Fujii M. Wormlike Chains near the Rod Limit: Path Integral in the WKB Approximation. J Phys Chem 1973; 59:6641.CrossRefGoogle Scholar
  81. 83.
    Zhu ZQ, Zhang J, Zhu JZ. An overview of Si-based biosensors. Sens Lett 2005; 3(2):71–88.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Robert Riehn
    • 1
  • Walter Reisner
    • 2
  • Jonas O. Tegenfeldt
    • 3
  • Yan Mei Wang
    • 2
  • Chih-Kuan Tung
    • 2
  • Shuang-Fang Lim
    • 2
  • Edward Cox
    • 4
  • James C. Sturm
    • 5
  • Keith Morton
    • 5
  • Steven Y. Chou
    • 5
  • Robert H. Austin
    • 5
  1. 1.Department of PhysicsNorth Carolina State UniversityRaleighUSA
  2. 2.Department of PhysicsPrinceton UniversityPrincetonUSA
  3. 3.Lund UniversityLundSweden
  4. 4.Department of Molecular BiologyPrinceton UniversityPrincetonUSA
  5. 5.Department of Electrical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations