Schizophrenia and Affective Psychotic Disorders – Inputs from a Genetic Perspective

A person once walked into my inner city, county hospital, psychiatry office wearing clothing that he had sewn together out of old rubber inner tubes. He explained that he made this outfit to protect himself from infections – a suit of armor for the age of communicable disease. It was a hot day; the person appeared flushed and dehydrated with a dry mouth, absence of perspiration, and pulse of 130. His efforts to protect himself had actually placed him in jeopardy of heat stroke, even more probable because his psychiatric medications had the side effect of altering temperature regulation. How did this person’s behavior become so maladaptive? What happens to the human brain/mind during the development of psychotic behaviors remains one of greatest puzzles confronting both the sciences and the humanities. The human genome and nervous system were “designed” by evolution and by experience to perceive the environment accurately and respond to the environment to enhance the adaptation of both the individual and the species. With so much at stake, how can the brain and mind go so far awry? This chapter will explore some of the behavioral genetic data and theory about the origins of psychoses, termed insanity by the legal system and the public.


Bipolar Disorder Down Syndrome Rett Syndrome Bipolar Illness Bipolar Spectrum Disorder 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeida, O. P.,&Fenner, S. (2002). Bipolar disorder: similarities and differences between patients with illness onset before and after 65 years of age. International Psychogeriatrics, 14(3), 311–322.PubMedCrossRefGoogle Scholar
  2. Becker, K. G. (2004). The common variants/multiple disease hypothesis of common complex genetic disorders. Medical Hypotheses, 62(2), 309–317.PubMedCrossRefGoogle Scholar
  3. Bersani, G., Pucci, D., Gherardelli, S., Conforti, F., Bersani, I., Osborn, J. F., et al. (2006). Excess in the spring and deficit in the autumn in birth rates of male schizophrenic patients in Italy: potential role of perinatal risk factors. Journal of Maternal-Fetal&Neonatal Medicine, 19(7), 425–431.CrossRefGoogle Scholar
  4. Bertelsen, A. (1978). A Danish twin study of manic-depressive disorders. Progress in Clinical and Biological Research, 24A, 119–124.PubMedGoogle Scholar
  5. Bertelsen, A. (2005). Contributions of Danish Registers to Understanding Psychopathology (A Lifetime of 30 Years’ Collaboration with Irving I. Gottesman). In L. DiLalla (Ed.), Behavior genetics principles: Perspectives in development, personality, and psychopathology. Washington, DC: American Psychological Press.Google Scholar
  6. Bertelsen, A., Harvald, B.,&Hauge, M. (1977). A Danish twin study of manic-depressive disorders. British Journal of Psychiatry, 130, 330–351.PubMedCrossRefGoogle Scholar
  7. Blackwood, D. H., Pickard, B. J., Thomson, P. A., Evans, K. L., Porteous, D. J.,&Muir, W. J. (2007). Are some genetic risk factors common to schizophrenia, bipolar disorder and depression? Evidence from DISC1, GRIK4 and NRG1. Neurotoxicity Research, 11(1), 73–83.Google Scholar
  8. Bleuler, E. (1911/1950). Dementia praecox or the group of Schizophrenias (J. Zinkin, Trans.). New York: International University Press.Google Scholar
  9. Bleuler, M. (1978). The schizophrenic disorders: Long-term patient and family studies. New Haven: Yale University Press.Google Scholar
  10. Brewin, J., Cantwell, R., Dalkin, T., Fox, R., Medley, I., Glazebrook, C., et al. (1997). Incidence of schizophrenia in Nottingham. A comparison of two cohorts, 1978–1980 and 1992–1994. British Journal of Psychiatry, 171, 140–144.PubMedCrossRefGoogle Scholar
  11. Bridge, T.,&Wyatt, R. (1980). Paraphrenia: Paranoid states of late life I. European Research. American Geriatrics Society, 28(5), 193–200.Google Scholar
  12. Byrne, M., Agerbo, E., Bennedsen, B., Eaton, W. W.,&Mortensen, P. B. (2007). Obstetric conditions and risk of first admission with schizophrenia: A Danish national register based study. Schizophrenia Research, 97(3), 51–59.PubMedCrossRefGoogle Scholar
  13. Byrne, M., Agerbo, E., Eaton, W. W.,&Mortensen, P. B. (2004). Parental socio-economic status and risk of first admission with schizophrenia- a Danish national register based study. Social Psychiatry and Psychiatric Epidemiology, 39(2), 87–96.PubMedCrossRefGoogle Scholar
  14. Cannon, M.,&Clarke, M. C. (2005). Risk for schizophrenia – broadening the concepts, pushing back the boundaries. Schizophrenia Research, 79(1), 5–13.PubMedCrossRefGoogle Scholar
  15. Cannon, T. D., Thompson, P. M., van Erp, T. G., Toga, A. W., Poutanen, V. P., Huttunen, M., et al. (2002). Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 3228–3233.PubMedCrossRefGoogle Scholar
  16. Cantor-Graae, E.,&Selten, J. P. (2005). Schizophrenia and migration: a meta-analysis and review. American Journal of Psychiatry, 162(1), 12–24.PubMedCrossRefGoogle Scholar
  17. Carey, G. (2003). Human genetics for the social sciences. Thousand Oaks CA: Sage.Google Scholar
  18. Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301(5631), 386–389.PubMedCrossRefGoogle Scholar
  19. Charney, D. S.,&Manji, H. K. (2004). Life stress, genes, and depression: multiple pathways lead to increased risk and new opportunities for intervention. Science’s STKE, 2004(225), re5.PubMedCrossRefGoogle Scholar
  20. Clarke, M. C., Harley, M.,&Cannon, M. (2006). The role of obstetric events in schizophrenia. Schizophrenia Bulletin, 32(1), 3–8.PubMedCrossRefGoogle Scholar
  21. Cooper, B. (2005). Schizophrenia, social class and immigrant status: the epidemiological evidence. Epidemiologia e Psichiatria Sociale, 14(3), 137–144.PubMedGoogle Scholar
  22. Correll, C. U., Penzner, J. B., Frederickson, A. M., Richter, J. J., Auther, A. M., Smith, C. W., et al. (2007). Differentiation in the preonset phases of schizophrenia and mood disorders: evidence in support of a bipolar mania prodrome. Schizophrenia Bulletin, 33(3), 703–714.PubMedCrossRefGoogle Scholar
  23. Correll, C. U., Penzner, J. B., Lencz, T., Auther, A., Smith, C. W., Malhotra, A. K., et al. (2007). Early identification and high-risk strategies for bipolar disorder. Bipolar Disorders, 9(4), 324–338.PubMedCrossRefGoogle Scholar
  24. Craddock, N.,&Jones, I. (1999). Genetics of bipolar disorder. Journal of Medical Genetics, 36, 585–594.PubMedGoogle Scholar
  25. Craddock, N., O’Donovan, M.,&Owen M. J. (2005). The genetics of schizophrenia and bipolar disorder: dissecting psychosis. Journal of Medical Genetics, 42(3), 193–204.PubMedCrossRefGoogle Scholar
  26. Craddock, N., O’Donovan, M.,&Owen, M. (2006). Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophrenia Bulletin, 32(1), 9–16.PubMedCrossRefGoogle Scholar
  27. Crow, T. (2007). How and why genetic linkage has not solved the problem of psychosis. American Journal of Psychiatry, 164(1), 13–21.PubMedCrossRefGoogle Scholar
