Models of Human Behavior: Talking to the Animals

Inheritance of behavioral characteristics was known to humankind in prehistoric times and likely came about while domesticating animals. In the Middle East, sheep, goats, and pigs were likely tamed between 6000 and 9000 B.C. There is no written record of the early rise of animal husbandry, but rearing and training of animals were known to the ancient Romans. Well-defined breeding techniques for domesticated livestock were underway in England in the 18th century. At the turn of the 19th century, even rats were bred for their variegated coat colors and behavioral peculiarities (Brush &Driscoll). Breeders conserved the desired characteristics and controlled for undesired aspects by repeatedly selecting those preferred features in offspring, mating “like with like” and producing increasingly homogeneous strains.


Rett Syndrome Nonhuman Animal Five Factor Model FMR1 Gene Behavioural Brain Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anisman, H., & Matheson, K. (2005). Stress, depression, and anhedonia: caveats concerning animal models. Neuroscience and Biobehavioral Reviews, 29, 525–546.PubMedCrossRefGoogle Scholar
  2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR (2000). (4th ed., text revision) Washington, DC: American Psychiatric Association.Google Scholar
  3. Bailey, A. M., McDaniel, W. F., & Thomas, R. K. (2007). Approaches to the study of higher cognitive functions related to creativity in nonhuman animals. Methods, 42, 3–11.PubMedCrossRefGoogle Scholar
  4. Blizard, D. A. (2007). Sweet and bitter taste of ethanol in C57BL/6J and DBA2/J mouse strains. Behavior Genetics, 37, 146–159.PubMedCrossRefGoogle Scholar
  5. Blizard, D. A., & Adams, N. (2002). The Maudsley reactive and nonreactive strains: A new perspective. Behavior Genetics, 32, 277–299.PubMedCrossRefGoogle Scholar
  6. Bolivar, V. J., Walters, S. R., & Phoenix, J. L. (2007). Assessing autism-like behavior in mice: Variations in social interactions among inbred strains. Behavioural Brain Research, 176, 21–26.PubMedCrossRefGoogle Scholar
  7. Borkenau, P., Riemann, R., Spinath, F. M., & Angleitner, A. (2006). Genetic and environmental influences on Person x Situation profiles. Journal of Personality, 74, 1451–1480.PubMedCrossRefGoogle Scholar
  8. Bouchard, T. J., & McGue, M. (1981). Familial studies of intelligence: A review. Science, 212, 1055–1059.PubMedCrossRefGoogle Scholar
  9. Bouchard, T. J., Lykken, D. T., McGue, M., Segal, N. L., & Tellegen, A. (1990). Sources of human psychological differences: The Minnesota study of twins reared apart. Science, 250, 223–250.PubMedCrossRefGoogle Scholar
  10. Bourgeron, T., Jamain, S., & Granon, S. (2006). Animal models of autism: Proposed behavioral paradigms and biological studies. In G. S. Fisch & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders (pp. 151–174). Totowa NJ: Humana Press.CrossRefGoogle Scholar
  11. Brambilla, P., Hardan, A., di Nemi, S. U., Perez, J., Soares, J. C., & Barale, F. (2003). Brain anatomy and development in autism: Review of structural MRI studies. Brain Research Bulletin, 61, 557–569.PubMedCrossRefGoogle Scholar
  12. Brunner, D., & Hen, R. (1997). Insights into the neurobiology of impulsive behavior from serotonin receptor knockout mice. Annals of the NY Academy of Sciences, 836, 81–105.CrossRefGoogle Scholar
  13. Brush, F. R., & Driscoll, P. (2002). Selective breeding program with rats: Introduction. Behavior Genetics, 32, 275–276.PubMedCrossRefGoogle Scholar
  14. Bulmer, M. (2003). Francis Galton: Pioneer of heredity and biometry. Baltimore, MD: Johns Hopkins Press.Google Scholar
  15. Capitanio, J. P. (1999). Personality dimensions in adult male rhesus macaques: Prediction of behaviors across time and situation. American Journal of Primatology, 47, 299–320.PubMedCrossRefGoogle Scholar
  16. Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.Google Scholar
  17. Chowdari, K. V., Mirnics, K., Semwal, P., Wood, J., Lawrence, E., Bhatia, T., et al. (2002). Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Human Molecular Genetics, 11, 1373–1380.PubMedCrossRefGoogle Scholar
  18. Costa, R. M., Yang, T., Huynh, D. P., Pulst, S. M., Viskochil, D. H., Silva, A. J., et al. (2001). Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of Nf1. Nature Genetics, 27, 399–405.PubMedCrossRefGoogle Scholar
  19. Crabbe, J. C., Wahlsten, D., & Dudek, B. C. (1999). Genetics of mouse behavior: Interactions with laboratory environment. Science, 284, 1670–1672.PubMedCrossRefGoogle Scholar
  20. Crawley, J. N., Belknap, J. K., Collins, A., Crabbe, J. C., Frankel, W., Henderson, N., et al. (1997). Behavioral phenotypes of inbred mouse strains: Implications and recommendations for molecular studies. Psychopharmacology, 132, 107–124.PubMedCrossRefGoogle Scholar
  21. Crawley, J. N., & Paylor, R. (1997). A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Hormones and Behavior, 31, 197–211.PubMedCrossRefGoogle Scholar
  22. D’Adamo, P., Welzl, H., Papadimitriou, S., Raffaele di Barletta, M., Tiveron, C., Tatangelo, L., et al. (2002). Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Human Molecular Genetics, 11, 2567–2580.PubMedCrossRefGoogle Scholar
  23. Darwin, C. R. (1859). On the origin of species by means of natural selection, or the preservation of the favoured races in the struggle for life. London: John Murray.Google Scholar
  24. Darwin, C. R. (1872). The expression of the emotion in man and animals. London: John Murray.CrossRefGoogle Scholar
  25. Deacon, R. M., Thomas, C. L., Rawlins, J. N., & Morley, B. J. (2007). A comparison of the behavior of C57BL/6 and C57BL/10 mice. Behavioural Brain Research, 179, 239–247.PubMedCrossRefGoogle Scholar
  26. Deary, I. J., Spinath, F. M., & Bates, T. C. (2006). Genetics of intelligence. European Journal of Human Genetics, 14, 690–700.PubMedCrossRefGoogle Scholar
  27. D’Hooge, R., Nagels, G., Franck, F., Bakker, C. E., Reyniers, E., Storm, K., et al. (1997). Mildly impaired water maze performance in male Fmr1 knockout mice. Neuroscience, 76, 367–376.PubMedCrossRefGoogle Scholar
  28. Dick, P. (1968). Do Androids Dream of Electric Sheep? New York: Del Ray Books.Google Scholar
  29. Dirks, A., Groenink, L., & Olivier, B. (2006). Mutant mouse models of bipolar disorder: Are there any? In G. S. Fisch & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders (pp. 265–285). Totowa NJ: Humana Press.CrossRefGoogle Scholar
  30. Donarum, E. A., Halperin, R. F., Stephan, D. A., & Narayanan, V. (2006). Cognitive dysfunction in NF1 knock-out mice may result from altered vesicular trafficking of APP/DRD3 complex. BMC Neuroscience, 7, 22.PubMedCrossRefGoogle Scholar
  31. Dutch-Belgian Fragile X Consortium. (1994). Fmr1 knockout mice: a model to study fragile X mental retardation. Cell, 78, 23–33.Google Scholar
  32. Ehringer, M. A., Rhee, S. H., Young, S., Corley, R., & Hewitt, J. K. (2006). Genetic and environmental contributions to common psychopathologies of childhood and adolescence: A study of twins and their siblings. Journal of Abnormal Child Psychology, 34, 1–17.PubMedCrossRefGoogle Scholar
  33. Feaver, J., Mendl, M., & Bateson, P. (1986). A method for rating the individual distinctiveness of domestic cats. Animal Behaviour, 34, 1016–1025.CrossRefGoogle Scholar
  34. Fiala, B. A., Joyce, J. N., & Greenough, W. T. (1978). Environmental complexity modulates growth of granule cell dendrites in developing but not adult hippocampus of rats. Experimental Neurology, 59, 372–383.PubMedCrossRefGoogle Scholar
  35. Fisch, G. S. (2003). Transgenic models of complex behavioral phenotypes. Invited Symposium for the annual meeting of the American Society of Human Genetics, Los Angeles, CA, November, 2003.Google Scholar
  36. Fisch, G. S. (2006). Transgenic and knockout models of neuropsychiatric disorders: Introduction, history, assessment. In G. S. Fisch & J. Flint (Eds.),Transgenic and knockout models of neuropsychiatric disorders (pp. 3–23). Totowa NJ: Humana Press.Google Scholar
  37. Fisch, G. S., Hao, H. H., Bakker, C., & Oostra, B. A. (1999). Learning and memory in the FMR1 knockout mouse. American Journal of Medical Genetics, 84, 277–282.PubMedCrossRefGoogle Scholar
  38. Fisher, S. E., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P., & Pembrey, M. E. (1998). Localisation of a gene implicated in a severe speech and language disorder. Nature Genetics, 18, 168–170.PubMedCrossRefGoogle Scholar
  39. Flint, J. (1999). The genetic basis of cognition. Brain, 122, 2015–2032.PubMedCrossRefGoogle Scholar
  40. Freedman, R., Adler, L. E., Waldo, M. C., Pachtman, E., & Franks, R. D. (1983). Neurophysiological evidence for a defect in inhibitory pathways in schizophrenia: Comparison of medicated and drug-free patients. Biological Psychiatry, 18, 537–551.PubMedGoogle Scholar
  41. Fullerton, J., Cubin, M., Tiwari, H., Wang, C., Bomhra, A., Davidson, S., et al. (2003). Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative-trait loci that influence variation in the human personality trait neuroticism. American Journal of Human Genetics, 72, 879–890.PubMedCrossRefGoogle Scholar
  42. Galton, F. (1869). Hereditary genius: An inquiry into its laws and consequences. London: MacMillan and Co.Google Scholar
  43. Galton, F. (1883). Inquiries into human faculty and its development. New York: AMS Press.Google Scholar
  44. Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.Google Scholar
  45. Gecz, J., Gedeon, A. K., Sutherland, G. R., & Mulley, J. C. (2006). Identification of the gene FMR2, associated with FRAXE mental retardation. Nature Genetics, 13, 105–108.CrossRefGoogle Scholar
  46. Goldsmith, H. H., Buss, K. A., & Lemery, K. S. (1997). Toddler and childhood temperament: Expanded content, stronger genetic evidence, new evidence for the importance of environment. Developmental Psychology, 33, 891–905.PubMedCrossRefGoogle Scholar
  47. Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A., & Ruddle, F. H. (1980). Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Science, USA, 77, 7380–7384.CrossRefGoogle Scholar
  48. Gosling, S. D. (2001). From mice to men: What can we learn about personality from animal research? Psychological Bulletin, 127, 45–86.PubMedCrossRefGoogle Scholar
  49. Gould, J. L. (1975). Honey bee recruitment: The dance-language controversy. Science, 189, 685–693.PubMedCrossRefGoogle Scholar
  50. Gould, T. D., & Gottesman, I. I. (2003). Psychiatric endophenotypes and the development of valid animal models. Genes, Brain, and Behavior, 5, 113–119.CrossRefGoogle Scholar
  51. Gu, Y., McIlwain, K. L., Weeber, E. J., Yamagata, T., Xu, B., Antalffy, B. A., et al. (2002). Impaired conditioned fear and enhanced long-term potentiation in Fmr2 knock-out mice. Journal of Neuroscience, 22, 2753–2763.PubMedGoogle Scholar
  52. Haile, C. N., Kosten, T. R., & Kosten, T. A. (2007). Genetics of dopamine and its contribution to cocaine addiction. Behavior Genetics, 37, 119–145.PubMedCrossRefGoogle Scholar
  53. Hayes, L. J., & Delgado, D. (2006). If only they could talk: Genetic mouse models for psychiatric disorders. In G. S. Fisch & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders (pp. 69–83). Totowa NJ: Humana Press.Google Scholar
  54. Hayes, L. J., & Delgado, D. (2007). Invited commentary on animal models in psychiatry: Animal models of non-conventional human behavior. Behavior Genetics, 37, 11–17.PubMedCrossRefGoogle Scholar
  55. Hoekstra, R. A., Bartels, M., Verweij, C. J., & Boomsma, D. I. (2007). Heritability of autistic traits in the general population. Archives of Pediatric and Adolescent Medicine, 161, 372–377.CrossRefGoogle Scholar
  56. Holmes, A., & Cryan, J. F. (2006). Modeling human anxiety and depression in mutant mice. In G. S. Fisch & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders (pp. 237–264). Totowa, NJ: Humana Press.Google Scholar
  57. Holmes, A., Yang, R. J., Murphy, D. L., & Crawley, J. N. (2002). Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology, 27, 914–923.PubMedCrossRefGoogle Scholar
  58. Hudziak, J. J., Van Beijsterveldt, C. E., Althoff, R. R., Stanger, C., Rettew, D. C., Nelson, E. C., et al. (2004). Genetic and environmental contributions to the child behavior checklist obsessive-compulsive scale: A cross-cultural twin study. Archives of General Psychiatry, 61, 608–616.PubMedCrossRefGoogle Scholar
  59. Jamain, S., Quach, H., Betancur, C., Rrastam, M., Colineaux, C., Gillberg, I. C., et al. (2003). Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genetics, 34, 27–29.PubMedCrossRefGoogle Scholar
  60. Jang, K. L., Livesley, W. J., & Vernon, P. A. (1996). Heritability of the big five personality dimensions and their facets: A twin study. Journal of Personality, 64, 577–591.PubMedCrossRefGoogle Scholar
  61. Jang, K. L., Woodward, T. S., Lang, D., Honer, W. G., & Livesley, W. J. (2005). The genetic and environmental basis of the relationship between schizotypy and personality: A twin study. Journal of Nervous and Mental Disease, 193, 153–159.PubMedCrossRefGoogle Scholar
  62. Karayiorgou, M., Morris, M. A., Morrow, B., Shprintzen, R. J., Goldberg, R., Borrow, J., et al. (1995). Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proceedings of the National Academy of Sciences in the United States of America, 92, 7612–7616.CrossRefGoogle Scholar
  63. Kas, M. J., Fernandes, C., Schalkwyk, L. C., & Collier, D. A. (2007). Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. Molecular Psychiatry, 12, 324–330.PubMedCrossRefGoogle Scholar
  64. Kemphorne, O. (1997). Heritability: Uses and abuses. Genetica, 99, 109–112.Google Scholar
  65. Kendler, K. S., Gardner, C. O., Gatz, M., & Pedersen, N. L. (2007). The sources of co-morbidity between major depression and generalized anxiety disorder in a Swedish national twin sample. Psychological Medicine, 37, 453–462.PubMedCrossRefGoogle Scholar
  66. Kendler, K. S., Gatz, M., Gardner, C. O., & Pedersen, N. L. (2006). A Swedish national twin study of lifetime major depression. American Journal of Psychiatry, 163, 109–114.PubMedCrossRefGoogle Scholar
  67. Kovas, Y., & Plomin, R. (2006). Generalist genes: Implications for the cognitive sciences. Trends in Cognitive Sciences, 10, 198–203.PubMedCrossRefGoogle Scholar
  68. Lafollette, H., & Shanks, N. (1995). Two models of models in biomedical research. Philosophical Quarterly, 45, 141–160.CrossRefGoogle Scholar
  69. Lander, E. S., & Botstein, D. (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121, 185–199.PubMedGoogle Scholar
  70. Landgraf, R., & Wigger, A. (2002). High vs low anxiety-related behavior rats: an animal model of extremes in trait anxiety. Behavior Genetics, 32, 301–314.PubMedCrossRefGoogle Scholar
  71. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.PubMedCrossRefGoogle Scholar
  72. Lewis, B. A., Shriberg, L. D., Freebairn, L. A., Hansen, A. J., Stein, C. M., Taylor, H. G., et al. (2006). The genetic bases of speech sound disorders: Evidence from spoken and written language. Journal of Speech, Language, and Hearing Research, 49, 1294–1312.PubMedCrossRefGoogle Scholar
  73. Liu, H., Heath, S. C., Sobin, C., Roos, J. L., Galke, B. L., Blundell, M. L., et al. (2002). Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proceedings of the National Academy of Sciences in the United States of America, 99, 3717–3722.CrossRefGoogle Scholar
  74. Logue, S. F., Paylor, R., & Wehner, J. M. (1997). Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behavioral Neuroscience, 111, 104–113.PubMedCrossRefGoogle Scholar
  75. Macphail, E. M. (1982). Brain and intelligence in vertebrates. Oxford: Clarendon Press.Google Scholar
  76. Macphail, E. M. (1998). The evolution of consciousness. Oxford: Oxford University Press.Google Scholar
  77. Mathiesen, K. S., & Tambs, K. (1999). The EAS temperament questionnaire – factor structure, age trends, reliability, and stability in a Norwegian sample. Journal of Child Psychology and Psychiatry, 40, 431–439.PubMedCrossRefGoogle Scholar
  78. Mazzocco, M. M. M., & Reiss, A. L. (1997). Normal variation in size of the FMR1 gene is not associated with intellectual performance. Intelligence, 24, 355–366.CrossRefGoogle Scholar
  79. McCrae, R. R., & Costa, P. T. Jr. (1987). Validation of the five-factor model of personality across instruments and observers. Journal of Personality and Social Psychology, 52, 81–90.PubMedCrossRefGoogle Scholar
  80. McKinney, W. T. Jr., & Bunney, W. E. Jr. (1969). Animal model of depression. I. Review of evidence: implications for research. Archives of General Psychiatry, 21, 240–248.PubMedGoogle Scholar
  81. Metten, P., Buck, K. J., Merrill, C. M., Roberts, A. J., Yu, C. H., & Crabbe, J. C. (2007). Use of a novel mouse genotype to model acute benzodiazepine withdrawal. Behavior Genetics, 37, 160–170.PubMedCrossRefGoogle Scholar
  82. Millar, J. K., Wilson-Annan, J. C., Anderson, S., Christie, S., Taylor, M. S., Semple, C. A., et al. (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human Molecular Genetics, 9, 1415–1423.PubMedCrossRefGoogle Scholar
  83. Mineur, Y. S., Huynh, L. X., & Crusio, W. E. (2006). Social behavior deficits in the Fmr1 mutant mouse. Behavioural Brain Research, 168, 172–175.PubMedCrossRefGoogle Scholar
  84. Miyakawa, T., Leiter, L. M., Gerber, D. J., Gainetdinov, R. R., Sotnikova, T. D., Zeng, H. et al. (2003). Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proceedings of the National Academy of Science, USA, 100, 8987–8992.CrossRefGoogle Scholar
  85. Moon, J., Beaudin, A. E., Verosky, S., Driscoll, L. L., Weiskopf, M., Levitsky, D. A., et al. (2006). Attentional dysfunction, impulsivity, and resistance to change in a mouse model of fragile X syndrome. Behavioral Neurosciences, 120, 1367–1379.CrossRefGoogle Scholar
  86. Moretti, P., Levenson, J. M., Battaglia, F., Atkinson, R., Teague, R., Antalffy, B., et al. (2006). Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. Journal of Neuroscience, 26, 319–327.PubMedCrossRefGoogle Scholar
  87. Morley, K. I., & Montgomery, G. W. (2001). The genetics of cognitive processes: Candidate genes in humans and animals. Behavior Genetics, 31, 511–531.PubMedCrossRefGoogle Scholar
  88. Moy, S. S., Nadler, J. J., Perez, A., Barbaro, R. P., Johns, J. M., Magnuson, T. R., et al. (2004). Sociability and preference for social novelty in five inbred strains: An approach to assess autistic-like behavior in mice. Genes, Brain and Behavior, 3, 287–302.CrossRefGoogle Scholar
  89. Moy, S. S., Nadler, J. J., Young, N. B., Perez, A., Holloway, L. P., Barbaro, R. P., et al. (2007). Mouse behavioral tasks relevant to autism: Phenotypes of 10 inbred strains. Behavioural Brain Research, 176, 4–20.PubMedCrossRefGoogle Scholar
  90. Nan, X., Ng, H. H., Johnson, C. A., Laherty, C. D., Turner, B. M., Eisenman, R. N., et al. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393, 386–389.PubMedCrossRefGoogle Scholar
  91. Newport, D. J., Stowe, Z. N., & Nemeroff, C. B. (2002). Parental depression: Animal models of an adverse life event. American Journal of Psychiatry, 159, 1265–1283.PubMedCrossRefGoogle Scholar
  92. O’Tuathaigh, C. M., Babovic, D., O’Meara, G., Clifford, J. J., Croke, D. T., & Waddington, J. L. (2006). Susceptibility genes for schizophrenia: Characterisation of mutant mouse models at the level of phenotypic behaviour. Neuroscience and Biobehavioral Reviews, 31, 60–78.PubMedCrossRefGoogle Scholar
  93. Ørstavik, R. E., Kendler, K. S., Czajkowski, N., Tambs, K., and Reichborn-Kjennerud, T. (2007). Genetic and environmental contributions to depressive personality disorder in a population-based sample of Norwegian twins. Journal of Affective Disorders, 99, 181–189.PubMedCrossRefGoogle Scholar
  94. Paradee, W., Melikian, H. E., Rasmussen, D. L., Kenneson, A., Conn, P. J., & Warren S. T. (1999). Fragile X mouse: Strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience, 94, 185–192.PubMedCrossRefGoogle Scholar
  95. Paylor, R., Glaser, B., Mupo, A., Ataliotis, P., Spencer, C., Sobotka, A., et al. (2006). Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proceedings of the National Academy of Sciences in the United States of America, 103, 7729–7734.CrossRefGoogle Scholar
  96. Plomin, R. (2003). Genetics, genes, genomics and g. Molecular Psychiatry, 8, 1–5.PubMedCrossRefGoogle Scholar
  97. Poirier, R., Jacquot, S., Vaillend, C., Soutthiphong, A. A., Libbey, M., Davis, S., et al. (2007). Deletion of the Coffin-Lowry syndrome gene Rsk2 in mice is associated with impaired spatial learning and reduced control of exploratory behavior. Behavior Genetics, 37, 31–50.PubMedCrossRefGoogle Scholar
  98. Ramboz, S., Oosting, R., Amara, D. A., Kung, H. F., Blier, P., Mendelsohn, M., et al. (1998). Serotonin receptor 1A knockout: An animal model of anxiety-related disorder. Proceedings of the National Academy of Sciences in the United States of America, 95, 14476–14481.CrossRefGoogle Scholar
  99. Reacuteale, D., Reader, S. M., Sol, D., McDougall, P. T., & Dingemanse, N. J. (2007). Integrating animal temperament within ecology and evolution. Biological Review of the Cambridge Philosophy Society, 82, 291–318.CrossRefGoogle Scholar
  100. Risch, N., Spiker, D., Lotspeich, L., Nouri, N., Hinds, D., Hallmayer, J., et al. (1999) A genomic screen of autism: Evidence for a multilocus etiology. American Journal of Human Genetics, 65, 493–507.PubMedCrossRefGoogle Scholar
  101. Rojas, P., Joodmardi, E., Hong, Y., Perlmann, T., & Ogren, S.O. (2007). Adult mice with reduced Nurr1 expression: An animal model for schizophrenia. Molecular Psychiatry, 12, 756–766.PubMedCrossRefGoogle Scholar
  102. Sadakata, T., Washida, M., Iwayama, Y., Shoji, S., Sato, Y., Ohkura, T., et al. (2007). Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. The Journal of Clinical Investigation, 117, 931–943.PubMedCrossRefGoogle Scholar
  103. Sara, S. J., Devauges, V., Biegon, A., & Blizard, D. A. (1994). The Maudsley rat strains as a probe to investigate noradrenergic-cholinergic interaction in cognitive function. Journal of Physiology, 88, 337–345.PubMedGoogle Scholar
  104. Saudino, K. J. (2005). Behavioral genetics and child temperament. Journal of Developmental and Behavioral Pediatrics, 26, 214–223.PubMedCrossRefGoogle Scholar
  105. Saudino, K. J., McGuire, S., Reiss, D., Hetherington, E. M., & Plomin, R. (1995). Parent ratings of EAS temperaments in twins, full siblings, half siblings, and step siblings. Journal of Personality and Social Psychology, 68, 723–733.PubMedCrossRefGoogle Scholar
  106. Shahbazian, M., Young, J., Yuva-Paylor, L., Spencer, C., Antalffy, B., Noebels, J., et al. (2002). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35, 243–254.PubMedCrossRefGoogle Scholar
  107. Shih, R. A., Belmonte, P. L., & Zandi, P. P. (2004). A review of the evidence from family, twin and adoption studies for a genetic contribution to adult psychiatric disorders. International Review of Psychiatry, 16, 260–283.PubMedCrossRefGoogle Scholar
  108. Silva, A. J., Frankland, P. W., Marowitz, Z., Friedman, E., Laszlo G. S., Cioffi, D., et al. (1997). A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nature Genetics, 15, 281–284.PubMedCrossRefGoogle Scholar
  109. Skinner, B. F. (1957). Verbal behavior. New York: Appleton-Century-Crofts.CrossRefGoogle Scholar
  110. Spearman, C. (1927). The abilities of man, their nature and measurement. London: MacMillan and Co.Google Scholar
  111. Stefansson, H., Sarginson, J., Kong, A., Yates, P., Steinthorsdottir, V., Gudfinnsson, E., et al. (2003). Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. American Journal of Human Genetics, 72, 83–87.PubMedCrossRefGoogle Scholar
  112. Sternberg, R. J., & Detterman, D. K. (1986). What is intelligence? Contemporary viewpoints on its nature and definition. Norwood, NJ: Ablex.Google Scholar
  113. Straub, R. E., Jiang, Y., MacLean, C. J., Ma, Y., Webb, B. T., Myakishev, M. V., et al. (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. American Journal of Human Genetics, 71, 337–348.PubMedCrossRefGoogle Scholar
  114. Stromswold, K. (2001). The heritability of language: a review and meta-analysis of twin, adoption and linkage studies. Language, 77, 647–723.CrossRefGoogle Scholar
  115. Stromswold, K. (2006). Why aren’t identical twins linguistically identical? Genetic, prenatal and postnatal factors. Cognition, 101, 333–384.PubMedCrossRefGoogle Scholar
  116. Tabuchi, K., Blundell, J., Etherton, M. R., Hammer, R. E., Liu, X., Powell C. M., et al. (2007). A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science, 318, 71–76.PubMedCrossRefGoogle Scholar
  117. Thomas, K. R., & Capecchi, M. R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 51, 503–512.PubMedCrossRefGoogle Scholar
  118. Thompson, R., Crinella, F. M., & Yu, J. (1990). Brain mechanisms in problem solving and intelligence. New York: Plenum Press.Google Scholar
  119. Thorndike, E. L. (1898). Animal intelligence: An experimental study of the associative processes in animals. The Psychological Review: Monograph Supplements, 8.Google Scholar
  120. Thorndike, E. L. (1921). Intelligence and its measurement: A symposium. Journal of Educational Psychology, 12, 124–127.CrossRefGoogle Scholar
  121. Tolman, E. C. (1924). The inheritance of maze-learning ability in rats. Journal of Comparative Psychology, 4, 1–18.CrossRefGoogle Scholar
  122. Tryon, R. C. (1940). Genetic differences in maze-learning ability in rats. Yearbook for National Social Studies and Education, 39, 111–119.Google Scholar
  123. Tupes, E. C., & Christal, R. E. (1961). Recurrent personality factors based on trait ratings. USAF ASD Technical Report, No. 61–97.Google Scholar
  124. Upchurch, M., & Wehner, J. M. (1988). Differences between inbred strains of mice in Morris water maze performance. Behavior Genetics, 18, 55–68.PubMedCrossRefGoogle Scholar
  125. Urani, A., Chourbaji, S., & Gass P. (2005). Mutant mouse models of depression: Candidate genes and current mouse lines. Neuroscience & Biobehavioral Reviews, 29, 805–828.CrossRefGoogle Scholar
  126. Wahlsten, D. (1999). Single-gene influences on brain and behavior. Annual Review of Psychology, 50, 599–624.PubMedCrossRefGoogle Scholar
  127. Wahlsten, D. (2001). Standardizing tests of mouse behavior: Reasons, recommendations, and reality. Physiology & Behavior, 73, 695–704.%CrossRefGoogle Scholar
  128. Wahlsten, D., Bachmanov, A., Finn, D. A., & Crabbe, J. C. (2006). Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proceedings of the National Academy of Sciences in the United States of America, 103, 16364–16369.CrossRefGoogle Scholar
  129. Wahlsten, D., Cooper S. F., & Crabbe, J. C. (2005). Different rankings of inbred mouse strains on the Morris maze and a refined 4-arm water escape task. Behavioural Brain Research, 165, 36–51.PubMedCrossRefGoogle Scholar
  130. Wahlsten, D., Rustay, N. R., Metten, P., & Crabbe, J. C. (2003). In search of a better mouse test. Trends in Neuroscience, 26, 132–136.CrossRefGoogle Scholar
  131. Wehner, J. M., Radcliffe, R. A., & Bowers, B. J. (2001). Quantitative genetics and mouse behavior. Annual Review in Neuroscience, 24, 845–867.CrossRefGoogle Scholar
  132. Weller, A., Leguisamo, A. C., Towns, L., Ramboz, S., Bagiella, E., Hofer, M., et al. (2003). Maternal effects in infant and adult phenotypes of 5HT1A and 5HT1B receptor knockout mice. Developmental Psychobiology, 42, 194–205.PubMedCrossRefGoogle Scholar
  133. Welzl, H., D’Adamo, P., Wolfer, D. P., & Lipp, H.-P. (2006). Mouse models of hereditary mental retardation. In G. S. Fisch, & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders (pp. 101–126). Totowa NJ: Humana Press.CrossRefGoogle Scholar
  134. White, S. A., Fisher, S. E., Geschwind, D. H., Scharff, C., & Holy, T. E. (2006). Singing mice, songbirds, and more: Models for FOXP2 function and dysfunction in human speech and language. Journal of Neuroscience, 11, 10376–10379.CrossRefGoogle Scholar
  135. Whorf, B. (1940). Science and linguistics. reprinted in Language, thought & reality. Cambridge, MA: MIT Press.Google Scholar
  136. Widiger, T. A., & Trull, T. J. (2007). Plate tectonics in the classification of personality disorder: Shifting to a dimensional model. American Psychologist, 62, 71–83.%PubMedCrossRefGoogle Scholar
  137. Williams, H. J., Owen, M. J., & O’Donovan, M. C. (2007). Is COMT a susceptibility gene for schizophrenia? Schizophrenia Bulletin, 33, 635–641.PubMedCrossRefGoogle Scholar
  138. Willis-Owen, S. A., & Flint, J. (2007). Identifying the genetic determinants of emotionality in humans; insights from rodents. Neuroscience and Biobehavioural Reviews, 31, 115–124.CrossRefGoogle Scholar
  139. Wolfer, D. P., Crusio, W. E., & Lipp, H. P. (2002). Knockout mice: Simple solutions to the problems of genetic background and flanking genes. Trends in Neuroscience, 25, 336–340.CrossRefGoogle Scholar
  140. Wolfer, D. P., & Lipp, H. P. (2000). Dissecting the behaviour of transgenic mice: Is it the mutation, the genetic background, or the environment? Experimental Physiology, 85, 627–634.PubMedCrossRefGoogle Scholar
  141. Wolfer, D. P., Litvin, O., Morf, S., Nitsch, R. M., Lipp, H. P., & Würbel, H. (2004). Laboratory animal welfare: Cage enrichment and mouse behaviour. Nature, 432, 821–822.PubMedCrossRefGoogle Scholar
  142. Yacoubi, M., & Vaugeois, J. M. (2007). Genetic rodent models of depression. Current Opinion in Pharmacology, 7, 3–7.PubMedCrossRefGoogle Scholar
  143. Yamagata, S., Suzuki, A., Ando, J., Ono, Y., Kijima, N., Yoshimura, K., et al. (2006). Is the genetic structure of human personality universal? A cross-cultural twin study from North America, Europe, and Asia. Journal of Personality and Social Psychology, 90, 987–998.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Bluestone Clinical Research CenterNew York UniversityNew YorkUSA

Personalised recommendations