Skip to main content

Twin Studies of General Mental Ability

  • Chapter
Handbook of Behavior Genetics

Twin studies are a vital source of information about genetic and environmental influences on general mental ability. The classic twin design—comparison of the relative similarity between monozygotic (MZ) and dizygotic (DZ) twins— is a simple and elegant approach to estimating the effects of genes and experience on developmental traits. However, while this method was considered state of the art in behavioral genetics in the 1960s and 1970s, it is now only one of many more sensitive and sophisticated twin designs. Twin research on behavioral and medical traits, in general, and on intelligence, in particular, has advanced at an impressive rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amiel-Tison, C., & Gluck, L. (1995). Fetal brain and pulmonary adaptation in multiple pregnancy. In L. G. Keith, E. Papiernik, D. M. Keith, & B. Luke (Eds.), Multiple pregnancy: Epidemiology, gestation and perinatal outcome (pp. 585–597). New York: Parthenon.

    Google Scholar 

  • Arey, L. B. (1922). Direct proof of the monozygotic origin of human identical twins. Anatomical Record, 23, 245–251.

    Article  Google Scholar 

  • Baareacute, W. F. C., van Oel, C. J., Hulshoff Pol, H. E., Schnack, H. G., Durston, S., Sitskoorn, et al. (2001). Volumes of brain structures in twins discordant for schizophrenia. Archives of General Psychiatry, 58, 33–40.

    Google Scholar 

  • Bartley, A. J., Jones, D. W., & Weinberger, D. R. (1997). Genetic variability of human brain size and cortical gyral patterns. Brain, 120, 257–269.

    Article  PubMed  Google Scholar 

  • Beatty, J. (1995). Principles of behavioral neuroscience. Madison: Brown & Benchmark.

    Google Scholar 

  • Bishop, E. G., Cherny, S. S., Corley, R., Plomin, R., DeFries, J. C., & Hewitt, J. K. (2003). Development genetic analysis of general cognitive ability from 1 to 12 years in a sample of adoptees, biological siblings, and twins. Intelligence, 31, 31–49.

    Article  Google Scholar 

  • Boomsma, D., van Beijsterveldt, C. E. M., Rietveld, M. J. H., Bartels, M., & van Baal, G. C. M. (2001). Genetics mediate relation of birth weight to childhood IQ. British Medical Journal, 323, 1426.

    Article  PubMed  CAS  Google Scholar 

  • Borkenau, P., Riemann, R., Angleitner, A., & Spinath, F. M. (2002). Similarity of childhood experiences and personality resemblance in monozygotic and dizygotic twins: A test of the equal environments assumption. Personality and Individual Differences, 33, 261–269.

    Article  Google Scholar 

  • Bouchard, T. J., Jr. (1983). Do environmental similarities explain the similarity in intelligence of identical twins reared apart? Intelligence, 7, 175–184.

    Article  Google Scholar 

  • Bouchard, T. J., Jr. (2005). 2005 Kistler Prize Recipient: Dr. Thomas J. Bouchard Jr. Foundation for the Future News, Winter 2005/2006.

    Google Scholar 

  • Bouchard, T. J., Jr., Lykken, D. T., McGue, M., Segal, N. L., & Tellegen, A. (1990). Sources of human psychological differences: The Minnesota Study of Twins Reared Apart. Science, 250, 223–228.

    Article  PubMed  Google Scholar 

  • Bouchard, T. J., Jr., & McGue, M. (1981). Familial studies of intelligence: A review. Science, 212, 1055–1059.

    Article  PubMed  Google Scholar 

  • Bouchard, T. J. Jr., & McGue, M. (1993). Genetic and environmental influences on human psychological differences. Journal of Neurobiology, 54, 4–45.

    Article  Google Scholar 

  • Bouchard, T. J., Jr., & Segal, N. L. (1985). IQ and environment. In B. B. Wolman (Ed.), Handbook of intelligence (pp. 391–464). New York: John Wiley & Sons.

    Google Scholar 

  • Bryan, E. M. (1983). The nature and nurture of twins. London: Bailliére Tindall.

    Google Scholar 

  • Bulmer, M. G. (1970). The biology of twinning in man. Oxford: Clarendon.

    Google Scholar 

  • Caravale, B., Tozzi, C., Albino, G., & Vicari, S. (2005). Cognitive development in low risk preterm infants at 3–4 years of life. Archives of Diseases in Childhood (Fetal and Neonatal Edition), 90, F474–479.