  28. Dilsaver, S., Akiskal, H., Akiskal, K.,&Benazzi, F. (2006). Dose-response relationship between number of comorbid anxiety disorders in adolescent bipolar/unipolar disorders, and psychosis, suicidality, substance abuse and familiality. Journal of Affective Disorders, 96(3), 249–258.PubMedCrossRefGoogle Scholar
  29. DSM-IV-TR. (2000). Diagnostic and statistical manual of mental disorders, Fourth Edition, text revision. Washington, D C: American Psychiatric Association.Google Scholar
  30. Edmonds, L. K., Mosley, B. J., Admiraal, A. J., Olds, R. J., Romans, S. E., Silverstone, T., et al. (1998). Familial bipolar disorder: preliminary results from the Otago Familial Bipolar Genetic Study. Australian and New Zealand Journal of Psychiatry, 32(6), 823–829.PubMedCrossRefGoogle Scholar
  31. Einat, H.,&Manji, H. (2006). Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biological Psychiatry, 59(16), 1160–1171.PubMedCrossRefGoogle Scholar
  32. Geddes, J., Black, R., Whalley, L.,&Eagles, J. (1993). Persistence of the decline in the diagnosis of schizophrenia among first admissions to Scottish hospitals from 1969 to 1988. British Journal of Psychiatry, 164(4), 620–626.CrossRefGoogle Scholar
  33. Gottesman, I. I.,&Bertelsen, A. (1989). Confirming unexpressed genotypes for schizophrenia. Risks in the offspring of Fischer’s Danish identical and fraternal discordant twins. Archives of General Psychiatry, 46(10), 867–872.PubMedGoogle Scholar
  34. Gottesman, I. I.,&Gould, T. D. (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry, 160(4), 1–10.CrossRefGoogle Scholar
  35. Gottesman, I. I.,&Hanson, D. R. (2005). Human development: biological and genetic processes. Annual Review of Psychology, 56, 263–286.PubMedCrossRefGoogle Scholar
  36. Gottesman, I. I.,&Shields, J. (1972). Schizophrenia and genetics: a twin study vantage point. New York: Academic Press.Google Scholar
  37. Gottesman, I. I., Shields, J.,&Hanson, D. R. (1982). Schizophrenia: the epigenetic puzzle. Cambridge: Cambridge University Press.Google Scholar
  38. Hanson, D. R. (2004). Getting the bugs into our genetic theories of schizophrenia. In L. DiLalla (Ed.), Behavior genetics principles: Perspective in development, personality and psychopathology (pp. 205–216). Washington, DC: American Psychological Press.CrossRefGoogle Scholar
  39. Hanson, D. R.,&Gottesman, I. I. (1976). The genetics, if any, of infantile autism and childhood schizophrenia. Journal of Autism and Childhood Schizophrenia, 6(3), 209–234.PubMedCrossRefGoogle Scholar
  40. Hanson, D. R.,&Gottesman, I. I. (2005). Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC Medical Genetics, 6, 7.PubMedCrossRefGoogle Scholar
  41. Hanson, D. R.,&Gottesman, I. I. (2007). Choreographing genetic, epigenetic, and stochastic steps in the dances of psychopathology. In A. Maston (Ed.), Multilevel dynamics in developmental psychopathology (pp. 27–44). Mahwal, NJ: Erlbaum Associates.Google Scholar
  42. Hanson, D. R., Gottesman, I. I.,&Meehl, P. E. (1977). Genetic theories and the validation of psychiatric diagnoses: implications for the study of children of schizophrenics. Journal of Abnormal Psychology, 86(6), 575–588.PubMedCrossRefGoogle Scholar
  43. Head, E.,&Lott, I. (2004). Down syndrome and beta-amyloid deposition. Current Opinion in Neurology, 17, 95–100.PubMedCrossRefGoogle Scholar
  44. Helzer, J., Robins, L., McEvoy, L, T, Spitznagel, E. L., Stoltzman, R., Farmer, A., et al. (1985). A comparison of clinical and diagnostic interview schedule diagnoses. Physician reexamination of lay-interviewed cases in the general population. Archives of General Psychiatry, 41(7), 657–666.Google Scholar
