Behavioral Genetic Investigations of Cognitive Aging

  • Deborah Finkel
  • Chandra A. Reynolds

One of the universal concerns of human beings is the issue of aging: How will I meet the changes and challenges that occur with age? What impact can I have on my own aging process? The first modern twin study designed to investigate genetic and environmental influences on the aging process was the New York State Psychiatric Study of Aging Twins begun in 1946. In the last two decades, there has been an upsurge in the number of behavioral genetic studies of the various facets of the aging process. A recent summary reports over two dozen twin studies investigating physical, psychological, and social aspects of aging (Bergeman, 2007). In this review, we focus on the three components of cognitive aging. Primary aging is the normal and pervasive changes in cognitive abilities that occur with age. In contrast, secondary aging is typified by changes in cognitive functioning that result from disease or pathological processes. The distinction between primary and secondary aging is of paramount importance; some changes that were once thought to be an inevitable part of aging (e.g., senile dementia) have been shown to be the outcome of disease processes that can be diagnosed and potentially treated. Finally, the acceleration in decline of cognitive functioning that occurs in the years immediately preceding death is termed tertiary aging or terminal decline. Distinguishing primary, secondary, and tertiary aging is paramount to understanding the nature of cognitive aging.


Cognitive Ability Twin Pair Twin Study Cognitive Aging General Cognitive Ability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akil, M., Kolachana, B. S., Rothmond, D. A., Hyde, T. M., Weinberger, D. R., & Kleinman, J. E. (2003). Catechol-O-Methyltransferase genotype and dopamine regulation in the human brain. Journal of Neuroscience, 23, 2008–2013.PubMedGoogle Scholar
  2. Amargos-Bosch, M., Bortolozzi, A., Puig, M. V., Serrats, J., Adell, A., Celada, P., et al. (2004). Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex, 14, 281–299.PubMedCrossRefGoogle Scholar
  3. Andel, R., Crowe, M., Pedersen, N. L., Mortimer, J., Crimmins, E., Johansson, B., et al. (2005). Complexity of work and risk of Alzheimer’s disease: A population-based study of Swedish twins. Journals of Gerontology, Series B: Psychological and Social Sciences, 60, P251–P258.Google Scholar
  4. Anstey, K., & Christensen, H. (2000). Education, activity, health, blood pressure and apolipoprotein E as predictors of cognitive change in old age: A review. Gerontology, 46, 163–177.PubMedCrossRefGoogle Scholar
  5. Baker, L. A., Treloar, S. A., Reynolds, C. A., Heath, A. C., & Martin, N. G. (1996). Genetics of educational attainment in Australian twins: Sex differences and secular changes. Behavior Genetics, 26, 89–102.PubMedCrossRefGoogle Scholar
  6. Bergem, A. L., Engedal, K., & Kringlen, E. (1997). The role of heredity in late-onset Alzheimer disease and vascular dementia: A twin study. Archives of General Psychiatry, 54, 264–270.PubMedGoogle Scholar
  7. Bergeman, C. S. (2007). Behavioral genetics. In Birren, J. E. (Ed.), Encyclopedia of gerontology (2nd ed.). New York: Academic Press.Google Scholar
  8. Berger, K. S. (2005). The developing person through the lifespan (6th ed.). New York: Worth Publishers.Google Scholar
  9. Birren, J. E. (1964). The psychology of aging. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  10. Blacker, D., Bertram, L., Saunders, A. J., Moscarillo, T. J., Albert, M. S., Wiener, H., et al. (2003). Results of a high-resolution genome screen of 437 Alzheimer’s disease families. Human Molecular Genetics, 12, 23–32.PubMedCrossRefGoogle Scholar