    Google Scholar 

  • Carden, L. (1994). Specific cognitive abilities. In J. C. DeFries, R. Plomin, & D. W. Fulker (Eds.), Nature and nurture during middle childhood (pp. 57–76). Oxford:Blackwell.

    Google Scholar 

  • Center for Disease Control. (2003). Births: Final data for 2002. National Vital Statistics Reports, 52, 1–116.

    Google Scholar 

  • Christensen, K., Petersen, I., Herskind, A.-M., & Bingley, P. (2006). Twin/singleton differences in intelligence? A Danish nation-wide population-based register study of test scores and classroom assessments. British Medical Journal, 333, 1095.

    Article  PubMed  Google Scholar 

  • Christensen, K., Vaupel, J. W., Holm, N. V., & Yashin, A. I. (1995). Mortality among twins after age 6: Fetal origins hypothesis versus twin method. British Medical Journal, 310, 432–436.

    PubMed  CAS  Google Scholar 

  • Cochran, G., Hardy, J., & Harpending, H. (2006). Natural history of Ashkenazi intelligence. Journal of Biosocial Science, 38, 659–693.

    Article  PubMed  Google Scholar 

  • Cronk, N. J., Slutske, W. S., Madden, P. A. F., Bucholz, K. K., Reich, W., & Heath, A. C. (2002). Emotional and behavioral problems among female twins: An evaluation of the equal environments assumption. Journal of the American Academy of Child and Adolescent Psychiatry, 41, 829–837.

    Article  PubMed  Google Scholar 

  • Davis, D. W., Burns, B. M., Wilkerson, S. A., & Steichen, J. J. (2005). Visual perceptual skills in children born with very low birth weights. Journal of Pediatric Health Care, 19, 363–368.

    Article  PubMed  Google Scholar 

  • Deary, I. J. (2000). Looking down on human intelligence. New York: Oxford University Press.

    Book  Google Scholar 

  • Deary, I. J., Pattie, A., Wilson, V., & Whalley, L. J. (2005). The cognitive cost of being a twin: Two whole-population surveys. Twin Research and Human Genetics, 8, 376–383.

    Article  PubMed  Google Scholar 

  • Devlin, B., Daniels, M., & Roeder, K. (1997). The heritability of IQ. Nature, 388, 468–471.

    Article  PubMed  CAS  Google Scholar 

  • Dumaret, A., & Stewart, J. (1985). IQ, scholastic performance and behaviour of sibs raised in contrasting environments. Journal of Child Psychology and Psychiatry, 26, 553–580.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., et al. (2000). A neural basis for general intelligence. Science, 289, 457–460.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, G. (1987). Neural Darwinism: The theory of neuronal group selection. New York: Basic Books.

    Google Scholar 

  • Endres, L., & Wilkins, I. (2005). Epidemiology and biology of multiple gestations. In K. A. Edelman & J. Stone (Eds.), Clinics in perinatology: Multiple gestations (pp. 301–314). Philadelphia: Elsevier.

    Google Scholar 

  • Erlenmeyer-Kimling, L., & Jarvik, L. F. (1963). Genetics and intelligence: A review. Science, 142, 1477–1479.

    Article  PubMed  CAS  Google Scholar 

  • Esposito, G., Kirby, B. S., Van Horn, J. D., Ellmore, T. M., & Berman, K. F. (1999). Context-dependent, neural-system-specific neurophysiological concomitants of ageing: Mapping PET correlates during cognitive activation. Brain, 122, 963–979.

    Article  PubMed  Google Scholar 

  • Fletcher, R. (1991). Science, ideology and the media: The Cyril Burt scandal. London: Transaction Publishers.

    Google Scholar 

  • Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences, 102, 10604–10609.

    Article  CAS  Google Scholar 

  • Fulker, D. W., Cherny, S. S., & Cardon, L. R. (1993). Continuity and change in cognitive developement. In R. Plomin & G. E. McClearn (Eds.), Nature, nurture, and psychology (pp. 77–97). Washington, D. C.:American Psychological Association.

    Chapter  Google Scholar 

  • Galton, F. (1875). The history of twins as a criterion of the relative powers of nature and nurture. Journal of the Anthropological Institute, 5, 391–406.