  45. Hoek, H. W., Brown, A. S.,&Susser, E. (1998). The Dutch famine and schizophrenia spectrum disorders. Social Psychiatry and Psychiatric Epidemiology, 33(8), 373–379.PubMedCrossRefGoogle Scholar
  46. Howard, R., Rabins, P. V., Seeman, M. V.,&Jeste, D. V. (2000). Late-onset schizophrenia and very-late-onset schizophrenia-like psychosis: an international consensus. The International Late-Onset Schizophrenia Group. American Journal of Psychiatry, 157(2), 172–178.PubMedCrossRefGoogle Scholar
  47. Hulshoff Pol, H. E., Brans, R. G. H., van Haren, N. E. M., Schnack, H. G., Langen, M., Baare, W. F. C., et al. (2004). Gray and white matter volume abnormalities in monozygotic and same-gender dizygotic twins discordant for schizophrenia. Biological Psychiatry, 55, 126–130.PubMedCrossRefGoogle Scholar
  48. Hulshoff Pol, H. E., Hoek, H. W., Susser, E., Brown, A. S., Dingemans, A., Schnack, H. G., et al. (2000). Prenatal exposure to famine and brain morphology in schizophrenia. American Journal of Psychiatry, 157(7), 1170–1172.PubMedCrossRefGoogle Scholar
  49. Jablonka, E.,&Lamb, M. (2002). The changing concept of epigenetics. Annals of the New York Academy of Sciences, 981(Dec), 82–96.PubMedGoogle Scholar
  50. Jabs, B., Althaus, G., Bartsch, A., Schmidtke, A., Stöber, G., Beckmann, H., et al. (2006). Cycloid psychoses as atypical manic-depressive disorders. Results of a family study. Nervenarzt, 77(9), 1096–1100, 1102–1104.CrossRefGoogle Scholar
  51. Jaenisch, R.,&Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 33 Suppl(Mar), 245–254.PubMedCrossRefGoogle Scholar
  52. Jones, I., Kent, L.,&Craddock, N. (2004). Genetics of affective disorders. In P. McGuffin, O. Palo, M. Owen&I. Gottesman (Eds.), Psychiatric genetics&genomics (pp. 211–245). Oxford: Oxford University Press.Google Scholar
  53. Jones, P.,&Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science, 263, 1068–1070.CrossRefGoogle Scholar
  54. Joyce, P. R., Doughty, C. J., Wells, J. E., Walsh, A. E., Admiraal, A., Lill, M., et al. (2004). Affective disorders in the first-degree relatives of bipolar probands: results from the South Island Bipolar Study. Comprehensive Psychiatry, 45(3), 168–174.PubMedCrossRefGoogle Scholar
  55. Keating, M., Dunn, C., Atkinson, D., Timothy, K., Vincent, G. M.,&Leppert, M. (1991). Consistent linkage of the long-QT syndrome to the Harvey ras-1 locus on chromosome 11. American Journal of Medical Genetics, 49(6), 1335–1339.Google Scholar
  56. Keating, M.,&Sanguinetti, M. (2001). Molecular and cellular mechanisms of cardiac arrhythmias. Cell, 104(659–580).Google Scholar
  57. Kessler , R., McGonagle, K., Zhao, S., Nelson, C., Hughes, M., Eshleman, S., et al. (1994). Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Archives of General Psychiatry, 51, 8–19.PubMedGoogle Scholar
  58. Kornberg, J., Kawashima, H., Pulst, S., Allen, L., Magenis, E.,&Epstein, C. (1990). Down syndrome: toward a molecular definition of the phenotype. American Journal of Medical Genetics Suppl, 7, 91–97.CrossRefGoogle Scholar
  59. Kraepelin, E. (1919). Dementia praecox and paraphrenia (R. Barclay, Trans.). Edinburgh: E&S Livingston.Google Scholar
  60. Kuratomi, G., Iwamoto, K., Bundo, M., Kusumi, I., Kato, N., Iwata, N., et al. (2007). Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Molecular Psychiatry, 13(4), 429–441.PubMedCrossRefGoogle Scholar
