Advertisement

QTL Methodology in Behavior Genetics

  • Stacey S. Cherny

In the second chapter of this volume, biometrical models in behavioral genetics are presented. Such models provide the foundation for quantitative trait locus (QTL) analysis. The present chapter specifically deals with applying those models to QTL analysis, in both linkage and association contexts. Until relatively recently, linkage was the preferred method for mapping QTLs. The approach has limited power in detecting small effects, unless an extremely large sample size is available. However, linkage extends over large chromosomal regions and so can be used to localize QTLs of relatively large effects to large segments of DNA. In contrast to association mapping, linkage can be detected without actually genotyping a causal variant or a locus that is in linkage disequilibrium with a causal locus. In this case, linkage disequilibrium implies a correlation between a marker and a causal variant within the population as a whole. With the availability of low-cost single nucleotide polymorphism (SNP) chip-based genotyping technologies, the focus has shifted toward association mapping.

Keywords

Quantitative Trait Locus Association Mapping Quantitative Trait Locus Analysis Reading Disability Behavior Genetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abecasis, G. R., Cardon, L. R., & Cookson, W. O. (2000, January). A general test of association for quantitative traits in nuclear families. American Journal of Human Genetics, 66(1), 279–92.Google Scholar
  2. Abecasis, G. R., Cherny, S. S., Cookson, W. O., & Cardon, L. R. (2002). Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genetics, 30, 97–101.PubMedCrossRefGoogle Scholar
  3. Abecasis, G. R., Cookson, W. O., & Cardon, L. R. (2000, July). Pedigree tests of transmission disequilibrium. European Journal of Human Genetics, 8(7), 545–551.Google Scholar
  4. Allison, D. B., Fernandez, J. R., Heo, M., & Beasley, T. M. (2000). Testing the robustness of the new haseman-elston quantitative-trait loci-mapping procedure. American Journal of Human Genetics, 67, 249–252.PubMedCrossRefGoogle Scholar
  5. Cardon, L. R., & Abecasis, G. R. (2000). Some properties of a variance components model for fine-mapping quantitative trait loci. Behavior Genetics, 30, 235–243.PubMedCrossRefGoogle Scholar
  6. Cardon, L. R., & Fulker, D. W. (1994). The power of interval mapping of quantitative trait loci, using selected sib pairs. American Journal of Human Genetics, 55, 825–833.PubMedGoogle Scholar
  7. Cardon, L. R., Smith, S. D., Fulker, D. W., Kimberling, W. J., Pennington, B. F., & DeFries, J. C. (1994). Quantitative trait locus for reading disability on chromosome 6. Science, 266, 276–279.PubMedCrossRefGoogle Scholar
  8. Cardon, L. R., Smith, S. D., Fulker, D. W., Kimberling, W. J., Pennington, B. F., & DeFries, J. C. (1995). Quantitative trait locus for reading disability: Correction. Science, 268, 1553.PubMedCrossRefGoogle Scholar
  9. DeFries, J. C., & Fulker, D. W. (1985). Multiple regression analysis of twin data. Behavior Genetics, 15, 467–473.PubMedCrossRefGoogle Scholar
  10. DeFries, J. C., & Fulker, D. W. (1988). Multiple regression analysis of twin data: Etiology of deviant scores versus individual differences. Acta Geneticae Medicae et Gemellologiae, 37, 205–216.PubMedGoogle Scholar
  11. Drigalenko, E. (1998). How sib pairs reveal linkage. American Journal of Human Genetics, 63, 1242–1245.PubMedGoogle Scholar
  12. Elston, R. C., Buxbaum, S., Jacobs, K. B., & Olson, J. M. (2000). Haseman and elston revisited. Genetic Epidemiology, 19, 1–17.PubMedCrossRefGoogle Scholar
  13. Evans, D. M., & Medland, S. E. (2003). A note on including phenotypic information from monozygotic twins in variance components qtl linkage analysis. Annals of Human Genetics, 67, 613–617.PubMedCrossRefGoogle Scholar
