Advertisement

Introduction

  • Christian Reidys
Chapter

abstract

Almost three decades ago Michael Waterman pioneered the combinatorics and prediction of the ribonucleic acid (RNA) secondary structures, a rather non-mainstream research field at the time.

Keywords

Neutral Network Canonical Structure Exponential Growth Rate Tertiary Interaction Pseudoknot Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 3.
    T. Akutsu. Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discr. Appl. Math., 104:45–62, 2000.MATHCrossRefMathSciNetGoogle Scholar
  2. 4.
    D. Aldous and P. Diaconis. Strong uniform times and finite random walks. Adv. Appl. Math., 2:69–97, 1987.CrossRefMathSciNetGoogle Scholar
  3. 8.
    P. Babitzke and C. Yanofsky. Reconstitution of bacillus subtilis trp attenuation in vitro with trap, the trp RNA-binding attenuation protein. Proc. Natl. Acad. Sci. USA, 90:133–137, 1990.CrossRefGoogle Scholar
  4. 9.
    R.T. Batey, R.P. Rambo, and J.A. Doudna. Tertiary motifs in RNA structure and folding. Angew. Chem., 38:2326–2343, 1999.CrossRefGoogle Scholar
  5. 10.
    T. Baumstark, A.R. Schroder, and D. Riesner. Viroid processing: Switch from cleavage to ligation is driven by a change from a tetraloop to a loop e conformation. EMBO. J., 16:599–610, 1997.CrossRefGoogle Scholar
  6. 12.
    C.K. Biebricher, S. Diekmann, and R. Luce. Structural analysis of self-replicating RNA synthesized by qb replicase. J. Mol. Biol., 154:629–648, 1982.CrossRefGoogle Scholar
  7. 13.
    C.K. Biebricher and R. Luce. In vitro recombination and terminal elongation of RNA by qb replicase. EMBO. J., 11:5129–5135, 1992.Google Scholar
  8. 18.
    P. Brion and E. Westhof. Hierarchy and dynamics of RNA folding. Annu. Rev. Biophys. Biomol. Struct., 26:113–137, 1997.CrossRefGoogle Scholar
  9. 21.
    S. Cao and S.J. Chen. Predicting RNA pseudoknot folding thermodynamics. Nucl. Acids. Res., 34(9):2634–2652, 2006.CrossRefGoogle Scholar
  10. 22.
    R. Cary and G. Stormo. Graph-theoretic approach to RNA modeling using comparative data. Proc. Int. Conf. Intell. Syst. Mol. Biol., 3:75–80, 1995.Google Scholar
  11. 23.
    M. Chamorro, N. Parkin, and H.E. Varmus. An RNA pseudoknots and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc. Natl. Acad. Sci. USA, 89, 1992.Google Scholar
  12. 24.
    M. Chastain and I. Tinoco. A base-triple structural domain in RNA. Biochemistry, 31:12733–12741, 1992.CrossRefGoogle Scholar
  13. 27.
    W.Y.C. Chen, J. Qin, and C.M. Reidys. Crossing and nesting in tangled-diagrams. Elec. J. Comb., 15, 86, 2008.MathSciNetGoogle Scholar
  14. 29.
    C. DeLisi and D.M. Crothers. Prediction of RNA secondary structures. Proc. Natl. Acad. Sci, USA, 68:2682–2685, 1971.CrossRefGoogle Scholar
  15. 31.
    R.M. Dirks and N.A. Pierce.An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. J. Comput. Chem., 25(10):1295–1304, 2004.CrossRefGoogle Scholar
  16. 32.
    J.A. Doudna and T.R. Cech. The chemical repertoire of natural ribozymes. Nature, 418(11), 2002.Google Scholar
  17. 35.
    J. Edmonds. Maximum matching and polyhedron with \(0,1\)-vertices. J. Res. Nat. Bur. Stand., 69B:125–130, 1965.MathSciNetGoogle Scholar
  18. 39.
    G. Fayat, F.J. Mayaux, C. Sacerdot, M. Fromant, M. Springer, M. Grunberg-Manago, and S. Blanquet. Escherichia coli phenylalanyl-trna synthetase operon region: Evidence for an attenuation mechanism and identification of the gene for the ribosomal protein l20. J. Mol. Biol., 171:239–261, 1983.CrossRefGoogle Scholar
  19. 43.
    C. Flamm, W. Fontana, I.L. Hofacker, and P. Schuster. RNA folding kinetics at elementary step resolution. RNA, 6:325–338, 2000.CrossRefGoogle Scholar
  20. 46.
    J.R. Fresco, B.M. Alberts, and P. Doty. Some molecular details of the secondary structure of ribonucleic acid. Nature, 188:98–101, 1960.CrossRefGoogle Scholar
  21. 47.
    H.N. Gabow. An efficient implementation of Edmonds’ algorithm for maximum matching on graphs. J. Asc. Com. Mach., 23:221–234, 1976.MATHMathSciNetGoogle Scholar
  22. 50.
    U. Göbel. Neutral Networks of Minimum Free Energy RNA Secondary Structures. PhD thesis, University of Vienna, 2000.Google Scholar
  23. 55.
    W. Grüner, R. Giegerich, D. Strothmann, C.M. Reidys, J. Weber, I.L. Hofacker, P.F. Stadler, and P. Schuster. Analysis of RNA sequence structure maps by exhaustive enumeration I. structures of neutral networks and shape space covering. Chem. Mon., 127:355–374, 1996.CrossRefGoogle Scholar
  24. 56.
    W. Grüner, R. Giegerich, D. Strothmann, C.M. Reidys, J. Weber, I.L. Hofacker, P.F. Stadler, and P. Schuster. Analysis of RNA sequence structure maps by exhaustive enumeration II. structures of neutral networks and shape space covering. Chem. Mon., 127:375–389, 1996.CrossRefGoogle Scholar
  25. 57.
    A.P. Gultyaev, F.H. Batenburg, and C.W. Pleij. Dynamic competition between alternative structures in viroid rnas simulated by an RNA folding algorithm. J. Mol. Biol., 276:43–55, 1998.CrossRefGoogle Scholar
  26. 63.
    C. Haslinger and P.F. Stadler. RNA structures with pseudo-knots. Bull. Math. Biol., 61:437–467, 1999.CrossRefGoogle Scholar
  27. 65.
    R. Hecker, Z.M. Wang, G. Steger, and D. Riesner. Analysis of RNA structures by temperature-gradient gel electrophoresis: Viroid replication and processing. Gene, 72:59–74, 1988.CrossRefGoogle Scholar
  28. 67.
    I.L. Hofacker. Vienna RNA secondary structure server. Nucl. Acids. Res., 31(13):3429–3431, 2003.CrossRefGoogle Scholar
  29. 68.
    I.L. Hofacker, W. Fontana, P.F. Stadler, L.S. Bonhoeffer, M. Tacker, and P. Schuster. Fast folding and comparison of RNA secondary structures. Monatsh. Chem., 125:167–188, 1994.CrossRefGoogle Scholar
  30. 69.
    I.L. Hofacker, P. Schuster, and P.F. Stadler. Combinatorics of RNA secondary structures. Discr. Appl. Math., 88:207–237, 1998.MATHCrossRefMathSciNetGoogle Scholar
  31. 70.
    J.A. Howell, T.F. Smith, and M.S. Waterman. Computation of generating functions for biological molecules. SIAM: SIAM J Appl Math., 39:119–133, 1980.MATHCrossRefMathSciNetGoogle Scholar
  32. 81.
    I.T. Jun, O.C. Uhlenbeck, and M.D. Levine. Estimation of secondary structure in ribonucleic acids. Nature, 230:362 – 367, 1971.CrossRefGoogle Scholar
  33. 82.
    D. Kleitman. Proportions of irreducible diagrams. Studies in Appl. Math., 49:297–299, 1970.MATHMathSciNetGoogle Scholar
  34. 84.
    D.A.M. Konings and R.R. Gutell. A comparison of thermodynamic foldings with comparatively derived structures of 16 s and 16 s-like rRNAs. RNA, 1:559–574, 1995.Google Scholar
  35. 85.
    J.S. Lodmell and Dahlberg A.E. A conformational switch in Escherichia coli 16 s ribosomal RNA during decoding of messenger RNA. Science, 277:1262–1267, 1997.CrossRefGoogle Scholar
  36. 86.
    A. Loria and T. Pan. Domain structure of the ribozyme from eubacterial ribonuclease. RNA, 2:551–563, 1996.Google Scholar
  37. 87.
    R.B. Lyngsø and C.N.S. Pedersen. RNA pseudoknot prediction in energy-based models. J. Comput. Biol., 7:409–427, 2000.CrossRefGoogle Scholar
  38. 91.
    D. Metzler and M. E. Nebel. Predicting RNA secondary structures with pseudoknots by mcmc sampling. J. Math. Biol., 56(1–2):161–181, 2008.MATHMathSciNetGoogle Scholar
  39. 96.
    R. Nussinov and A.B. Jacobson. Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci., USA, 77:6309–6313, 1980.CrossRefGoogle Scholar
  40. 97.
    R. Nussinov, G. Pieczenik, J.R. Griggs, and D. Kleitman. Algorithms for loop matchings. SIAM J. of Appl. Math., 35:68–82, 1978.MATHCrossRefMathSciNetGoogle Scholar
  41. 99.
    T. Pan, D. Thirumalai, and S.A. Woodson. Folding of RNA involves parallel pathways. J. Mol. Biol., 273:7–13, 1997.CrossRefGoogle Scholar
  42. 100.
    A.T. Perrotta and M.D. Been. A toggle duplex in hepatitis delta virus self-cleaving RNA that stabilizes an inactive and a salt-dependent proactive ribozyme conformation. J Mol Biol, 279:361–373, 1998.CrossRefGoogle Scholar
  43. 101.
    J. Reeder and R. Giegerich. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics, 5(104):1–12, 2004.Google Scholar
  44. 102.
    C.M. Reidys. Random induced subgraphs of generalized n-cubes. Adv. Appl. Math., 19:360–377, 1997.MATHCrossRefMathSciNetGoogle Scholar
  45. 103.
    C.M. Reidys. Distance in random induced subgraphs of generalized n-cubes. Combinator. Probab. Comput., 11:599–605, 2002.MATHMathSciNetGoogle Scholar
  46. 105.
    C.M. Reidys. The largest component in random induced subgraphs of n-cubes. Discr. Math., 309, Issue 10:3113–3124, 2009.MATHCrossRefMathSciNetGoogle Scholar
  47. 106.
    C.M. Reidys, P.F. Stadler, and P.K. Schuster. Generic properties of combinatory maps and neutral networks of rna secondary structures. Bull. Math. Biol., 59(2):339–397, 1997.MATHCrossRefGoogle Scholar
  48. 109.
    J. Ren, B. Rastegari, A. Condon, and H. Hoos. Hotknots: Heuristic prediction of RNA secondary structures including pseudoknots. RNA, 11:1494–1504, 2005.CrossRefGoogle Scholar
  49. 111.
    E. Rivas and S.R. Eddy. A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol., 285:2053–2068, 1999.CrossRefGoogle Scholar
  50. 112.
    E. Rivas and S.R. Eddy. The language of RNA: A formal grammar that includes pseudoknots. Bioinformatics, 16:326–333, 2000.CrossRefGoogle Scholar
  51. 113.
    J. Ruan, G. Stormo, and W. Zhang. An iterated loop matching approach to the prediction. Bioinformatics, 20:58–66, 2004.CrossRefGoogle Scholar
  52. 117.
    E.A. Schultes and P.B. Bartels. One Sequence, Two Ribozymes: Implications for the Emergence of New Ribozyme Folds. Science, 289:448–452, 2000.CrossRefGoogle Scholar
  53. 118.
    P. Schuster, W. Fontana, P. F. Stadler, and I.L. Hofacker. From sequences to shapes and back: A case study in RNA secondary structures. Proc. Roy. Soc. Lond. B, 255:279–284, 1994.CrossRefGoogle Scholar
  54. 119.
    Mapping RNA form and function. Science, 2, 2005.Google Scholar
  55. 120.
    D.B. Searls. The language of genes. Nature, 420:211–217, 2002.CrossRefGoogle Scholar
  56. 122.
    L.X. Shen, Z. Cai, and I. Tinoco. RNA structure at high resolution. FASEB, 9:1023–1033, 1995.Google Scholar
  57. 123.
    G.A. Soukup and R.R. Breaker. Engineering precision RNA molecular switches. Proc. Natl. Acad. Sci. USA, 96:3584–3589, 1999.CrossRefGoogle Scholar
  58. 128.
    D.W. Staple and S.E. Butcher. Pseudoknots: RNA structures with diverse functions. PLoS Biol. 3, 6:956–959, 2005.Google Scholar
  59. 130.
    J. Tabaska, R. Cary, H. Gabow, and G. Stormo. An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics, 14:691–699, 1998.CrossRefGoogle Scholar
  60. 131.
    E. ten Dam, I. Brierly, S. Inglis, and C. Pleij. Identification and analysis of the pseudoknot containing gag-pro ribosomal frameshift signal of simian retrovirus-1. Nucl. Acids Res., 22:2304–2310, 1994.CrossRefGoogle Scholar
  61. 133.
    I.Jr. Tinoco and C. Bustamante. How RNA folds. J. Mol. Biol., 293:271–281, 1999.CrossRefGoogle Scholar
  62. 134.
    E.C. Titchmarsh. The theory of functions. Oxford University Press, NY, 1939.Google Scholar
  63. 135.
    D.K. Treiber, M.S. Rook, P.P. Zarrinkar, and J.R. Williamson. Kinetic intermediate strapped by native interactions in RNA folding. Science, 279:1943–1946, 1998.CrossRefGoogle Scholar
  64. 136.
    C. Tuerk, S. MacDougal, and L. Gold. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. USA, 89, 1992.Google Scholar
  65. 138.
    U. von Ahsen. Translational fidelity: Error-prone versus hyperaccurate ribosomes. Chem. Biol., 5:R3–R6, 1998.CrossRefGoogle Scholar
  66. 141.
    M.S. Waterman. Combinatorics of rna hairpins and cloverleafs. Stud. Appl. Math., 60:91–96, 1978.MathSciNetGoogle Scholar
  67. 142.
    M.S. Waterman. Secondary structure of single - stranded nucleic acids. Adv. Math.I (suppl.), 1:167–212, 1978.MathSciNetGoogle Scholar
  68. 143.
    M.S. Waterman. Combinatorics of rna hairpins and cloverleafs. Stud. Appl. Math., 60:91–96, 19790.MathSciNetGoogle Scholar
  69. 144.
    M.S. Waterman and T.F. Smith. Rapid dynamic programming algorithms for rna secondary structure. Adv. Appl. Math., 7:455–464, 1986.MATHCrossRefMathSciNetGoogle Scholar
  70. 145.
    E. Westhof and L. Jaeger. RNA pseudoknots. Curr. Opin. Chem. Biol., 2:327–333, 1992.Google Scholar
  71. 148.
    R. Wong and M. Wyman. The method of Darboux. J. Appr. Theor., 10:159–171, 1974.MATHCrossRefMathSciNetGoogle Scholar
  72. 150.
    M. Zuker and D. Sankoff. RNA secondary structures and their prediction. Bull. Math. Biol., 46(4):591–621, 1984.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Research Center for CombinatoricsNankai UniversityTianjinChina

Personalised recommendations