  61. Lake, C. (2007). Disorders of thought are severe mood disorders: the selective attention defect in mania challenges the Kraepelinian dichotomy-a review. Schizophrenia Bulletin (e-pub).Google Scholar
  62. Leonhard, K. (1961). Cycloid psychoses-endogenous psychoses which are neither schizophrenic nor manic depressive. Journal of Mental Science, 197, 632–648.Google Scholar
  63. Loranger, A. W.,&Levine, P. M. (1978). Age at onset of bipolar affective illness. Archives of General Psychiatry, 35(11), 1345–1348.PubMedGoogle Scholar
  64. Maier, W., Hofgen, B., Zobel, A.,&Rietschel, M. (2005). Genetic models of schizophrenia and bipolar disorder: overlapping inheritance or discrete genotypes? European Archives of Psychiatry and Clinical Neuroscience, 255(3), 159–166.PubMedCrossRefGoogle Scholar
  65. Manji, H. K., Gottesman, I. I.,&Gould, T. D. (2003). Signal transduction and genes-to-behaviors pathways in psychiatric diseases. Science’s STKE, 2003(207), pe49.Google Scholar
  66. McGrath, J. J., Saha, S., Lieberman, D. E.,&Buka, S. (2006). Season of birth is associated with anthropometric and neurocognitive outcomes during infancy and childhood in a general population birth cohort. Schizophrenia Research, 81(1), 91–100.PubMedCrossRefGoogle Scholar
  67. Merikangas, K. R., Akiskal, H. S., Angst, J., Greenberg, P. E., Hirschfeld, R. M., Petukhova, M., et al. (2007). Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Archives of General Psychiatry, 64(5), 543–552.PubMedCrossRefGoogle Scholar
  68. Merikangas, K. R.,&Low, N. C. (2004). The epidemiology of mood disorders. Current Psychiatry Reports, 6(6), 411–421.PubMedCrossRefGoogle Scholar
  69. Meyer, U., Yee, B.,&Feldon, J. (2007). The neurodevelopmental impact of prenatal infections at different times of pregnancy: the earlier the worse? Neuroscientist, 13(3), 241–256.PubMedCrossRefGoogle Scholar
  70. Morange, M. (2002). The relations between genetics and epigenetics: a historical point of view. Annals of the New York Academy of Sciences, 981(Dec), 50–60.PubMedCrossRefGoogle Scholar
  71. Murray, R., Jones, P., Susser, E., Van Os, J.,&Cannon, M. (Eds.). (2003). The epidemiology of Schizophrenia. Cambridge: Cambridge University Press.Google Scholar
  72. Nijhout, H. (2003). The importance of context in genetics. American Scientist, 91, 416–423.Google Scholar
  73. Nordgaard, J., Arnfred, S., Handest, P.,&Parnas, J. (2008). The diagnostic status of first-rank symptoms. Schizophrenia Bulletin, 34(1), 137–154.PubMedCrossRefGoogle Scholar
  74. Ødegaard, Ø. (1972). The multifactorial theory of inheritance in predisposition to schizophrenia. In A. Kaplan (Ed.), Genetic factors in “schizophrenia” (pp. 256–275). Springfield: Charles C Thomas.Google Scholar
  75. Opitz, J.,&Gilbert-Barness, E. (1990). Reflections on the pathogenesis of Down syndrome. American Journal of Medical Genetics Suppl, 7, 38–51.CrossRefGoogle Scholar
  76. Osby, U., Hammar, N., Brandt, L., Wicks, S., Thinsz, Z., Ekbom, A., et al. (2001). Time trends in first admissions for schizophrenia and paranoid psychosis in Stockholm County, Sweden. Schizophrenia Research, 47(2–3), 247–254.PubMedCrossRefGoogle Scholar
  77. Palo, O. M., Antila, M., Silander, K., Hennah, W., Kilpinen, H., Soronen, P., et al. (2007). Association of distinct allelic haplotypes of DISC1 with psychotic and bipolar spectrum disorders and with underlying cognitive impairments. Human Molecular Genetics, 16(20), 3517–3528.CrossRefGoogle Scholar