  14. Eysenck, H. J., & Eysenck, S. B. G. (1975). Manual of the eysenck personality questionnaire. San Diego: Digits.Google Scholar
  15. Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (pp. 136–142). London: Longman.Google Scholar
  16. Fisher, S., Francks, C., Marlow, A. J., MacPhie, I. L., Newbury, D. F., Cardon, L. R., et al. (2002). Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nature Genetics, 30, 86–91.PubMedCrossRefGoogle Scholar
  17. Fisher, S. E., Marlow, A. J., Lamb, J., Maestrini, E., Williams, D. F., Richardson, A. J., et al. (1999). A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. American Journal of Human Genetics, 64, 146–156.PubMedCrossRefGoogle Scholar
  18. Forrest, W. (2001). Weighting improves the “new haseman-elston” method. Human Heredity, 52, 47–54.PubMedCrossRefGoogle Scholar
  19. Fulker, D. W., & Cardon, L. R. (1994). A sib-pair approach to interval mapping of quantitative trait loci. American Journal of Human Genetics, 54, 1092–1103.PubMedGoogle Scholar
  20. Fulker, D. W., Cardon, L. R., DeFries, J. C., Kimberling, W. J., Pennington, B. F., & Smith, S. D. (1991). Multiple regression analysis of sib-pair data on reading to detect quantitative trait loci. Reading and Writing: An Interdisciplinary Journal, 3, 299–313.CrossRefGoogle Scholar
  21. Fulker, D. W., & Cherny, S. S. (1996). An improved multipoint sib-pair analysis of quantitative traits. Behavior Genetics, 26, 527–532.PubMedCrossRefGoogle Scholar
  22. Fulker, D. W., Cherny, S. S., & Cardon, L. R. (1995). Multipoint interval mapping of quantitative trait loci, using sib pairs. American Journal of Human Genetics, 56, 1224–1233.PubMedGoogle Scholar
  23. Fulker, D. W., Cherny, S. S., Sham, P. C., & Hewitt, J. K. (1999, January). Combined linkage and association sib-pair analysis for quantitative traits. American Journal of Human Genetics, 64(1), 259–267.Google Scholar
  24. Gay’an, J., Smith, S. D., Cherny, S. S., Cardon, L. R., Fulker, D. W., Brower, A. M., et al. (1999). Quantitative trait locus for specific language and reading deficits on chromosome 6p. American Journal of Human Genetics, 64, 157–164.CrossRefGoogle Scholar
  25. Grigorenko, E. L., Wood, F. B., Meyer, M. S., Hart, L. A., Speed, W. C., Schuster, A., et al. (1997). Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. American Journal of Human Genetics, 60, 27–39.PubMedGoogle Scholar
  26. Haseman, J. K., & Elston, R. C. (1972). The investigation of linkage between a quantitative trait and a marker locus. Behavior Genetics, 2, 3–19.PubMedCrossRefGoogle Scholar
  27. Idury, R. M., & Elston, R. C. (1997). A faster and more general hidden markov model algorithm for multipoint likelihood calculations. Human Heredity, 47, 197–202.PubMedCrossRefGoogle Scholar
  28. Jinks, J. L., & Fulker, D. W. (1970). Comparison of the biometrical genetical, MAVA, and classical approaches to the analysis of human behavior. Psychological Bulletin, 73, 311–349.PubMedCrossRefGoogle Scholar
  29. Kruglyak, L., Daly, M. J., Reeve-Daly, M. P., & Lander, E. S. (1996). Parametric and nonparametric linkage analysis: A unified multipoint approach. American Journal of Human Genetics, 58, 1347–1363.PubMedGoogle Scholar
  30. LaBuda, M. C., DeFries, J. C., & Fulker, D. W. (1986). Multiple regression analysis of twin data obtained from selected samples. Genetic Epidemiology, 3, 425–433.PubMedCrossRefGoogle Scholar
  31. Lander, E., & Kruglyak, L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nature Genetics, 11, 241–247.PubMedCrossRefGoogle Scholar
  32. Lander, E. S., & Green, P. (1987). Construction of multilocus genetic maps in humans. Proceedings of the National Academy of Sciences, 84, 2363–2367.CrossRefGoogle Scholar