  11. Blomqvist, M. E., Reynolds, C., Katzov, H., Feuk, L., Andreasen, N., Bogdanovic, N., et al. (2006). Towards compendia of negative genetic association studies: An example for Alzheimer disease. Human Genetics, 119, 29–37.PubMedCrossRefGoogle Scholar
  12. Bouchard, T. J., Jr., Lykken, D. T., McGue, M., Segal, N. L., & Tellegen, A. (1990). Sources of human psychological differences: The Minnesota Twin Study of Twins Reared Apart. Science, 250, 223–228.PubMedCrossRefGoogle Scholar
  13. Bowler, J. V. (2005). Vascular cognitive impairment. Journal of Neurology, Neurosurgery, and Psychiatry, 76(Suppl 5), v35–v44.Google Scholar
  14. Bray, N. J., Buckland, P. R., Hall, H., Owen, M. J., & O’Donovan, M. C. (2004). The serotonin-2A receptor gene locus does not contain common polymorphism affecting mRNA levels in adult brain. Molecular Psychiatry, 9, 109–114.PubMedCrossRefGoogle Scholar
  15. Bretsky, P., Guralnik, J. M., Launer, L., Albert, M., & Seeman, T. E. (2003). The role of APOE-epsilon4 in longitudinal cognitive decline: MacArthur Studies of Successful Aging. Neurology, 60, 1077–1081.PubMedGoogle Scholar
  16. Bruder, G. E., Keilp, J. G., Xu, H., Shikhman, M., Schori, E., Gorman, J. M., et al. (2005). Catechol-O-methyltransferase (COMT) genotypes and working memory: Associations with differing cognitive operations. Biological Psychiatry, 58, 901–907.PubMedCrossRefGoogle Scholar
  17. Busse, E. W. (2002). Scope and development in the twentieth century. In M. S. John Pathy, A. J. Sinclair, & J. E. Morley (Eds.), Principles and practice of geriatric psychiatry (2nd ed., pp. 7–8). New York: John Wiley & Sons Ltd.CrossRefGoogle Scholar
  18. Carmelli, D., Swan, G. E., LaRue, A., & Eslinger, P. J. (1997). Correlates of change in cognitive function in survivors from the Western Collaborative Group Study. Neuroepidemiology, 16, 285–295.PubMedCrossRefGoogle Scholar
  19. Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851–854.PubMedCrossRefGoogle Scholar
  20. Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.PubMedCrossRefGoogle Scholar
  21. Crowe, M., Andel, R., Pedersen, N. L., Johansson, B., & Gatz, M. (2003). Does participation in leisure activities lead to reduced risk of Alzheimer’s disease? A prospective study of Swedish twins. Journals of Gerontology, Series B: Psychological and Social Sciences, 58, P249–P255.Google Scholar
  22. de Frias, C. M., Annerbrink, K., Westberg, L., Eriksson, E., Adolfsson, R., & Nilsson, L. G. (2004). COMT gene polymorphism is associated with declarative memory in adulthood and old age. Behavior Genetics, 34, 533–539.PubMedCrossRefGoogle Scholar
  23. de Frias, C. M., Annerbrink, K., Westberg, L., Eriksson, E., Adolfsson, R., & Nilsson, L. G. (2005). Catechol O-methyltransferase Val158Met polymorphism is associated with cognitive performance in nondemented adults. Journal of Cognitive Neuroscience, 17, 1018–1025.PubMedCrossRefGoogle Scholar
  24. de Quervain, D. J. F., Henke, K., Aerni, A., Coluccia, D., Wollmer, M. A., Hock, C., et al. (2003). A functional genetic variation of the 5-HT2a receptor affects human memory. Nature Neuroscience, 6, 1141–1142.PubMedCrossRefGoogle Scholar
  25. Deary, I. J., Whiteman, M. C., Pattie, A., Starr, J. M., Hayward, C., Wright, A. F., et al. (2002). Cognitive change and the APOE epsilon 4 allele. Nature, 418, 932.PubMedCrossRefGoogle Scholar
  26. Ebly, E. M., Parhad, I. M., Hogan, D. B., & Fung, T. S. (1994). Prevalence and types of dementia in the very old: Results from the Canadian Study of Health and Aging. Neurology, 44, 1593–1600.PubMedGoogle Scholar
  27. Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., et al. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. PNAS, 98, 6917–6922.PubMedCrossRefGoogle Scholar
  28. Emery, C. F., Pedersen, N. L., Svartengren, M. S., & McClearn, G. E. (1998). Longitudinal and genetic effects in the relationship between pulmonary function and cognitive performance. Journal of Gerontology: Psychological Sciences, 53B, P311–P317.Google Scholar
  29. Falconer, D. S. (1989). Introduction to quantitative genetics (3rd ed.). New York: John Wiley & Sons.Google Scholar
  30. Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., et al. (2005). Global prevalence of dementia: A Delphi consensus study. The Lancet, 366, 2112–2117.CrossRefGoogle Scholar
  31. Finch, C. E., & Kirkwood, T. B. L. (2000). Chance, development, and aging. New York: Oxford University Press.Google Scholar
  32. Finkel, D., & McGue, M. (1993). The origins of individual differences in memory among the elderly: A behavior genetic analysis. Psychology and Aging, 8, 527–537.PubMedCrossRefGoogle Scholar
  33. Finkel, D., & McGue, M. (1998). Age differences in the nature and origin of individual differences in memory. International Journal of Aging and Human Development, 47, 217–239.PubMedGoogle Scholar
  34. Finkel, D., & Pedersen, N. L. (2000). Contribution of age, genes, and environment to the relationship between perceptual speed and cognitive ability. Psychology and Aging, 15, 56–64.PubMedCrossRefGoogle Scholar
  35. Finkel, D., & Pedersen, N. L. (2001). Sources of environmental influence on cognitive abilities in adulthood. In E. L. Grigorenko & R. J. Sternberg (Eds.), Family environment and intellectual functioning: A life-span perspective (pp. 173–194). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  36. Finkel, D., & Pedersen, N. L. (2004). Processing speed and longitudinal trajectories of change for cognitive abilities: The Swedish Adoption/Twin Study of Aging. Aging, Neuropsychology, and Cognition, 11, 325–345.Google Scholar
  37. Finkel, D., Pedersen, N. L., & McGue, M. (1995a). Genetic influences on memory performance in adulthood: Comparison of Minnesota and Swedish twin studies. Psychology and Aging, 10, 437–446.PubMedCrossRefGoogle Scholar
  38. Finkel, D., Pedersen, N. L., McGue, M., & McClearn, G. E. (1995b). Heritability of cognitive abilities in adult twins: Comparison of Minnesota and Swedish data. Behavior Genetics, 25, 421–431.PubMedCrossRefGoogle Scholar
  39. Finkel, D., Reynolds, C. A., McArdle, J. J., & Pedersen, N. L. (2005). The longitudinal relationship between processing speed and cognitive ability: Genetic and environmental influences. Behavior Genetics, 35, 535–549.PubMedCrossRefGoogle Scholar
  40. Fleminger, S., Oliver, D. L., Lovestone, S., Rabe-Hesketh, S., & Giora, A. (2003). Head injury as a risk factor for Alzheimer’s disease: The evidence 10 years on; a partial replication. Journal of Neurology, Neurosurgery, and Psychiatry, 74, 857–862.PubMedCrossRefGoogle Scholar
  41. Gatz, M., Pedersen, N. L., Berg, S., Johansson, B., Johansson, K., Mortimer, J. A., et al. (1997). Heritability for Alzheimer’s disease: The study of dementia in Swedish twins. Journal of Gerontology: Medical Sciences, 52, M117–M125.Google Scholar
  42. Gatz, M., Reynolds, C. A., Fratiglioni, L., Johansson, B., Mortimer, J. A., Berg, S., et al. (2006a). Role of genes and environments for explaining Alzheimer’s disease. Archives of General Psychiatry, 63, 168–174.PubMedCrossRefGoogle Scholar
  43. Gatz, M., Mortimer, J. A., Fratiglioni, L., Johansson, B., Berg, S., Reynolds, C. A., & Pedersn, N. L. (2006b). Potentially modifiable risk factors for dementia in identical twins. Alzheimer’s & Dementia, 2, 110–117.CrossRefGoogle Scholar
  44. Harris, S. E., Wright, A. F., Hayward, C., Starr, J. M., Whalley, L. J., & Deary, I. J. (2005). The functional COMT polymorphism, Val 158 Met, is associated with logical memory and the personality trait intellect/imagination in a cohort of healthy 79 year olds. Neuroscience Letters, 385, 1–6.PubMedCrossRefGoogle Scholar
  45. Hassing, L. B., Johansson, B., Berg, S., Nilsson, S. E., Pedersen, N. L., Hofer, S. M., et al. (2002). Terminal decline and markers of cerebro- and cardiovascular disease: Findings from a longitudinal study of the oldest old. Journals of Gerontology, Series B: Psychological and Social Sciences, 57, P268–P276.Google Scholar
  46. Hayakawa, K., Shimizu, T., Ohba, Y., & Tomioka, S. (1992). Risk factors for cognitive aging in adult twins. Acta Geneticae Medicae Gemellologiae, 41, 187–195.Google Scholar
  47. Heath, A. C., & Berg, K. (1985). Effects of social policy on the heritability of educational achievement. Progress in Clinical and Biological Research, 177, 489–507.PubMedGoogle Scholar
  48. Hofer, S. M., Christensen, H., Mackinnon, A. J., Korten, A. E., Jorm, A. F., Henderson, A. S., et al. (2002). Change in cognitive functioning associated with apoE genotype in a community sample of older adults. Psychology and Aging, 17, 194–208.PubMedCrossRefGoogle Scholar
  49. Horn, J. (1988). Thinking about human abilities. In J. R. Nesselrode & R. B. Cattell (Eds.), Handbook of multivariate experimental psychology. New York: Plenum Press.Google Scholar
  50. Jellinger, K. A. (2004). Head injury and dementia. Current Opinion in Neurology, 17, 719–723.PubMedCrossRefGoogle Scholar
  51. Johansson, B., & Berg, S. (1989). The robustness of the terminal decline phenomenon: Longitudinal data from the Digit-Span Memory Test. Journal of Gerontology, 44, P184–P186.Google Scholar
  52. Johansson, B., Hofer, S. M., Allaire, J. C., Maldonado-Molina, M. M., Piccinin, A. M., Berg, S., et al. (2004). Change in cognitive capabilities in the oldest old: The effects of proximity to death in genetically related individuals over a 6-year period. Psychology and Aging, 19, 145–156.PubMedCrossRefGoogle Scholar
  53. Johansson, B., Whitfield, K., Pedersen, N. L., Hofer, S. M., Ahern, F., & McClearn, G. E. (1999). Origins of individual differences in episodic memory in the oldest-old: A population-based study of identical and same-sex fraternal twins aged 80 and older. Journal of Gerontology: Psychological Sciences, 54B, P173–P179.Google Scholar
  54. Kandel, E. R. (2001). The molecular biology of memory storage: A dialogue between genes and synapses. Science, 294, 1030–1038.PubMedCrossRefGoogle Scholar
  55. Kehoe, P., Wavrant-De Vrieze, F., Crook, R., Wu, W. S., Holmans, P., Fenton, I., et al. (1999). A full genome scan for late onset Alzheimer’s disease. Human Molecular Genetics, 8, 237–245.PubMedCrossRefGoogle Scholar
  56. Kontush, A., & Schekatolina, S. (2004). Vitamin E in neurodegenerative disorders: Alzheimer’s disease. Annals of the New York Academy of Sciences, 1031, 249–262.PubMedCrossRefGoogle Scholar
  57. Korten, A. E., Henderson, A. S., Christensen, H., Jorm, A. F., Rodgers, B., Jacomb, P., et al. (1997). A prospective study of cognitive function in the elderly. Psychological Medicine, 27, 919–930.PubMedCrossRefGoogle Scholar
  58. Larson, E. B., Wang, L., Bowen, J. D., McCormick, W. C., Teri, L., Crane, P., et al. (2006). Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Annals of Internal Medicine, 144, 73–81.PubMedGoogle Scholar
  59. Lichtenstein, P., & Pedersen, N. L. (1997). Does genetic variance for cognitive abilities account for genetic variance in educational achievement and occupational status? A study of twins reared apart and twins reared together. Social Biology, 44, 77–90.PubMedGoogle Scholar
  60. Lee, S., Kawachi, I., Berkman, L. F., & Grodstein, F. (2003). Education, other socioeconomic indicators, and cognitive function. American Journal of Epidemiology, 157, 712–720.PubMedCrossRefGoogle Scholar
  61. Lichtenstein, P., & Pedersen, N. L. (1997). Does genetic variance for cognitive abilities account for genetic variance in educational achievement and occupational status? A study of twins reared apart and twins reared together. Social Biology, 44, 77–90.PubMedGoogle Scholar