  78. Peralta, V., Cuesta, M.,&Zandio, M. (2007). Cycloid psychoses: an examination of the validity of the concept. Current Psychiatry Reports, 9(3), 184–192.PubMedCrossRefGoogle Scholar
  79. Perris, C.,&Brockington, I. (1981). Cycloid psychoses and their relation to the major psychoses. In C. Perris, G. Struwe&B. Jansson (Eds.), Biological Psychiatry (pp. 447–450). Amsterdam: Elsevier.Google Scholar
  80. Petronis, A. (2003). Epigenetics: influence on behavioral disorders. London: Nature Publishing Group.Google Scholar
  81. Petronis, A. (2004). The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolving synthesis. Biological Psychiatry, 55(10), 965–970.PubMedCrossRefGoogle Scholar
  82. Petronis, A., Gottesman, I. I., Kan, P., Kennedy, J. L., Basile, V. S., Paterson, A. D., et al. (2003). Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophrenia Bulletin, 29(1), 169–178.PubMedGoogle Scholar
  83. Pfuhlmann, B., Jabs, B., Althaus, G., Schmidtke, A., Bartsch, A., Stöber, G., et al. (2004). Cycloid psychoses are not part of a bipolar affective spectrum: results of a controlled family study. Journal of Affective Disorders, 83(1), 11–19.PubMedCrossRefGoogle Scholar
  84. Reed, S., Hartley, C., Anderson, V., Phillips, V.,&Johnson, N. (1973). The psychoses: family studies. Philadelphia: W.B. Saunders.Google Scholar
  85. Rzhetsky, A., Wajngurt, D., Park, N.,&Zheng, T. (2007). Probing genetic overlap among complex human phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 104(28), 11694–11699.PubMedCrossRefGoogle Scholar
  86. Sanders, A. R., Duan, J., Levinson, D. F., Shi, J., He, D., Hou, C., et al. (2008). No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: Implications for psychiatric genetics. American Journal of Psychiatry (e-pub).Google Scholar
  87. Sapolsky, R. M. (2004). Mothering style and methylation. Nature Neuroscience, 7(8), 791–792.PubMedCrossRefGoogle Scholar
  88. Schneider, K. (1959). Clinical Psychopathology. New York: Grune&Stratton.Google Scholar
  89. Schulze, T. G., Hedeker, D., Zandi, P., Rietschel, M.,&McMahon, F. J. (2006). What is familial about familial bipolar disorder? Resemblance among relatives across a broad spectrum of phenotypic characteristics. Archives of General Psychiatry, 63(12), 1368–1376.PubMedCrossRefGoogle Scholar
  90. Shahbazian, M.,&Zoghbi, H. (2002). Rett syndrome and the MeCP2: Linking epigenetics and neuronal function. American Journal of Medical Genetics, 71(6), 1259–1272.Google Scholar
  91. Shields, J.,&Gottesman, I. I. (1973). Genetic Studies of schizophrenia as signposts to biochemistry. Biochemical Society 1, 165–174 (Special Publication).Google Scholar
  92. Simon, N., Smoller, J., Fava, M., Sachs, G., Racette, S., Perlis, R., et al. (2003). Comparing anxiety disorders and anxiety-related traits in bipolar disorder and unipolar depression. Journal of Psychiatric Research, 37(3), 187–192.PubMedCrossRefGoogle Scholar
  93. Sing, C., Stengard, J.,&Kardia, S. (2003). Genes, environment, and cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(7), 1190–1196.PubMedCrossRefGoogle Scholar
  94. Slater, E.,&Cowie, V. (1971). The genetics of mental disorders. London: Oxford University Press.Google Scholar
  95. Smith, S., Li, J., Garbett, K., Mirnics, K.,&Patterson, P. (2007). Maternal immune activation alters fetal brain development through interleukin-6. Journal of Neuroscience, 27(40), 10695–10702.PubMedCrossRefGoogle Scholar