    Google Scholar 

  • Gartner, K. (1990). A third component causing random variability beside environment and genotype: A reason for the limited success of a 30 year long effort to standardize laboratory animals? Laboratory Animals, 24, 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Gartner, K., & Baunack, E. (1981). Is the similarity of monozygotic twins due to genetic factors alone? Nature, 292, 646–647.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, R., & Stevenson, J. (1991). Parental criticism and warmth toward unrecognized monozygotic twins. Behavioral and Brain Sciences, 14, 394–395.

    Google Scholar 

  • Goody, A., Rice, F., Bolvin, J., Harold, G. T., Hay, D. F., & Thapur, A. (2005). Twins born following fertility treatment: Implications for quantitative genetic studies. Twin Research and Human Genetics, 8, 337–345.

    Article  PubMed  Google Scholar 

  • Gottesman, I. I., & Bertelsen, A. (1989). Confirming unexpressed genotypes for schizophrenia. Archives of General Psychiatry, 46, 867–872.

    PubMed  CAS  Google Scholar 

  • Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636–645.

    Article  PubMed  Google Scholar 

  • Gottesman, I. I., & Shields, J. (1967). A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences, 58, 199–205.

    Article  CAS  Google Scholar 

  • Gottesman, I. I., & Shields, J. (1973). Genetic theorizing and schizophrenia. British Journal of Psychiatry, 122, 15–30.

    Article  PubMed  CAS  Google Scholar 

  • Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316–322.

    Article  PubMed  CAS  Google Scholar 

  • Gray, J. R., & Thompson, P. M. (2004). The neurobiology of intelligence: Science and ethics. Nature Neuroscience, 5, 471–482.

    Article  CAS  Google Scholar 

  • Haber, J. R., Jacob, T., & Heath, A. C. (2005). Paternal alcoholism and offspring conduct disorder: Evidence for the ‘common genes’ hypothesis. Twin Research and Human Genetics, 8, 120–131.

    PubMed  Google Scholar 

  • Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2004). Structural brain variation and general intelligence. NeuroImage, 23, 425–433.

    Article  PubMed  Google Scholar 

  • Haier, R. J., Siegel, B. V., MacLachlan, A., Soderling, E., Lottenberg, S., & Buchsbaum, M. S. (1992). Regional glucose metabolic changes after learning a complex visual-spatial motor task: A positron emission tomography study. Brain Research, 570, 134–143.

    Article  PubMed  CAS  Google Scholar 

  • Haier, R. J., White, N. S., & Alkire, M. T. (2003). Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31, 429–441.

    Article  Google Scholar 

  • Harlaar, N., Butcher, L. M., Meaburn, E., Sham, P., Craig, I. W., & Plomin, R. (2005). A behavioural genomic analysis of DNA markers associated with general cognitive ability in 7-year-olds. Journal of Child Psychology and Psychiatry, 46, 1097–1107.

    Article  PubMed  Google Scholar 

  • Hayakawa, K., Shimizu, T., Kato, K., Onoi, M., & Kobayashi, Y. (2002). A gerontological cohort study of aged twins: The Osaka University Aged Twin Registry. Twin Research, 5, 387–388.

    Article  PubMed  Google Scholar 

  • Hecht, B. R., & Magoon, M. W. (1998). Can the epidemic of iatrogenic multiples be conquered? Clinical Obstetrics and Gynecology, 41, 126–137.

    PubMed  CAS  Google Scholar 

  • Helmerhorst, F. M., Perquin, D. A. M., Donker, D., & Keirse, M. J. N. C. (2004). Perinatal outcome of singletons and twins after assisted conception: A systematic review of controlled studies. British Medical Journal, 328, 261–265.

    Article  PubMed  Google Scholar 

  • Inlow, J. K., & Restifo, L. L. (2004). Molecular and comparative genetics of mental retardation. Genetics, 166, 835–881.

    Article  PubMed  CAS  Google Scholar 

  • Jablonski, W. (1992). A contribution to the heredity of refraction in human eyes. Archiv Augenheilk, 91, 308–328.

    Google Scholar 

  • Jacobs, N., Van Gestel, S., Derom, C., Thiery, E., Vernon, P., Derom, R., et al. (2003). Heritability estimates of intelligence in twins: Effect of chorion type. Behavior Genetics, 31, 209–217.

    Article  Google Scholar 

  • Jensen, A. (1998). The g factor. Westport, CT: Praeger.

    Google Scholar 

  • Johnson, W., Bouchard, T. J., Jr., McGue, M., Segal, N. L., Tellegen, A., Keyes, M., et al. (2006). Genetic and environmental influences on the verbal-perceptual-image rotation (VPR) model of the structure of mental abilities in the Minnesota Study of Twins Reared Apart. Intelligence, 35, 452–462.