  62. Lindenberger, U. (2001). Lifespan theories of cognitive development. In N. J. Smelser & P. B. Baltes (Eds.), International encyclopedia of the social and behavior sciences (pp. 8848–8854). Oxford, England: Elsevier.Google Scholar
  63. Lu, T., Pan, Y., Kao, S. Y., Li, C., Kohane, I., Chan, J., et al. (2004). Gene regulation and DNA damage in the ageing human brain. Nature, 429, 883–891.PubMedCrossRefGoogle Scholar
  64. Malhotra, A. K., Kestler, L. J., Mazzanti, C., Bates, J. A., Goldberg, T., & Goldman, D. (2002). A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. American Journal of Psychiatry, 159, 652–654.PubMedCrossRefGoogle Scholar
  65. Martin, N. G. (2000). Gene–environment interaction and twin studies. In T. D. Spector, H. Snieder, & A. J. MacGregor (Eds.), Advances in twin and sib-pair analysis (pp. 144–150). London: Greenwich Medical Media.Google Scholar
  66. Maxwell, C. J., Hicks, M. S., Hogan, D. B., Basran, J., & Ebly, E. M. (2005). Supplemental use of antioxidant vitamins and subsequent risk of cognitive decline and dementia. Dementia and Geriatric Cognitive Disorders, 20, 45–51.PubMedCrossRefGoogle Scholar
  67. Mayeux, R., Small, S. A., Tang, M., Tycko, B., & Stern, Y. (2001). Memory performance in healthy elderly without Alzheimer’s disease: Effects of time and apolipoprotein-E. Neurobiology and Aging, 22, 683–689.CrossRefGoogle Scholar
  68. McArdle, J. J., & Hamagami, F. (2003). Structural equation models for evaluating dynamic concepts within longitudinal twin analyses. Behavior Genetics, 33, 137–159.PubMedCrossRefGoogle Scholar
  69. McArdle, J. J., & Nesselroade, J. R. (2003). Growth curve analysis in contemporary psychological research. In J. A. Schinka & W. F. Velicer (Eds.), Handbook of psychology: Research methods in psychology (Vol. 2, pp. xxiii, 711pp.). New York, NY: John Wiley & Sons, Inc.Google Scholar
  70. McArdle, J. J., Prescott, C. A., Hamagami, F., & Horn, J. L. (1998). A contemporary method for developmental-genetic analyses of age changes in intellectual abilities. Developmental Neuropsychology, 14, 69–114.CrossRefGoogle Scholar
  71. McClearn, G. E., Johansson, B., Berg, S., & Pedersen, N. L. (1997). Substantial genetic influences on cognitive abilities in twins 80 or more years old. Science, 276, 1560–1563.PubMedCrossRefGoogle Scholar
  72. McGue, M., & Christensen, K. (2001). The heritability of cognitive functioning in very old adults: Evidence from Danish twins aged 75 years and older. Psychology and Aging, 16, 272–280.PubMedCrossRefGoogle Scholar
  73. McGue, M., & Christensen, K. (2002). The heritability of level and rate-of-change in cognitive functioning in Danish twins aged 70 years and older. Experimental Aging Research, 28(4), 435–451.PubMedCrossRefGoogle Scholar
  74. Moceri, V. M., Kukull, W. A., Emanuel, I., van Belle, G., & Larson, E. B. (2000). Early-life risk factors and the development of Alzheimer’s disease. Neurology, 54, 415–420.PubMedGoogle Scholar
  75. Moceri, V. M., Kukull, W. A., Emanual, I., van Belle, G., Starr, J. R., Schellenberg, G. D., et al. (2001). Using census data and birth certificates to reconstruct the early-life socioeconomic environment and the relation to the development of Alzheimer’s disease. Epidemiology, 12, 383–389.PubMedCrossRefGoogle Scholar
  76. Morris, J. C. (1999). Is Alzheimer’s disease inevitable with age?: Lessons from clinicopathologic studies of healthy aging and very mild Alzheimer’s disease. Journal of Clinical Investigation, 104, 1171–1173.PubMedCrossRefGoogle Scholar
  77. Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., & Wilson, R. S. (2002). Vitamin E and cognitive decline in older persons. Archives of Neurology, 59, 1125–1132.PubMedCrossRefGoogle Scholar
  78. Mortensen, E. L., & Hogh, P. (2001). A gender difference in the association between APOE genotype and age-related cognitive decline. Neurology, 57, 89–95.PubMedGoogle Scholar
  79. Nathan, B. P., Jiang, Y., Wong, G. K., Shen, F., Brewer, G. J., & Struble, R. G. (2002). Apolipoprotein E4 inhibits, and apolipoprotein E3 promotes neurite outgrowth in cultured adult mouse cortical neurons through the low-density lipoprotein receptor-related protein. Brain Research, 928, 96–105.PubMedCrossRefGoogle Scholar
  80. Neubauer, A. C., Spinath, F. M., Riemann, R., Angleitner, A., & Borkenau, P. (2000). Genetic and environmental influences on two measures of speed of information processing and their relation to psychometric intelligence: Evidence form the German Observational Study of Adult Twins. Intelligence, 28, 267–289.CrossRefGoogle Scholar
  81. Nilsson, L. G., Nyberg, L., & Backman, L. (2002). Genetic variation in memory functioning. Neuroscience and Biobehavioral Reviews, 26, 841–848.PubMedCrossRefGoogle Scholar
  82. Nolan, K. A., Bilder, R. M., Lachman, H. M., & Volavka, J. (2004). Catechol O-methyltransferase Val158Met polymorphism in schizophrenia: Differential effects of Val and Met alleles on cognitive stability and flexibility. American Journal of Psychiatry, 161, 359–361.PubMedCrossRefGoogle Scholar
  83. Nussbaum, R. L., & Ellis, C. E. (2003). Alzheimer’s disease and Parkinson’s disease. New England Journal of Medicine, 348, 1356–1364.PubMedCrossRefGoogle Scholar
  84. Ohm, T. G., Glockner, F., Distl, R., Treiber-Held, S., Meske, V., & Schonheit, B. (2003). Plasticity and the spread of Alzheimer’s disease-like changes. Neurochemical Research, 28, 1715–1723.PubMedCrossRefGoogle Scholar
  85. Ohm, T. G., Kirca, M., Bohl, J., Scharnagl, H., Gross, W., & Marz, W. (1995). Apolipoprotein E polymorphism influences not only cerebral senile plaque load but also Alzheimer-type neurofibrillary tangle formation. Neuroscience, 66, 583–587.PubMedCrossRefGoogle Scholar
  86. Pedersen, N. L., Reynolds, C. A., & Gatz, M. (1996). Sources of covariation among Mini-Mental State Examination scores, education, and cognitive abilities. Journals of Gerontology: Series B: Psychological Sciences and Social Sciences, 51B, P55–P63.Google Scholar
  87. Pedersen, N. L., Ripatti, S., Berg, S., Reynolds, C. A., Hofer, S. M., Finkel, D., et al. (2003). The influence of mortality on twin models of change. Behavior Genetics, 33, 161–169.PubMedCrossRefGoogle Scholar
  88. Pendleton, N., Payton, A., van den Boogerd, E. H., Holland, F., Diggle, P., Rabbitt, P. M., et al. (2002). Apolipoprotein E genotype does not predict decline in intelligence in healthy older adults. Neuroscience Letters, 324, 74–76.PubMedCrossRefGoogle Scholar
  89. Petrill, S. A., Johansson, B., Pedersen, N. L., Berg, S., Plomin, R., Ahern, F., et al. (2001). Low cognitive functioning in nondemented 80+-year-old twins is not heritable. Intelligence, 29, 75–83.CrossRefGoogle Scholar
  90. Plassman, B. L., Havlik, R. J., Steffens, D. C., Helms, M. J., Newman, T. N., Drosdick, D., et al. (2000). Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology, 55, 1158–1166.PubMedGoogle Scholar
  91. Plomin, R. (1994). Genetics and experience. Newbury Park, CA: Sage Publications.Google Scholar
  92. Plomin, R., & Spinath, F. M. (2004). Intelligence: Genetics, genes, and genomics. Journal of Personality & Social Psychology, 86, 112–129.CrossRefGoogle Scholar
  93. Posthuma, D., de Geus, E. J. C., & Boomsma, D. I. (2001). Perceptual speed and IQ are associated through common genetic factors. Behavior Genetics, 31, 593–602.PubMedCrossRefGoogle Scholar
  94. Posthuma, D., Mulder, E. J. C. M., Boomsma, D. I., & de Geus, E. J. C. (2002). Genetic analysis of IQ, processing speed and stimulus-response incongruency effects. Biological Psychology, 61, 157–182.PubMedCrossRefGoogle Scholar