  33. Lessem, J. M., & Cherny, S. S. (2001). Defries-fulker multiple regression of sibship qtl data: A SAS registered macro. Bioinformatics, 17, 371–372.PubMedCrossRefGoogle Scholar
  34. Marlow, A. J., Fisher, S. E., Francks, C., MacPhie, I. L., Cherny, S. S., Richardson, A. J., et al. (2003). Use of multivariate linkage analysis for dissection of a complex cognitive trait. American Journal of Human Genetics, 72, 561–570.PubMedCrossRefGoogle Scholar
  35. McKenzie, C. A., Abecasis, G. R., Keavney, B., Forrester, T., Ratcliffe, P. J., Julier, C., et al. (2001). Trans-ethnic fine mapping of a quantitative trait locus for circulating angiotensin i-converting enzyme (ace). Human Molecular Genetics, 10, 1077–1084.PubMedCrossRefGoogle Scholar
  36. Nash, M. W., Huezo-Diaz, P., Williamson, R. J., Sterne, A., Purcell, S., Hoda, F., et al. (2004). Genome-wide linkage analysis of a composite index of neuroticism and mood-related scales in extreme selected sibships. Human Molecular Genetics, 13, 2173–2182.PubMedCrossRefGoogle Scholar
  37. Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2003). Mx: Statistical modeling (6th ed). VCU Box 900126, Richmond, VA 23298 USA: Department of Psychiatry, Virginia Commonwealth University.Google Scholar
  38. Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families, NATO ASI series. Dordrecht, The Netherlands: Kluwer Academic Press.Google Scholar
  39. Neale, M. C., & Maes, H. H. (in preparation). Methodology for genetic studies of twins and families (2nd ed). Dordrecht, The Netherlands: Kluwer Academic Press.Google Scholar
  40. Purcell, S., Cherny, S., Hewitt, J., & Sham, P. (2001). Optimal sibship selection for genotyping in quantitative trait locus linkage analysis. Human Heredity, 52, 1–13.PubMedCrossRefGoogle Scholar
  41. Rijsdijk, F. V., Hewitt, J. K., & Sham, P. C. (2001). Analytic power calculation for variance-components linkage analysis in small pedigrees. European Journal of Human Genetics, 9, 335–340.PubMedCrossRefGoogle Scholar
  42. Schmitz, S., Cherny, S. S., & Fulker, D. W. (1998). Increase in power through multivariate analyses. Behavior Genetics, 28, 357–363.PubMedCrossRefGoogle Scholar
  43. Schork, N. J., & Xu, X. (2000). The use of twins in quantitative trait locus mapping. In T. D. Spector, H. Snieder, & A. J. MacGregor (Eds), Advances in twin and sib-pair analysis (pp. 189–202). London: Greenwich Medical Media.Google Scholar
  44. Sham, P. (1998). Statistics in human genetics. London: Arnold.Google Scholar
  45. Sham, P. C., & Purcell, S. (2001). Equivalence between haseman-elston and variance-components linkage analyses for sib pairs. American Journal of Human Genetics, 68, 1527–1532.PubMedCrossRefGoogle Scholar
  46. Sham, P. C., Purcell, S., Cherny, S. S., & Abecasis, G. R. (2002). Powerful regression-based quantitative-trait linkage analysis of general pedigrees. American Journal of Human Genetics, 71, 238–253.PubMedCrossRefGoogle Scholar
  47. Sham, P.C., Zhao, J. H., Cherny, S., & Hewitt, J. (2000). Variance-components qtl linkage analysis of selected and non-normal samples: conditioning on trait value. Genetic Epidemiology, 19, S22–S28.Google Scholar
  48. Visscher, P. M., & Hopper, J. L. (2001). Power of regression and maximum likelihood methods to map qtl from sib-pair and dz twin data. Annals of Human Genetics, 65, 583–601.PubMedCrossRefGoogle Scholar
  49. Wright, F. A. (1997). The phenotypic difference discards sib-pair QTL linkage information. American Journal of Human Genetics, 60, 740–742.PubMedGoogle Scholar
  50. Xu, X., Weiss, S., Xu, X., & Wei, L. J. (2000). A unified haseman-elston method for testing linkage with quantitative traits. American Journal of Human Genetics, 67, 1025–1028.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PsychiatryGenome Research Centre, and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong KongPokfulam

Personalised recommendations