    Google Scholar 

  • Joynson, R. B. (1989). The Burt affair. New York: Routledge.

    Google Scholar 

  • Juel-Nielsen, N. (1965). Individual and environment: Monozygotic twins reared apart. New York: International Universities Press.

    Google Scholar 

  • Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1994). Parental treatment and the equal environment assumption in twin studies of psychiatric illness. Psychological Medicine, 23, 579–590.

    Article  Google Scholar 

  • Kervinen, K., Kaprio, J., Koskenvuo, M., Juntunen, J., & Kesaniemi, Y. A. (1998). Serum lipids and apolipoprotein E phenotypes in identical twins reared apart. Clinical Genetics, 53, 191–199.

    PubMed  CAS  Google Scholar 

  • Kim, H., Krege, J. H., Kluckman, K. D., Hagaman, J. R., Hodgin, J. B., Best, C. F., et al. (1995). Genetic control of blood pressure and the angiotensinogen locus. Proceedings of the National Academy of Sciences, 92, 2735–2739.

    Article  CAS  Google Scholar 

  • Klump, K. L., Holly, A., Iacono, W. G., McGue, M., & Wilson, L. E. (2000). Physical similarity and twin resemblance for eating attitudes and behaviors: A test of the equal environments assumption. Behavior Genetics, 30, 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Krege, J. H., Kim, H. S., Moyer, J. S., Jennette, J. C., Peng, L., Hiller, S.K., et al. (1997). Angiotensin-converting-enzyme gene mutations, blood pressures, and cardiovascular homeostasis. Hypertension, 29, 150–157.

    PubMed  CAS  Google Scholar 

  • Kuwata, T., Matsubara, S., Ohkuchi, A., Watanabe, T., Izumi, A., Honma, Y., et al. (2004). The risk of birth defects in dichorionic twins conceived by assisted reproductive technology. Twin Research and Human Genetics, 7, 223–227.

    Article  Google Scholar 

  • LaBuda, M., Svikis, D. S., & Pickens, R. W. (1997). Twin closeness and co-twin risk for substance use disorders: assessing the impact of the equal environment assumption. Psychiatric Research, 70, 155–164.

    Article  CAS  Google Scholar 

  • Loehlin, J. C., Horn, J. M., & Willerman, L. (1989). Modeling IQ change: Evidence from the Texas Adoption Project. Child Development, 60, 993–1004.

    Article  PubMed  CAS  Google Scholar 

  • Loehlin, J. C., & Nichols, R. C. (1976). Heredity, environment, and personality: A study of 850 sets of twins. Austin: University of Texas Press.

    Google Scholar 

  • Luciano, M., Smith, G. A., Wright, M. J., Geffen, G. M., Geffen, L. B., & Martin, N. G. (2001). On the heritability of inspection time and its covariance with IQ: a twin study. Intelligence, 29, 443–457.

    Article  Google Scholar 

  • Luciano, M., Wright, M. J., & Martin, N. G. (2004). Exploring the etiology of the association between birthweight and IQ in an adolescent twin sample. Twin Research, 7, 62–71.

    Article  PubMed  Google Scholar 

  • Machin, G. A., & Keith, L. G. (1999). An atlas of multiple pregnancy: Biology and pathology. New York: Parthenon.

    Google Scholar 

  • Magnus, P. (1984). Causes of variation in birth weight: A study of offspring of twins. Clinial Genetics, 25, 15–24.

    Article  CAS  Google Scholar 

  • Malykh, S. B., Zyrianova, N. M., & Kuravsky, L. S. (2003). Longitudinal genetic analysis of childhood IQ in 6- and 7-year-old Russian twins. Twin Research, 6, 285–291.

    Article  PubMed  Google Scholar 

  • McClearn, G. E., Johansson, B., Berg, S., Pedersen, N. L., Ahern, F., Petrill, S. A., et al. (1997). Substantial genetic influence on cognitive abilities in twins 80+ years old. Science, 276, 1560–1563.

    Article  PubMed  CAS  Google Scholar 

  • McDaniel, M. A. (2005). Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33, 337–346.

    Article  Google Scholar 

  • McGue, M., Bouchard, T. J., Jr., Iacono, W. G., & Lykken, D. T. (1993). Behavioral genetics of cognitive ability: A life-span perspective. In R. Plomin & G. E. McClearn (Eds.), Nature, nurture and psychology (pp. 59–76). Washington, DC: APA Press.

    Chapter  Google Scholar 

  • Merriman, C. (1924). The intellectual resemblance of twins. Psychological Monographs, 33, 1–58.

    Google Scholar 

  • Miller, G. F. (2000). The mating mind: How sexual choice shaped the evolution of human nature. New York: Doubleday.

    Google Scholar 

  • Morris-Yates, A., Andrews, G., Howie, P., & Henderson, S. (1990). Twins; A test of the equal environments assumption. Acta Psychiatrica Scandinavica, 81, 322–326.

    Article  PubMed  CAS  Google Scholar 

  • Neisser, U., Boodoo, G., Bouchard, T. J., Jr., Boykin, A. W., Brody, N., Ceci, S. J., et al. (1996). Intelligence: Knowns and unknowns. American Psychologist, 51, 77–101.

    Article  Google Scholar 

  • Neubaur, P. B., & Neubaur, A. (1990). Nature’s thumbprint: The new genetics of personality. New York: Addison-Wesley.

    Google Scholar 

  • Newman, H. N., Freeman, F. N., & Holzinger, K. J. (1937). Twins: A study of heredity and environment. Chicago: University of Chicago Press.

    Google Scholar 

  • Newman, H. H., & Patterson, J. T. (1910). The development of the nine-banded armadillo from the primitive streak stage to birth, with especial reference to the question of specific polyembryony. Journal of Morphology, 21, 359.

    Article  Google Scholar 

  • Oppenheim, J. S., Skerry, J. E., Tramo, M. J., & Gazzaniga, M. S. (1989). Magnetic resonance imaging of the corpus callosum in monozygotic twins. Annual Neurology Review, 26, 100–104.

    Article  CAS  Google Scholar 

  • Pedersen, N. L., McClearn, G. E., Plomin, R., & Friberg, L. (1985). Separated fraternal twins: Resemblance for cognitive abilities. Behavior Genetics, 15, 407–419.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, N. L., McClearn, G. E., Plomin, R., & Nesselroade, J. R. (1992). Effects of early rearing environment on twin similarity in the last half of the life span. British Journal of Developmental Psychology, 10, 255–267.

    Google Scholar 

  • Pennington, B. F., Filipek, P. A., Lefly, D., Chhabildas, N., Kennedy, D. N., Simon, J. H., et al. (2000). A twin MRI study of size variations in human brain. Journal of Cognitive Neuroscience, 12, 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Perlman, L. M. (2005). Memories of the Child Development Center study of adopted monozygotic twins reared apart: An unfulfilled promise. Twin Research and Human Genetics, 8, 271–275.

    Article  PubMed  Google Scholar 

  • Pfefferbaum, A., Sullivan, E. V., Swan, G. E., & Carmelli, D. (2000). Brain structure in men remains highly heritable in the seventh and eighth decades of life. Neurobiology of Aging, 21, 63–74.

    Article  PubMed  CAS  Google Scholar 

  • Pinker, S. (2002). The blank slate: The modern denial of human nature. New York: Viking.

    Google Scholar 

  • Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2001). Behavioral genetics (4th ed.). New York: Worth Publishers.

    Google Scholar 

  • Posthuma, D., De Geus, E. J., Baare, W. F. C., Pol, H. E. H., Kahn, R. S., & Boomsma, D. I. (2002). The association between brain volume and intelligence is of genetic origin. Nature Neuroscience, 5, 83–84.

    Article  PubMed  CAS  Google Scholar 

  • Posthuma, D., De Geus, E. J., Bleichrodt, N., & Boomsma, D. L. (2000). Twin-singleton differences in intelligence? Twin Research, 3, 83–87.

    Article  PubMed  CAS  Google Scholar 

  • Potter, C. E. L. (1948). Fundamentals of human reproduction. New York: McGraw-Hill.

    Google Scholar 

  • Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H., & Gabrielli, J. D. (1997). Neuronal substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test. Cognitive Psychology, 33, 43–63.

    Article  PubMed  CAS  Google Scholar 

  • Purcell, S., Eley, T. C., Dale, P. S., Oliver, B., Petrill, S. A., Price, T. S., et al. (2001). Comorbidity between verbal and non-verbal cognitive delays in 2-year-olds: A bivariate twin analysis. Developmental Science, 4, 194–207.

    Article  Google Scholar 

  • Reed, T., Carmelli, D., & Rosenman, R. H. (1991). Effects of placentation on selected Type A behaviors in adult males in the National Heart, Lung, and Blood Institute (NHLBI) twin study. Behavior Genetics, 21, 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, C. A., Finkel, D., Gatz, M., & Pedersen, N. L. (2002). Sources of influence on rate of cognitive change over time in Swedish twins: An application of latent growth models. Experimental Aging Research, 28, 407–433.

    Article  PubMed  Google Scholar 

  • Rietveld, M. J. H., Dolan, C. V., van Baal, C. M., & Boomsma, D. I. (2003). A twin study of differentiation of cognitive abilities in childhood. Behavior Genetics, 33, 367–381.

    Article  PubMed  CAS  Google Scholar 

  • Ronalds, G. A., De Stavola, B. L., & Leon, D. A. (2005). The cognitive cost of being a twin: Evidence from comparisons within families in the Aberdeen children of the 1950s cohort. British Medical Journal, 331, 1306–1310.

    Article  PubMed  Google Scholar 

  • Rose, R. J., Harris, E. L., Christian, J. C., & Nance, W. E. (1979). Genetic variance in nonverbal intelligence: Data from the kinships of identical twins. Science, 205, 1153–1155.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, D. C. (1994). The limits of family influence. New York: Guiford Press.

    Google Scholar 

  • Rutherford, S. L. (2000). From genotype to phenotype: Buffering mechanisms and the storage of genetic information. BioEssays, 22, 1095–1105.

    Article  PubMed  CAS  Google Scholar 

  • Rutter, M., Thorpe, K., Greenwood, R., Northstone, K., & Golding, J., (2003). Twins as a natural experiment to study the causes of mild language delay: I: Design; twin-singleton differences in language, and obstetric risks. Journal of Child Psychology and Psychiatry, 44, 326–341.

    Article  PubMed  Google Scholar 

  • Scamvougeras, A., Kigar, D. L., Jones, D., Weinberger, D. R., & Witelson, S. F. (2003). Size of the human corpus callosum is genetically determined: An MRI study in mono and dizygotic twins. Neuroscience Letters,338, 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Scarr, S. (1969). Environmental bias in twin studies. In M. Manosevits, G. Lindzey, & D. D. Thiessen (Eds.), Behavioral genetics: Method and theory (pp. 597–605). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Segal, N. L. (1985a). Holocaust twins: Their special bond. Psychology Today, 19, 52–58.

    Google Scholar 

  • Segal, N. L. (1985b). Monozygotic and dizygotic twins: A comparative analysis of mental ability profiles. Child Development, 56, 1051–1058.

    Google Scholar 

  • Segal, N. L. (1997). Twin research perspective on human development. In N. L. Segal, G. E. Weisfeld, & C. C. Weisfeld (Eds.), Uniting psychology and biology: Integrative perspectives on human development (pp. 145–173). Washington, DC: APA Press.

    Chapter  Google Scholar 

  • Segal, N. L. (2000a). Entwined lives: Twins and what they tell us about human behavior. New York: Plume.

    Google Scholar 

  • Segal, N. L. (2000b). Virtual twins: New findings on within-family environmental influences on intelligence. Journal of Education Psychology, 92, 442–448.

    Google Scholar 

  • Segal, N. L. (2003). Spotlights (Reared apart twin researchers); research sampling; literature, politics, photography and athletics. Twin Research, 6, 72–81.

    Article  PubMed  Google Scholar 

  • Segal, N. L. (2005a). Indivisible by two: Lives of extraordinary twins. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Segal, N. L. (2005b). More thoughts on the Child Development Center Twin Study. Twin Research and Human Genetics, 8, 276–281.

    Google Scholar 

  • Segal, N. L. (2005c). Twins reared apart design. In B. Everitt & D. C. Howell (Eds.), Encyclopedia of statistics in behavioral science. 4 z(pp. 2072–2076). Chichester, UK: John Wiley & Sons.

    Google Scholar 

  • Segal, N. L. (In press, 2009). Multiple births: Developmental perspectives. Chicago Companion to the Child, Chicago: University of Chicago Press.

    Google Scholar 

  • Segal, N. L., & Allison, D. B. (2002). Twins and virtual twins: Bases of relative body weight revisited. International Journal of Obesity, 26, 437–441.

    Article  PubMed  CAS  Google Scholar 

  • Segal, N. L., Chavarria, K. A., & Stohs, J. H. (2008). Twin research: Evolutionary perspective on social relations. In T. Shackelford & C. D. Salmon (Eds.), Family relationships: An evolutionary perspective (pp. 312–333). Oxford, England: Oxford University Press.

    Google Scholar 

  • Segal, N. L., & Hershberger, S. L. (2005). Virtual twins and intelligence: Updated and new analyses of within-family environmental influences. Personality and Individual Differences, 39, 1061–1073.

    Article  Google Scholar 

  • Segal, N. L., McGuire, S. A., Havlena, J., Gill, P., & Hershberger, S. L. (2007). Intellectual similarity of virtual twin pairs: Developmental trends. Personality and Individual Differences, 42, 1209–1219.

    Article  PubMed  Google Scholar 

  • Segal, N. L., Seghers, J. P., Marelich, W. D., Mechanic, M., & Castillo, R. (2007). Social closeness of monozygotic and dizygotic twin parents toward their nieces and nephews. European Journal of Personality, 21, 487–506.

    Article  Google Scholar 

  • Sharma, A., Sharma, V. K., Horn-Saban, S., Lancet, D., Ramachandran, S., & Brahmachari, S. K. (2005). Assessing natural variations in gene expression in humans by comparing with monozygotic twins using microarrays. Physiological Genomics, 21, 117–123.

    Article  PubMed  CAS  Google Scholar 

  • Shields, J. (1962). Monozygotic twins: Brought up apart and together. London: Oxford University Press.

    Google Scholar 

  • Smithies, O. (2005). Many little things: One geneticist’s view of complex diseases. Nature Reviews – Genetics, 6, 419–425.

    Article  PubMed  CAS  Google Scholar 

  • Snyderman, M., & Rothman, S. (1988). The IQ controversy, the media and publication. New Brunswick, NJ: Transaction.

    Google Scholar 

  • Sokol, D. K., Moore, C. A., Rose, R. J., Williams, C. J., Reed, T., & Christian, J. C. (1995). Intrapair differences in personality and cognitive ability among young monozygotic twins distinguished by chorion type. Behavior Genetics, 25, 457–466.

    Article  PubMed  CAS  Google Scholar 

  • Spinath, F. M., Ronald, A., Harlaar, N., Price, T. S., & Plomin, R. (2003). Phenotypic g early in life: On the etiology of general cognitive ability in a large population sample of twin children aged 2–4 years. Intelligence, 31, 194–210.

    Article  Google Scholar 

  • Spitz, E., Carlier, M., Vacher-Lavenu, M.-C., Reed, T., Moutier, R., Busnel, M.-C., et al. (1996). Long term effect of prenatal heterogeneity among monozygotes. Current Psychological Cognition, 15, 283–308.

    Google Scholar 

  • Steinmetz, H., Herzog, A., Schlaug, G., Huang, Y., & Jancke, L. (1995). Brain (A)symmetry in monozygotic twins. Cerebral Cortex, 5, 296–300.

    Article  PubMed  CAS  Google Scholar 

  • Stern, K. (1960). Principles of human genetics. (2nd ed.). San Francisco: W.H. Freeman.

    Google Scholar 

  • Stromberg, B., Dahlquist, G., Ericson, A., Finnstrom, O., Koster, M., & Stjernqvist, K. (2002). Neurological sequelae in children born after in-vitro fertilisation: A population-based study. Lancet, 359, 461–465.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, E. V., Pfefferbaum, A., Swan, G. E., & Carmelli, D. (2001). Heritability of hippocampal size in elderly twin men: Equivalent influences from genes and environment. Hippocampus, 11, 754–762.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, H. F. (1980). The IQ game: A methodological inquiry into the heredity-environment controversy. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  • Thompson, P. M., Cannon, T. D., Narr, K. L., Erp, T. V., Poutanen, V. P., Huttunen, M., et al. (2001). Genetic influences on brain structure. Nature Neuroscience, 4, 1–6.

    Article  Google Scholar 

  • Thorndike, E. L. (1905). Measurement of twins. Journal of Philosophy, Psychology and Scientific Methods, 1, 1–64.

    Google Scholar 

  • Thorpe, K., Greenwood, R., Eivers, A., & Rutter, M. (2001). Prevalence and developmental course of ‘secret language.’ International Journal of Language and Communication Disorders, 36, 43–62.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe, K., Rutter, M., & Greenwood, R. (2003). Twins as a natural experiment to study the causes of mild language delay: II: Family interaction risk factors. Journal of Child Psychology and Psychiatry, 44, 342–355.

    Article  PubMed  Google Scholar 

  • Toga, A. W., & Thompson, P. M. (2005). Genetics of brain structure and intelligence. Annual Review of Neuroscience, 28, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Tomasello, M., Mannle, S., & Kruger, A. C. (1986). Linguistic environment of 1- to 2-year-old twins. Developmental Psychology, 22, 169–176.

    Google Scholar 

  • Tramo, M. J., Loftus, W. C., Stukel, T. A., Green, R. L., Weaver, J. B., & Gazzaniga, M. S. (1998). Brain size, head size, and intelligence quotient in monozygotic twins. Neurology, 50, 1246–1252.

    PubMed  CAS  Google Scholar 

  • Trejo, V., Derom, C., Vlietinck, R., Ollier, W., Silman, A., Ebers, G., et al. (1994). X chromosome inactivation patterns correlate with fetal-placental anatomy in monozygotic twin pairs: Implications for immune relatedness and concordance for autoimmunity. Molecular Medicine, 1, 62–70.

    PubMed  CAS  Google Scholar 

  • Tully, L. A., Moffit, T. B., & Caspi, A. (2003). Maternal adjustment, parenting and child behavior in families of school-aged twins conceived after IVF and ovulation induction. Journal of Child Psychology and Psychiatry, 44, 316–325.

    Article  PubMed  Google Scholar 

  • Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modified heritability of IQ in young children. Psychological Science, 14, 623–628.

    Article  PubMed  Google Scholar 

  • Vandenberg, S. G. (1969). Contributions of twin research to psychology. In M. Manosevits, G. Lindzey, & D. D. Thiessen (Eds.), Behavioral genetics: Method and theory (pp. 145–164). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Van Ijzendoorn, M. H., Juffer, F., & Poelhuis, C. W. K. (2005). Adoption and cognitive development: A meta-analytic comparison of adopted and nonadopted children’s IQ and school performance. Psychological Bulletin, 131, 301–316.

    Article  PubMed  Google Scholar 

  • Waddington, C. H. (1953). Genetic assimilation of an acquired character. Evolution, 7, 118–126.

    Article  Google Scholar 

  • Waddington, C. H. (1957). The strategy of the genes. New York: Macmillan.

    Google Scholar 

  • Wainwright, M. A., Wright, M. I., Geffen, G. M., Luciano, M., & Martin, N. G. (2005). The genetic basis of academic achievement on the Queensland Core Skills Test and its shared genetic variance with IQ. Behavior Genetics, 35, 133–145.

    Article  PubMed  Google Scholar 

  • Weaver, I. C. G., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847–854.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg, W. (1901). Beitrage zur physiologie und pathologie der mehrlingsgeburten beim menschen. Pflugers Archiv fur die Gesamte Physiologie de Menschen und der Tiere, 88, 346–430.

    Article  Google Scholar 

  • Wilson, R. S. (1986). Twins: Genetic influence on growth. In R. M. Malina & C. Bouchard (Eds.), Sports and human genetics (pp. 1–21). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Wilson, R. S. (1979). Twin growth: Initial deficit, recovery, and trends in concordance from birth to nine years. Human Biology, 6, 205–220.

    Article  CAS  Google Scholar 

  • Wilson, R. S. (1983). The Louisille Twin Study: Developmental synchronies in behavior. Child Development, 54, 298–316.

    Article  PubMed  CAS  Google Scholar 

  • Wong, A. H. C., Gottesman, I. I., & Petronis, A. (2005). Phenotypic differences in genetically identical organisms: The epigenetic perspective. Human Molecular Genetics, 14, R11–R18.

    Google Scholar 

  • Woo, S. L., Lidsky, A. S., Guttler, F., Chandra, T., & Robson, K. J. (1983). Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature, 306, 151–155.

    Article  PubMed  CAS  Google Scholar 

  • York, T. P., Miles, M. F., Kendler, K. S., Jackson-Cook, C., Bowman, M. L., & Eaves, L. (2005). Epistatic and environmental control of genome-wide gene expression. Twin Research, 8, 5–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy L. Segal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Segal, N.L., Johnson, W. (2009). Twin Studies of General Mental Ability. In: Kim, YK. (eds) Handbook of Behavior Genetics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76727-7_6

Download citation

Publish with us

Policies and ethics