  95. Reynolds, C. A., Finkel, D., Gatz, M., & Pedersen, N. L. (2002). Sources of influence on rate of cognitive change over time in Swedish twins: An application of latent growth models. Experimental Aging Research, 28, 407–433.PubMedCrossRefGoogle Scholar
  96. Reynolds, C. A., Finkel, D., McArdle, J. J., Gatz, M., Berg, S., & Pedersen, N. L. (2005). Quantitative genetic analysis of latent growth curve models of cognitive abilities in adulthood. Developmental Psychology, 41, 3–16.PubMedCrossRefGoogle Scholar
  97. Reynolds, C. A., Jansson, M., Gatz, M., & Pedersen, N. L. (2006a). Longitudinal change in memory performance associated with HTR2A polymorphism. Neurobiology of Aging, 27, 150–154.PubMedCrossRefGoogle Scholar
  98. Reynolds, C. A., Prince, J. A., Feuk, L., Gatz, M., & Pedersen, N. L. (2006b). Longitudinal memory performance during normal aging: Twin association models of APOE and other Alzheimer candidate genes. Behavior Genetics, 36, 185–194.PubMedCrossRefGoogle Scholar
  99. Rowe, D. C. (1994). The limits of family influence: Genes, experience, and behavior. New York: Guilford.Google Scholar
  100. Rubinsztein, D. C., & Easton, D. F. (1999). Apolipoprotein E genetic variation and Alzheimer’s disease: A meta-analysis. Dementia and Geriatric Cognitive Disorders, 10, 199–209.PubMedCrossRefGoogle Scholar
  101. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403–428.PubMedCrossRefGoogle Scholar
  102. Schaie, K. W. (1994). The course of intellectual development. American Psychologist, 49, 304–313.PubMedCrossRefGoogle Scholar
  103. Schaie, K. W. (1996). Intellectual development in adulthood. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (pp. 266–286). San Diego, CA, US: Academic Press, Inc.Google Scholar
  104. Schofield, P. W., Tang, M., Marder, K., Bell, K., Dooneief, G., Chun, M., et al. (1997). Alzheimer’s disease after remote head injury: an incidence study. Journal of Neurology, Neurosurgery and Psychiatry, 62, 119–124.CrossRefGoogle Scholar
  105. Sheline, Y. I., Mintun, M. A., Moerlein, S. M., & Snyder, A. Z. (2002). Greater loss of 5-HT(2A) receptors in midlife than in late life. American Journal of Psychiatry, 159, 430–435.PubMedCrossRefGoogle Scholar
  106. Silverman, J. M., Ciresi, G., Smith, C. J., Marin, D. B., & Schnaider-Beeri, M. (2005). Variability of familial risk of Alzheimer disease across the late life span. Archives of General Psychiatry, 62, 565–573.PubMedCrossRefGoogle Scholar
  107. Singer, T., Verhaeghen, P., Ghisletta, P., Lindenberger, U., & Baltes, P. B. (2003). The fate of cognition in very old age: Six-year longitudinal findings in the Berlin Aging Study (BASE). Psychology and Aging, 18, 318–331.PubMedCrossRefGoogle Scholar
  108. Small, B. J., Fratiglioni, L., von Strauss, E., & Backman, L. (2003). Terminal decline and cognitive performance in very old age: does cause of death matter? Psychology and Aging, 18, 193–202.PubMedCrossRefGoogle Scholar
  109. Small, B. J., Graves, A. B., McEvoy, C. L., Crawford, F. C., Mullan, M., & Mortimer, J. A. (2000). Is APOE–epsilon4 a risk factor for cognitive impairment in normal aging? Neurology, 54, 2082–2088.PubMedGoogle Scholar
  110. Small, S. A., Stern, Y., Tang, M., & Mayeux, R. (1999). Selective decline in memory function among healthy elderly. Neurology, 52, 1392–1396.PubMedGoogle Scholar
  111. Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., et al. (1993). Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 90, 1977–1981.PubMedCrossRefGoogle Scholar
  112. Sundet, J. M., Tambs, K., Harris, J. R., Magnus, P., & Torjussen, T. M. (2005). Resolving the genetic and environmental sources of the correlation between height and intelligence: A study of nearly 2600 Norwegian male twin pairs. Twin Research and Human Genetics, 8(4), 307–311.PubMedCrossRefGoogle Scholar
  113. Swan, G. E., Carmelli, D., Reed, T., Harshfield, G. A., Fabsitz, R. R., & Eslinger, P. J. (1990). Heritability of cognitive performance in aging twins. The National Heart, Lung, and Blood Institute Twin Study. Archives of Neurology, 47, 259–262.PubMedGoogle Scholar
  114. Swan, G. E., LaRue, A., Carmelli, D., Reed, T. E., & Fabsitz, R. R. (1992). Decline in cognitive performance in aging twins: Heritability and biobehavioral predictors from the National Heart, Lung, and Blood Institute Twin Study. Archives of Neurology, 49, 476–481.PubMedGoogle Scholar
  115. Swan, G. E., Reed, T., Jack, L. M., Miller, B. L., Markee, T., Wolf, P. A., et al. (1999). Differential genetic influence for components of memory in aging adult twins. Archives of Neurology, 56, 1127–1132.PubMedCrossRefGoogle Scholar
  116. Takahashi, R. H., Nam, E. E., Edgar, M., & Gouras, G. K. (2002). Alzheimer beta-amyloid peptides: Normal and abnormal localization. Histology and Histopathology, 17, 239–246.PubMedGoogle Scholar
  117. Tambs, K., Sundet, J. M., & Magnus, P. (1986). Genetic and environmental contributions to the covariation between the Wechsler Adult Intelligence Scale (WAIS) subtests: A study of twins. Behavior Genetics, 16, 475–491.PubMedCrossRefGoogle Scholar
  118. Tambs, K., Sundet, J.M., Magnus, P., & Berg, K. (1989). Genetic and environmental contributions to the covariance between occupational status, educational attainment, and IQ: A twin study. Behavior Genetics, 19, 209–222.PubMedCrossRefGoogle Scholar
  119. Tang, M. X., Maestre, G., Tsai, W. Y., Liu, X. H., Feng, L., Chung, W. Y., et al. (1996). Effect of age, ethnicity, and head injury on the association between APOE genotypes and Alzheimer’s disease. Annals of the New York Academy of Sciences, 802, 6–15.PubMedCrossRefGoogle Scholar
  120. Teter, B., Xu P.-T., Gilbert, J. R., Roses, A. D., Galasko, D., & Cole, G. M. (2002). Defective neuronal sprouting by human apolipoprotein E4 is a gain-of-negative function. Journal of Neuroscience Research, 68, 331–336.PubMedCrossRefGoogle Scholar
  121. Tsai, S.-J., Yu, Y. W.-Y., Chen, T.-J., Chen, J.-Y., Liou, Y.-J., Chen, M.-C., et al. (2003). Association study of a functional catechol-O-methyltransferase-gene polymorphism and cognitive function in healthy females. Neuroscience Letters, 338, 123–126.PubMedCrossRefGoogle Scholar
  122. Warwick Daw, E., Payami, H., Nemens, E. J., Nochlin, D., Bird, T. D., Schellenberg, G. D., et al. (2000). The number of trait loci in late-onset Alzheimer disease. American Journal of Human Genetics, 66, 196–204.Google Scholar
  123. Williams, G. V., Rao, S. G., & Goldman-Rakic, P. S. (2002). The physiological role of 5-HT2A receptors in working memory. Journal of Neuroscience, 22, 2843–2854.PubMedGoogle Scholar
  124. Wilson, R. S., Beckett, L. A., Bienias, J. L., Evans, D. A., & Bennett, D. A. (2003). Terminal decline in cognitive function. Neurology, 60, 1782–1787.PubMedCrossRefGoogle Scholar
  125. Wilson, R. S., Scherr, P. A., Hoganson, G., Bienias, J. L., Evans, D. A., & Bennett, D. A. (2005). Early life socioeconomic status and late life risk of Alzheimer’s disease. Neuroepidemiology, 25, 8–14.PubMedCrossRefGoogle Scholar
  126. Wilson, R. S., Schneider, J. A., Barnes, L. L., Beckett, L. A., Aggarwal, N. T., Cochran, E. J., et al. (2002). The apolipoprotein E epsilon 4 allele and decline in different cognitive systems during a 6-year period. Archieves of Neurology, 59, 1154–1160.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PsychologySchool of Social Sciences, Indiana University SoutheastNew AlbanyUSA
  2. 2.Department of PsychologyUniversity of CaliforniaRiversideUSA

Personalised recommendations