  96. Somanath, C., Jain, S.,&Reddy, Y. (2002). A family study of early-onset bipolar I disorder. Journal of Affective Disorders, 70(1), 91–94.PubMedCrossRefGoogle Scholar
  97. St Clair, D., Xu, M., Wang, P., Yu, Y., Fang, Y., Zhang, F., et al. (2005). Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. Journal of the American Medical Association, 294(5), 557–562.PubMedCrossRefGoogle Scholar
  98. Strömgren, E. (1994). The unitary psychosis (Einheitpsychose) concept: past and present. Neurology, Psychiatry, and Brain Research, 2, 201–205.Google Scholar
  99. Suvisaari, J., Haukka, J., Tanskanen, A. J.,&Lönnqvist, J. K, (1999). Decline in the incidence of schizophrenia in Finnish cohorts born from 1954 to 1965. Archives of General Psychiatry, 56(8), 733–740.PubMedCrossRefGoogle Scholar
  100. Thomson, G.,&Esposito, M. S. (1999). The genetics of complex diseases. Trends in Cell Biology, 9(12), M17–20.Google Scholar
  101. Tillman, R.,&Geller, B. (2006). Controlled study of switching from attention-deficit/hyperactivity disorder to a prepubertal and early adolescent bipolar I disorder phenotype during 6-year prospective follow-up: rate, risk, and predictors. Development and Psychopathology, 18(4), 1037–1053.PubMedCrossRefGoogle Scholar
  102. Tsuang, M. T.,&Winokur, G. (1975). The Iowa 500: field work in a 35-year follow-up of depression, mania, and schizophrenia. Canadian Psychiatric Association Journal, 20(5), 359–365.PubMedGoogle Scholar
  103. Tsuang, M. T., Winokur, G.,&Crowe, R. R. (1980). Morbidity risks of schizophrenia and affective disorders among first degree relatives of patients with schizophrenia, mania, depression and surgical conditions. British Journal of Psychiatry, 137, 497–504.PubMedCrossRefGoogle Scholar
  104. Turkheimer, E., Goldsmith, H.,&Gottesman, I. (1995). Commentary – some conceptual deficiencies in ’developmental’ behavioral genetics. Human Development, 38, 142–153.CrossRefGoogle Scholar
  105. van Erp, T. G., Saleh, P. A., Huttunen, M., Lonnqvist, J., Kaprio, J., Salonen, O., et al. (2004). Hippocampal volumes in schizophrenic twins. Archives of General Psychiatry, 61(4), 346–353.PubMedCrossRefGoogle Scholar
  106. van Haren, N. E., Picchioni, M. M., McDonald, C., Marshall, N., Davis, N., Ribchester, T., et al. (2004). A controlled study of brain structure in monozygotic twins concordant and discordant for schizophrenia. Biological Psychiatry, 56(6), 454–461.PubMedCrossRefGoogle Scholar
  107. Waddington, C. (1957). The strategy of the genes. London: George Allen&Unwin LTD.Google Scholar
  108. Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–854.PubMedCrossRefGoogle Scholar
  109. Weaver, I. C., Grant, R. J.,&Meaney, M. J. (2002). Maternal behavior regulates long-term hippocampal expression of BAX and apoptosis in the offspring. Journal of Neurochemistry, 82(4), 998–1002.PubMedCrossRefGoogle Scholar
  110. Winokur, G., Coryell, W., Akiskal, H. S., Endicott, J., Keller, M.,&Mueller, T. (1994). Manic-depressive (bipolar) disorder: the course in light of a prospective ten-year follow-up of 131 patients. Acta Psychiatrica Scandinavica, 89(2), 102–110.PubMedCrossRefGoogle Scholar
  111. Wong, A. H., Gottesman, I. I.,&Petronis, A. (2005). Phenotypic differences in genetically identical organisms: the epigenetic perspective. Human Molecular Genetics, 14 Spec No 1, R11–18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departments of Psychiatry & PsychologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations