Advertisement

Multivariate Genetic Analysis

  • Danielle Posthuma

The main goal of behavior genetics’ research is to understand the causes of variation in (human) traits. When single traits are considered, observed trait variation is decomposed into sources of genetic and environmental variation. A genetically informative design, such as the classical twin design, allows estimating the relative contributions of these sources of variation. When multiple traits are considered, genetically informative designs additionally allow investigating the causes of co-variation between two or more traits. Such multivariate genetic analyses are usually more powerful than univariate genetic analyses (Schmitz, Cherny,&Fulker 1998), may aid in understanding underlying biological mechanisms, and may provide a faster route to gene-finding and elucidating environmental factors that influence a trait (Leboyer et al., 1998).

Keywords

Genetic Correlation Cholesky Factorization Behavior Genetic Twin Data Reciprocal Causation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boomsma, D. I., & Molenaar, P. C. M. (1986). Using LISREL to analyze genetic and environmental covariance structure. Behavior Genetics, 16, 237–250.PubMedCrossRefGoogle Scholar
  2. Boomsma, D. I., & Molenaar, P. C. M. (1987). The genetic analysis of repeated measures I: Simplex models. Behavior Genetics, 17, 111–123.PubMedCrossRefGoogle Scholar
  3. Carey, G. (1988). Inference about genetic correlations. Behavior Genetics, 18, 329–338.PubMedCrossRefGoogle Scholar
  4. De Geus, E. J., Kupper, N., Boomsma, D. I., & Snieder, H. (2007). Bivariate genetic modeling of cardiovascular stress reactivity: does stress uncover genetic variance? Psychosomatic Medicine, 69(4), 356–364. Epub 2007 May 17. Erratum in (2007 Jun): Psychosomatic Medicine, 69(5), 89.PubMedCrossRefGoogle Scholar
  5. Derks, E. M., Hudziak, J. J., van Beijsterveldt, C. E., Dolan, C. V., & Boomsma, D. I. (2004). A study of genetic and environmental influences on maternal and paternal CBCL syndrome scores in a large sample of 3-year-old Dutch twins. Behavior Genetics, 34(6), 571–583.PubMedCrossRefGoogle Scholar
  6. Dolan, C. V. (1992). Biometric decomposition of phenotypic means in human samples. PhD thesis, University of Amsterdam, The Netherlands.Google Scholar
  7. Dolan, C. V., Molenaar, P. C. M., & Boomsma, D. I. (1991). Simultaneous genetic analysis of longitudinal means and covariance structure in the simplex model using twin data. Behavior Genetics, 21, 49–65.PubMedCrossRefGoogle Scholar
  8. Duffy, D. L., & Martin, N. G. (1994). Inferring the direction of causation in cross-sectional twin data: Theoretical and empirical considerations. Genetic Epidemiology, 11(6), 483–502.PubMedCrossRefGoogle Scholar
  9. Eaves, L. J., & Gale, J. S. (1974). A method for analyzing the genetic basis of covariation. Behavior Genetics, 4, 253–267.PubMedCrossRefGoogle Scholar
  10. Hartman, C. A., Rhee, S. H., Willcutt, E. G., & Pennington, B. F. (2007). Modeling rater disagreement for ADHD: Are parents or teachers biased? Journal of Abnormal Child Psychology, 35(4), 536–542.PubMedCrossRefGoogle Scholar
  11. Heath, A. C., Kessler, R. C., Neale, M. C., Hewitt, J. K., Eaves, L. J., Kendler, K. S. (1993). Testing hypotheses about direction of causation using cross-sectional family data. Behavior Genetics, 23(1), 29–50.PubMedCrossRefGoogle Scholar
  12. Hewitt, J. K., Silberg, J. L., Neale, M. C., Eaves, L. J., & Erickson, M. (1992). The analysis of parental ratings of children’s behavior using LISREL. Behavior Genetics, 22(3), 293–317.PubMedCrossRefGoogle Scholar
  13. Hotelling, H. (1933). Analysis of a complex of statistical variables into principal component. Journal Educational Psychology, 24, 417–441, 498–520.CrossRefGoogle Scholar
  14. Hottenga, J. J., & Boomsma, D. I. (2007). QTL detection in multivariate data from sibling pairs. In M. Ferreira, B. Neale, S. E. Medland, & D. Posthuma (Eds.), Dissection of complex trait variation through linkage and association (pp. 239–264.). Taylor & Francis.Google Scholar
  15. Joumlreskog, K., & Soumlrbom, D. (1986). LISREL: Analysis of linear structural relationships by the method of maximum likelihood. Chicago: National Education Resources.Google Scholar
  16. Kirkpatrick, M., & Heckman, N. (1989). A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. Journal of Mathematical Biology, 27, 429–450.PubMedCrossRefGoogle Scholar
  17. Klein, D. N., & Riso, L. P. (1993). Psychiatric disorders: Problems of boundaries and co-morbidity. In Costello (Ed.), Basic issues in psychopathology. New York: Guildford.Google Scholar
  18. Krueger, R. F., & Markon, K. E. (2006). Reinterpreting comorbidity: A model-based approach to understanding and classifying psychopathology. Annual Review of Clinical Psychology, 2, 111–133.PubMedCrossRefGoogle Scholar
  19. Lawley, D. N., & Maxwell, A. E. (1971). Factor analysis as a statistical method. London: Butterworths.Google Scholar
  20. Leboyer, M., Bellivier, F., Nosten-Bertrand, M., Jouvent, R., Pauls, D., & Mallet, J. (1998). Psychiatric genetics: Search for phenotypes. Trends in Neuroscience, 21(3), 102–105.CrossRefGoogle Scholar
  21. Liu, J., Liu, Y., Liu, X., & Deng, H. W. (2007). Bayesian mapping of quantitative trait loci for multiple complex traits with the use of variance components. American Journal of Human Genetics, 81(2), 304–320. Epub 2007, July 3.PubMedCrossRefGoogle Scholar
  22. Marlow, A. J., Fisher, S. E., Francks, C., MacPhie, I. L., Cherny, S. S., Richardson, A. J., et al. (2003). Use of multivariate linkage analysis for dissection of a complex cognitive trait. American Journal of Human Genetics, 72(3), 561–570. Epub 2003, February 13.PubMedCrossRefGoogle Scholar
  23. Martin, N. G., & Eaves, L. J. (1977). The genetical analysis of covariance structure. Heredity, 38, 79–95.PubMedCrossRefGoogle Scholar
  24. McArdle, J. J. (1986). Latent variable growth within behavior genetic models. Behavior Genetics, 16, 163–200.PubMedCrossRefGoogle Scholar
  25. Middeldorp, C. M., Cath, D. C., Van Dyck, R., & Boomsma, D. I. (2005). The co-morbidity of anxiety and depression in the perspective of genetic epidemiology: A review of twin and family studies. Psychological Medicine, 35(5), 611–624.PubMedCrossRefGoogle Scholar
  26. Mulaik, S. A. (1972). The foundations of factor analysis. New York: McGraw-Hill Book Company.Google Scholar
  27. Neale, M. C. (1997). Mx: Statistical modeling (3rd ed.). Box 980126 MCV, Richmond VA 23298.Google Scholar
  28. Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  29. Neale, M. C., Duffy, D. L., & Martin, N. G. (1994). Direction of causation: Reply to commentaries. Genetic Epidemiology, 11(6), 463.CrossRefGoogle Scholar
  30. Neale, M. C., Eaves, L. J., Kendler, K. S., Heath, A. C., & Kessler, R. C. (1994). Multiple regression with data collected from relatives: Testing assumptions of the model. Multivariate Behavioral Research, 29(1), 33–61.CrossRefGoogle Scholar
  31. Neale, M. C., & Kendler, K. S. (1995). Models of co-morbidity for multifactorial disease. American Journal of Human Genetics, 57, 935–953.PubMedGoogle Scholar
  32. Neale, M. C., & Maes, H. H. (in press). Methodology for genetic studies of twins and families. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  33. Neale, M. C., & McArdle, J. J. (2000). Structured latent growth curves for twin data. Twin Research, 3, 165–177.PubMedCrossRefGoogle Scholar
  34. Neale, M. C., Walters, E., Heath, A. C., Kessler, R. C., Peacuterusse, D., Eaves, L. J., et al. (1994). Depression and parental bonding: Cause, consequence, or genetic covariance? Genetic Epidemiology, 11(6), 503–522.PubMedCrossRefGoogle Scholar
  35. Pletcher, S. D., & Geyer, C. J. (1999). The genetic analysis of age-dependent traits: Modelling the character process. Genetics, 153, 825–835.PubMedGoogle Scholar
  36. Posthuma, D., Beem, A. L., de Geus, E. J., van Baal, G. C., von Hjelmborg, J. B., Iachine, I., et al. (2003). Theory and practice in quantitative genetics. Twin Research, 6(5), 361–376.PubMedCrossRefGoogle Scholar
  37. Posthuma, D., de Geus, E. J., Baare, W. F., Hulshoff Pol, H. E., Kahn, R. S., & Boomsma, D. I. (2002). The association between brain volume and intelligence is of genetic origin. Nature Neuroscience, 5(2), 83–84.PubMedCrossRefGoogle Scholar
  38. Rhee, S. H., Hewitt, J. K., Corley, R. P., & Stallings, M. C. (2003). The validity of analyses testing the etiology of comorbidity between two disorders: Comparisons of disorder prevalences in families. Behavior Genetics, 33(3), 257–269.PubMedCrossRefGoogle Scholar
  39. Rhee, S. H., Hewitt, J. K., Lessem, J. M., Stallings, M. C., Corley, R. P., & Neale, M. C. (2004). The validity of the Neale and Kendler model-fitting approach in examining the etiology of comorbidity. Behavior Genetics, 34(3), 251–265.PubMedCrossRefGoogle Scholar
  40. Rhee, S. H., Hewitt, J. K., Young, S. E., Corley, R. P., Crowley, T. J., Neale, M. C., et al. (2006). Comorbidity between alcohol dependence and illicit drug dependence in adolescents with antisocial behavior and matched controls. Drug and Alcohol Dependence, 84(1), 85–92.PubMedCrossRefGoogle Scholar
  41. Rijsdijk, F. V., Vernon, P. A., & Boomsma, D. I. (2002). Application of hierarchical genetic models to Raven and WAIS subtests: A Dutch twin study. Behavior Genetics, 32(3), 199–210.PubMedCrossRefGoogle Scholar
  42. Rutter, M. (1994). Co-morbidity: Meanings and mechanisms clinical psychology. Science and Practice, 1(1), 100–103.CrossRefGoogle Scholar
  43. Schmitz, S., Cherny, S. S., & Fulker, D. W. (1998). Increase in power through multivariate analyses. Behavior Genetics, 28(5), 357–363.PubMedCrossRefGoogle Scholar
  44. Simonoff, E. (2000). Extracting meaning from comorbidity: Genetic analyses that make sense. Journal of Child Psychology and Psychiatry, 41(5), 667–674.PubMedCrossRefGoogle Scholar
  45. Simonoff, E., Pickles, A., Hewitt, J., Silberg, J., Rutter, M., Loeber, R., et al. (1995). Multiple raters of disruptive child behavior: Using a genetic strategy to examine shared views and bias. Behavior Genetics, 25(4), 311–326.PubMedCrossRefGoogle Scholar
  46. Spearman, C. (1904). General intelligence, objectively determined and measured. American Journal of Psychology, 15, 201–293.%CrossRefGoogle Scholar
  47. Thurstone, L. L. (1947). Multiple factor analysis. Chicago: University of Chicago Press.Google Scholar
  48. Vandenberg, S. G., & Falkner, F. (1965). Hereditary factors in human growth. Human Biology, 37, 357–365.Google Scholar
  49. Williams, J. T., Van Eerdewegh, P., Almasy, L., & Blangero, J. (1999). Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. I. Likelihood formulation and simulation results. American Journal of Human Genetics, 65(4), 1134–1147.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Biological Psychology, Section Medical Genomics, and Section Functional GenomicsVrije Universiteit and Vrije Universiteit Medical CenterThe Netherlands

Personalised recommendations