Sexual Selection and Aggressive Behavior in Drosophila

In animals, females make large but few nutritious eggs and males produce small but many mobile sperm. There are tremendous amounts of competition between males over access to females, and females discriminate among their mating partners. Sexual selection arises from differences in reproductive success caused by competition for mates. Sexual selection is a mechanism by which conspicuous traits such as large body size, bright colors, songs, weapons as well as behaviors are highly favored to attract more mates and the traits enhance fitness of individuals (Andersson, 1994; Fisher, 1930; Kirkpatrick, 1987; Lande, 1981). There are two types of sexual selection: (1) intrasexual selection, a competition within the same sex, usually males, for mates and (2) intersexual selection, mate selection by females. Intrasexual selection can occur in the form of competition for females without fighting with other males or in the form of contest between males. Morphological traits such as large body size, weaponry, and armor as well as aggressiveness are favored in the form of male–male competition. When males, however, are unable to monopolize either females or any resource vital to females, males advertise themselves for mates by displaying courtship, territory, songs, and ornaments.


Sexual Selection Mating Success Mushroom Body Cuticular Hydrocarbon Drosophila Species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alves, H., Rouault, J.-D., Kondoh, Y., Nakano, Y., Yamamoto, D., Kim, Y.-K., & Jallon, J.-M. (2008). Evolution of cuticular hydrocarbons of Hawaiian Drosophilidae (submitted).Google Scholar
  2. Andersson, M. (1994). Sexual selection. New Jersey: Princeton University Press.Google Scholar
  3. Anderson, W. W., Kim, Y.-K., & Gowaty, P. A. (2007). Experimental constraints on mate preferences in Drosophila pseudoobscura decrease offspring viability and fitness of mated pairs. Proceedings of the National Academy of Sciences USA, 104, 4484–4488.Google Scholar
  4. Anholt, R. R. H., & Mackay, T. F. C. (2004). Quantitative genetic analyses of complex behaviors in Drosophila. Nature Review/Genetics, 5, 838–849.Google Scholar
  5. Armstrong, J. D., de Belle J. S., Wang, Z., & Kaiser, K. (1998). Metamorphosis of the mushroom bodies: Large-scale rearrangements of the neural substrates for associative learning and memory in Drosophila. Learning & Memory, 5, 102–114.Google Scholar
  6. Aspi, J., & Hoikkala, A. (1995). Male mating success and survival in the field with respect to size and courtship song character in Drosophila littoralis and D. montana (Diptera: Drosophilidae). Journal of Insect Behavior, 8, 67–87.Google Scholar
  7. Baier, A., Wittek, B., & Brembs, B. (2002). Drosophila as a new model organisms for the neurobiology of aggression? Journal of Experimental Biology, 205, 1233–1240.PubMedGoogle Scholar
  8. Balling, A., Technau, G. M., & Heisenberg, M. (1987). Are the structural changes in the adult Drosophila mushroom bodies memory traces? Studies on biochemical learning mutants. Journal of Neurogenetics, 4, 65–73.PubMedGoogle Scholar
  9. Barth, M., & Heisenberg, M. (1997). Vision affects mushroom bodies and central complex in Drosophila melanogaster. Learning & Memory, 4, 219–229.Google Scholar
  10. Barth, M., Hirsch, H. V. B., Meinertzhagen, I. A., & Heisenberg, M. (1997). Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. Journal of Neuroscience, 17, 1493–1504.PubMedGoogle Scholar
  11. Blows, M. W. (2002). Interaction between natural and sexual selection during the evolution of mate recognition. Proceedings of the Royal Society of London, 269, 1113–1118.Google Scholar
  12. Blows, M. W., & Allan, R. A. (1998). Levels of mate recognition within and between two Drosophila species and their hybrids. American Naturalist, 152, 826–837.PubMedGoogle Scholar
  13. Boake, C. R. B. (1989). Correlations between courtship success, aggressive success and body size in a picture-winged fly, Drosophila silvestris. Ethology, 80, 318–329.Google Scholar
  14. Boake, C. R. B., DeAngelis, M. P., & Andreadis, D. K. (1997). Is sexual selection and species recognition a continuum? Mating behavior of the stalk-eyed Drosophila heteroneura. Proceedings of the National Academy of Sciences USA, 94, 12442–12445.Google Scholar
  15. Boake, C. R. B., & Konigsberg, L. (1998). Inheritance of male courtship behavior, aggressive success, and body size in Drosophila silvestris. Evolution, 52, 1487–1492.Google Scholar
  16. Boake, C. R. B., Price, D. K., & Andreadis, D. K. (1998). Inheritance of behavioural differences between two interfertile, sympatric species, Drosophila silvestris and D. heteroneura. Heredity, 80, 642–650.PubMedGoogle Scholar
  17. Carson, H. L. (1997). Sexual selection: A driver of genetic change in Hawaiian Drosophila. Journal of Heredity, 88, 343–352.Google Scholar
  18. Carson, H. L. (2002). Female choice in Drosophila: Evidence from Hawaii and implications for evolutionary biology. Genetica, 116, 383–393.PubMedGoogle Scholar
  19. Carson, H. L. Hardy, D. E., Spieth, H. T., & Stone, W. S. (1970). The evolutionary biology of the Hawaiian Drosophilidae. In M. K. Hecht & W. C. Steere (Eds.), Essays in evolution and genetics in honor of Theodosius Dobzhansky (pp. 437–543). New York: Appleton-Centry-Crofts.Google Scholar
  20. Chen, S., Lee, A. Y., Bowens, N., Huber, R., & Kravitz, E. A. (2002). Fighting fruit flies: A model system for the study of aggression. Proceedings of the National Academy of Sciences USA, 99, 5664–5668.Google Scholar
  21. Chenoweth, S. F., & Blows, M. W. (2005). Contrasting mutual sexual selection on homologous signal traits in Drosophila serrata. American Naturalist, 165, 281–289.PubMedGoogle Scholar
  22. Cobb, M., & Jallon, J.-M. (1990). Pheromones, mate recognition and courtship stimulation in the Drosophila melanogaster species subgroup. Animal Behaviour, 39, 1058–1067.Google Scholar
  23. Connolly, J. B., Roberts, I., J. H., Amstrong, J. D., Kaiser, K., Forte, M., Tully, T., & O’Kane, C. J. (1996). Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science, 274, 2104–2107.PubMedGoogle Scholar
  24. Coyne, J. A., & Charlesworth, B. (1997). Genetics of a pheromonal difference affecting sexual isolation between Drosophila mauritiana and D. sechellia. Genetics, 145, 1015–1030.PubMedGoogle Scholar
  25. Coyne, J. A., Crittenden, A. P., & Mah, K. (1994). Genetics of a pheromonal difference contributing to reproductive isolation in Drosophila. Science, 265, 1461–1464.PubMedGoogle Scholar
  26. Crossley, S., & Wallace, B. (1987). The effects of crowding on courtship and mating success in Drosophila melanogaster. Behavior Genetics, 17, 513–522.PubMedGoogle Scholar
  27. Darwin, C. (1871). The descent of man, and selection in relation to sex. London: J. Murray.Google Scholar
  28. David, J. R., Allemand, R., Van Herrewege, J., & Cohert, Y. (1983). Ecophysiology: Abiotic factors. In M. Ashburner, H. L. Carson, & J. N. Thompson (Eds.), The genetics and biology of Drosophila (pp. 106–109). London: Academic Press.Google Scholar
  29. Davis, R. L. (1993). Mushroom bodies and Drosophila learning. Neuron, 11, 1–14.PubMedGoogle Scholar
  30. de Belle, J. S., & Heisenberg, M. (1994). Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science, 263, 692–695.PubMedGoogle Scholar
  31. Demir, E., & Dickson, B. J. (2005). fruitless splicing specifies male courtship behavior in Drosophila. Cell, 121, 785–794.PubMedGoogle Scholar
  32. Dierick, H. A., & Greenspan, R. J. (2006). Molecular analysis of flies selected for aggressive behavior. Nature Genetics, 38, 1023–1031.PubMedGoogle Scholar
  33. Dierick, H. A., & Greenspan, R. J. (2007). Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nature Genetics, 39, 678–682.PubMedGoogle Scholar
  34. Dow, M. A., & von Schilcher, F. (1975). Aggression and mating success in Drosophila melanogaster. Nature, 254, 511–512.PubMedGoogle Scholar
  35. Dubai, Y., Buxbaum, J., Corfas, G., & Ofarim, M. (1987). Formamidines interact with Drosophila octopamine receptors alter the flies’ behavior and reduce their learning ability. Journal of Comparative Physiology, 161, 739–746.Google Scholar
  36. Dubai, Y., Jan, Y.-N., Byers, D., Quinn, W., & Benzer, S. (1976). dunce, a mutant of Drosophila deficient in learning. Proceedings of the National Academy of Sciences USA, 73, 1684–1688.Google Scholar
  37. Dubnau, J., Chiang, A.-S., & Tully, T. (2003). Neural substrates of memory: From synapses to system. Journal of Neurobiology, 54, 238–253.PubMedGoogle Scholar
  38. Dubnau, J., & Tully, T. (2001). Functional anatomy: From molecule to memory. Current Biology, 11, R24–R243.Google Scholar
  39. Edwards, A. C., Rollmann, S. M., Morgan, T. J., & Mackay, T. F. C. (2006). Quantitative genomics of aggressive behavior in Drosophila melanogaster. PLoS Genetics, 2, 1386–1395.Google Scholar
  40. Ellis, L. B., & Kessler, S. (1975). Differential posteclosion housing experiences and reproduction in Drosophila. Animal Behaviour, 23, 949–952.PubMedGoogle Scholar
  41. Ewing, L. S., & Ewing, A. W. (1984). Courtship in Drosophila melanogaster: Behaviour of mixed sex groups in large observation chambers. Behaviour, 90, 184–202.Google Scholar
  42. Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). London: Longmans Green.Google Scholar
  43. Ferveur, J.-F. (2005). Cuticular hydrocarbons: The evolution and roles in Drosophila pheromonal communication. Behavior Genetics, 35, 279–295.PubMedGoogle Scholar
  44. Feyereisen, R. (2005). Insect cytochrome P450. In L. I. Gilbert, K. Iatrou, & S. S. Gill (Eds.), Comprehensive molecular insect science (Vol. 4, pp. 1–77). Amsterdam: Elsevier.Google Scholar
  45. Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Clarendon Press.Google Scholar
  46. Folkers, E., Drain, P. F., & Quinn, W. G. (1993). radish, a Drosophila mutant deficient in consolidated memory. Proceedings of the National Academy of Sciences USA, 90, 8123–8127.Google Scholar
  47. Fulker, D. W. (1966). Mating speed in male Drosophila melanogaster: A psychogenetic analysis. Science, 153, 203–205.PubMedGoogle Scholar
  48. Gleason, J. M. (2005). Mutations and natural genetic variation in the courtship song of Drosophila. Behavior Genetics, 35, 265–277.PubMedGoogle Scholar
  49. Gowaty, P. A., Anderson, W. W., Bluhm, C. K., Drickamer, L. C., Kim, Y.-K., & Moore, A. (2007). The hypothesis of reproductive compensation for lowered offspring viability: Tests of assumptions and predictions. Proceedings of the National Academy of Sciences USA, 104, 15023–15027.Google Scholar
  50. Greenspan, R. J. (2004). E pluribus unum, ex uno plura: Quantitative- and single-gene perspectives on the study of behavior. Annual Reviews of Neuroscience, 27, 79–105.Google Scholar
  51. Greenspan, R. J., & Ferveur, J.-F. (2000). Courtship in Drosophila. Annual Reviews of Genetics, 34, 205–232.Google Scholar
  52. Grillet M., Dartevelle, L., & Ferveur, J.-F. (2006). A Drosophila male pheromone affects female sexual receptivity. Proceedings of the Royal Society of London, 273, 315–323.Google Scholar
  53. Hall, J. C. (1994). The mating of a fly. Science, 264, 1702–1714.PubMedGoogle Scholar
  54. Han, K.-A., Millar, N. S., & Davis, R. L. (1998). A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. Journal of Neuroscience, 18, 3650–3658.PubMedGoogle Scholar
  55. Han, K.-A., Millar, N. S., Grotewiel, M. S., & Davis, R. L. (1996). DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies. Neuron, 16, 1127–1135.PubMedGoogle Scholar
  56. Harshman, L. G., & Hoffmann, A. A. (2000). Laboratory selection experiments using Drosophila: What do they really tell us? Trends in Ecology and Evolution, 15, 32–36.PubMedGoogle Scholar
  57. Heisenberg, M. (2003). Mushroom body memoir: From maps to models. Nature Review/Neuroscience, 4, 266–275.Google Scholar
  58. Heisenberg, M., Borst, A., Wagner, S., & Byers, D. (1985). Drosophila mushroom body mutants are deficient in olfactory learning. Journal of Neurogenetics, 2, 1–30PubMedGoogle Scholar
  59. Heisenberg, M., Heusipp, M., & Wanke, C. (1995). Structural plasticity in the Drosophila brain. Journal of Neuroscience, 15, 1951–1960.PubMedGoogle Scholar
  60. Hing, A. L., & Carlson, J. R. (1996). Male-male courtship behavior induced by ectopic expression of the Drosophila white gene: Role of sensory function and age. Journal of Neurobiology, 30, 454–464.PubMedGoogle Scholar
  61. Hoffmann, A. A. (1987a). A laboratory study of male territoriality in the sibling species Drosophila melanogaster and Drosophila simulans. Animal Behaviour, 35, 807–818.Google Scholar
  62. Hoffmann, A. A. (1987b). Territorial encounters between Drosophila males of different sizes. Animal Behaviour, 35, 1899–1901.Google Scholar
  63. Hoffmann, A. A. (1988). Heritable variation for territorial success in two Drosophila melanogaster populations. Animal Behaviour, 36, 1180–1189.Google Scholar
  64. Hoffmann, A. A. (1989). Georgraphic variation in the territorial success of Drosophila melanogaster males. Behavior Genetics, 19, 241–255.PubMedGoogle Scholar
  65. Hoffmann, A. A. (1990). The influence of age and experience with conspecifics on territorial behavior in Drosophila melanogaster. Journal of Insect Behavior, 3, 1–12.Google Scholar
  66. Hoffmann, A. A. (1991). Heritable variation for territorial success in field-collected Drosophila melanogaster. American Naturalist, 138, 668–679.Google Scholar
  67. Hoffmann, A. A., & Cacoyianni, Z. (1989). Selection for territoriality in Drosophila melanogaster: Correlated responses in mating success and other fitness components. Animal Behaviour, 38, 23–34.Google Scholar
  68. Hoikkala, A. (2005). Inheritance of male sound characteristics in Drosophila species. In S. Drosopoulos & M. F. Claridge (Eds.), Insect sounds and communication: Physiology, behaviour, ecology and evolution (pp. 167–177). Boca Raton, FL: CRC Taylor & Francis.Google Scholar
  69. Hoikkala, A., Aspi, J., & Suvanto, L. (1998). Male courtship song frequency as an indicator of male genetic quality in an insect species, Drosophila montana. Proceedings of the Royal Society of London, 265, 503–508.Google Scholar
  70. Howard, R. W., Jackson, L. L., Banse H., & Blows, M. W. (2003). Cuticular hydrocarbons of Drosophila birchii and D. serrata: Identification and role in mate choice in D. serrata. Journal of Chemical Ecology, 29, 961–976.PubMedGoogle Scholar
  71. Hoy, R. R., Hoikkala, A., & Kaneshiro, K. Y. (1988). Hawaiian courtship songs: Evolutionary innovation in communication signals in Drosophila. Science, 240, 217–219.PubMedGoogle Scholar
  72. Irwin, D. E., & Price, T. (1999). Sexual imprinting, learning and speciation. Heredity, 82, 347–354.PubMedGoogle Scholar
  73. Jacob, M. E. (1960). Influence of light on mating of Drosophila melanogaster. Ecology, 41, 182–188.Google Scholar
  74. Jacob, M. E. (1978). Influence of β-alanine on mating and territorialism in Drosophila melanogaster. Behavior Genetics, 8, 487–502.Google Scholar
  75. Jallon, J. M. (1984). A few chemical words exchanged by Drosophila during courtship and mating. Behavior Genetics, 14, 441–478.PubMedGoogle Scholar
  76. Jallon, J.-M., Antony, C., & Benemar, O. (1981). Un antiaphrodisiac produit par les males de Drosophila melanogaster et transfere aux femelles lors de la copulation. Comptes rendus de l’Académie des sciences. Paris, 292, 1147–1149.Google Scholar
  77. Kamyshev, N. G., Smirnova, G. P., Kamysheva, E. A., Nikiforov, O. N., Parafenyuk, I. V., & Ponomarenko, V. V. (2002). Plasticity of social behavior in Drosophila. Neuroscience and Behavioral Physiology, 32, 401–408.PubMedGoogle Scholar
  78. Kaneshiro, K. Y., & Boake, C. R. B. (1987). Sexual selection and speciation: Issue raised by Hawaiian Drosophila. Trends in Ecology and Evolution, 2, 207–212.Google Scholar
  79. Kaul, D., & Parsons, P. A. (1965). The genotypic control of mating speed and duration of copulation in Drosophila pseudoobscura. Heredity, 20, 381–392.PubMedGoogle Scholar
  80. Kessler, S. (1969). The genetics of Drosophila mating behavior. II. The genetic architecture of mating speed in Drosophila pseudoobscura. Genetics, 62, 421–433.PubMedGoogle Scholar
  81. Kido, A., & Ito, K. (2002). Mushroom bodies are not required for courtship behavior by normal and sexually mosaic Drosophila. Journal of Neurobiology, 52, 302–311.PubMedGoogle Scholar
  82. Kim, Y.-K. (2008). Developmental isolation and subsequent adult behavior of Drosophila paulistorum. VIII. Quantitative variation of mushroom bodies (submitted).Google Scholar
  83. Kim, Y.-K., Abramowicz, K., & Anderson, W. W. (2008). A role of aggressive behavior in sexual isolation between Drosophila pseudoobscura and D. persimilis. Behavior Genetics, 38, 632.Google Scholar
  84. Kim, Y.-K., Alvarez, D., Barber, J., Brock, A., & Jeon, J. (2007). Genetic and environmental influence on the Drosophila aggressive behavior. Behavior Genetics, 37, 766.Google Scholar
  85. Kim, Y.-K., Basset, C., Laverentz, J., & Anderson, W. W. (2005). Female choice in sexual selection of Drosophila pseudoobscura. Behavior Genetics, 35, 808.Google Scholar
  86. Kim, Y.-K., & Ehrman, L. (1998). Developmental isolation and subsequent adult behavior of D. paulistorum: IV. Courtship. Behavior Genetics, 28, 57–65.PubMedGoogle Scholar
  87. Kim, Y.-K., Ehrman, L., & Koepfer, H. R. (1992). Developmental isolation and subsequent adult behavior of Drosophila paulistorum. I. Survey of the six semispecies. Behavior Genetics, 22, 545–556.PubMedGoogle Scholar
  88. Kim, Y.-K., Ehrman, L., & Koepfer, H. R. (1996). Developmental isolation and subsequent adult behavior of Drosophila paulistorum. II. Prior experience. Behavior Genetics, 26, 15–25.PubMedGoogle Scholar
  89. Kim, Y.-K., Gowaty, P. A., & Anderson, W. W. (2005). Testing for mate preference and mate choice in Drosophila pseudoobscura. In L. Noldus, J. J. F. Grieco, L. W. S. Loijens, & P. H. Zimmerman (Eds.), Proceedings of the 5th International Conference on Methods and Techniques in Behavioral Research (pp. 533–535). The Netherlands: Wageningen.Google Scholar
  90. Kim, Y.-K., Koepfer, H. R., & Ehrman, L. (1996). Developmental isolation and subsequent adult behavior of Drosophila paulistorum. III. Alternative rearing. Behavior Genetics, 26, 27–37.PubMedGoogle Scholar
  91. Kim, Y.-K., Phillips, D., Chao, T., & Ehrman, L. (2004). Developmental isolation and subsequent adult behavior of Drosophila paulistorum. V. Quantitative variation of cuticular hydrocarbons. Behavior Genetics, 34, 385–394.PubMedGoogle Scholar
  92. Kirkpatrick, M. (1982). Sexual selection and the evolution of female choice. Evolution, 36, 1–12.Google Scholar
  93. Kirkpatrick, M. (1987). Sexual selection by female choice in polygynous animals. Annual Reviews of Ecology and Systematics, 18, 43–70.Google Scholar
  94. Kravitz, E. A. (2000). Serotonin and aggression: Insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior like aggressions. Journal of Comparative Physiology, 186, 221–238.PubMedGoogle Scholar
  95. Kravitz, E. A., & Huber, R. (2003). Aggression in invertebrates. Current Opinion in Neurobiology, 13, 736–743.PubMedGoogle Scholar
  96. Kyriacou, C. P. (2002). Single gene mutations in Drosophila: What can they tell us about the evolution of sexual behaviour? Genetica, 116, 197–203.PubMedGoogle Scholar
  97. Kyriacou, C. P., & Hall, J. C. (1982). The function of courtship song rhythms in Drosophila. Animal Behaviour, 30, 794–801.Google Scholar
  98. Lacy, R. C., & Sherman, P. W. (1983). Kin recognition by phenotype matching. American Naturalist, 121, 489–512.Google Scholar
  99. Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proceedings of the National Academy of Sciences USA, 78, 3721–3725.Google Scholar
  100. Lee, G., & Hall, J. C. (2000). A newly uncovered phenotype associated with the fruitless gene of Drosophila melanogaster: Aggression-like head interactions between mutant males. Behavior Genetics, 30, 263–275.PubMedGoogle Scholar
  101. Liu, T., Dartevelle, L., Yuan, C., Wei, H., Wang, Y., & Ferveur, J.-F., et al., (2008). Increased dopamine level enhances male-male courtship in Drosophila. Journal of Neuroscience, 28, 5539–5546.PubMedGoogle Scholar
  102. Mackay, T. F. C., Heinsohn, S. L., Lyman, R. F., Moehring, A. J., Morgan, T. J., & Rollmann, S. M. (2005). Proceedings of the National Academy of Sciences USA, 102, 6622–6629.Google Scholar
  103. Mane, S. D., Tompkins, L., & Richmond, R. C. (1983). Male esterase 6 catalyzes the synthesis of a sex pheromone in Drosophila melanogaster females. Science, 222, 419–421.PubMedGoogle Scholar
  104. Manning, A. (1961). The effects of artificial selection for mating speed in Drosophila melanogaster. Animal Behaviour, 9, 82–92.Google Scholar
  105. Marcillac, F., Bousquet, F., Alabouvette, J., Savarit, F., & Ferveur, J-F. (2005). A mutation with major effects on Drosophila melanogaster sex pheromones. Genetics, 171, 1617–1628.PubMedGoogle Scholar
  106. Markow, T. A. (1988). Reproductive behavior of Drosophila melanogaster and D. nigrospiracula in the field and in the laboratory. Journal of Comparative Psychology, 102, 169–173.PubMedGoogle Scholar
  107. Markow, T. A. (1996). Evolution of Drosophila mating systems. Evolutionary Biology, 29, 73–106Google Scholar
  108. Markow, T. A. (2000). Forced matings in natural populations of Drosophila. American Naturalist, 156, 100–103.PubMedGoogle Scholar
  109. Markow, T. A., & O’Grady, P. M. (2005). Evolutionary genetics of reproductive behavior in Drosophila: Connecting the dots. Annual Reviews of Genetics, 39, 263–291.Google Scholar
  110. McBride, S. M. J., Giuliani, G., Choi, C., Krause, P., Correale, D., Watson, K., Baker, G., & Siwicki, K. K. (1999). Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron, 24, 967–977.PubMedGoogle Scholar
  111. McGuire, S. E., Le, P. T., & Davis, R. L. (2001). The role of Drosophila mushroom body signaling in olfactory memory. Science, 293, 1330–1333.Google Scholar
  112. McRobert, S. P., Tompkins, L., Barr, N. B., Bradner, J., Lucas, D., Rattigan, D. M., & Tannous, A. F. (2003). Mutations in raised Drosophila melanogaster affect experience-dependent aspects of sexual behavior in both sexes. Behavior Genetics, 33, 347–356.PubMedGoogle Scholar
  113. Milani, R. (1956). Relations between courting and fighting behaviour in some Drosophila species (obscura group). 1st. Sup. di Sanita, 1, 213–224.Google Scholar
  114. Moehring, A. J., & Mackay, T. F. C. (2004). The quantitative genetic basis of male mating behavior in Drosophila melanogaster. Genetics, 167, 1249–1263.PubMedGoogle Scholar
  115. Murakami, S., & Itoh, M. T. (2001). Effects of aggression and wing removal on brain serotonin levels in male crickets, Gryllus bimaculatus. Journal of Insect Physiology, 47, 1309–1312.PubMedGoogle Scholar
  116. Murakami, S., & Itoh, M. T. (2003). Removal of both antennae influences the courtship and aggressive behaviors in male crickets. Journal of Neurobiology, 57, 110–118.PubMedGoogle Scholar
  117. Nilsen, S. P., Chan, Y.-B., Huber, R., & Kravitz, E. A. (2004). Gender-selective patterns of aggressive behavior in Drosophila melanogaster. Proceedings of the National Academy of Sciences USA, 101, 12342–12347.Google Scholar
  118. Noor, M. A. (1995). Speciation driven by natural selection in Drosophila. Nature, 375, 674–675.PubMedGoogle Scholar
  119. Noor, M. A. F., & Ortíz-Barrientos, D. (2006). Simulating natural conditions in the laboratory: A re-examination of sexual isolation between sympatric and allopatric populations of Drosophila pseudoobscura and D. persimilis. Behavior Genetics, 36, 322–327.PubMedGoogle Scholar
  120. O’Dell, K. M. C. (1994). The inactive mutation leads to abnormal experience-dependent courtship modification in male Drosophila melanogaster. Behavior Genetics, 24, 381–388.PubMedGoogle Scholar
  121. O’Donald, P. (1983). Sexual selection by female choice. In P. Bateson (Ed.), Mate Choice (pp. 53–66). Cambridge: Cambridge University Press.Google Scholar
  122. Paillette, M., Ikeda, H., & Jallon, J.-M. (1991). A new acoustic signal of the fruit-flies Drosophila simulans and D. melanogaster. Bioacoustics, 3, 247–254.Google Scholar
  123. Papaj, D. R., & Messing, R. H. (1998). Asymmetries in physiological state as a possible cause of resident advantage in contests. Behaviour, 135, 1013–1030.Google Scholar
  124. Partridge, L. Ewing, A., & Chandler, A. (1987). Male size and mating success in Drosophila melanogaster: The roles of male and female behavior. Animal Behaviour, 35, 555–562.Google Scholar
  125. Partridge, L., & Farquhar. M. (1983). Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Animal Behaviour, 31, 871–877.Google Scholar
  126. Partridge, L., Hoffmann, A., & Jones, S. (1987). Male size and mating success in Drosophila melanogaster and Drosophila pseudoobscura under field conditions. Animal Behaviour, 35, 468–476.Google Scholar
  127. Partridge, L., Mackay, T. F. C., & Aitken, S. (1985). Male mating success and fertility in Drosophila melanogaster, Genetical Research Cambridge, 46, 279–285.Google Scholar
  128. Pascual, A., & Préat, T. (2001). Localization of long-term memory within the Drosophila mushroom body. Science, 294, 1115–1117.PubMedGoogle Scholar
  129. Paterson, H. E. H. (1978). More evidence against speciation by reinforcement. South African Journal of Science, 74, 369–371.Google Scholar
  130. Paterson, H. E. H. (1985). The recognition concept of species. In E. S. Vrba (Ed.), Species and speciation. Transvaal Museum Monograph, 4 (pp. 21–29). Pretoria: Transvaal Museum.Google Scholar
  131. Popova, N. K. (2006). From genes to aggressive behavior: The role of serotonin system. BioEssays, 28, 495–503.PubMedGoogle Scholar
  132. Price, D. K., & Boake, C. R. B. (1995). Behavioral reproductive isolation in Drosophila silvestris, D. heteroneura and their F1 hybrids (Diptera: Drosophilaidae). Journal of Insect Behavior, 8, 595–616.Google Scholar
  133. Quinn, W. G., Sziber, P. P., & Booker, R. (1979). The Drosophila memory mutant amnesiac. Nature, 277, 212–214.PubMedGoogle Scholar
  134. Ringo, J. M. (1977). Why 300 species of Hawaiian Drosophila? The sexual selection hypothesis. Evolution, 31, 694–696.Google Scholar
  135. Ringo, J., Kananen, M. K., & Wood, D. (1983). Aggression and mating success in three species of Drosophila. Journal of Comparative Ethology, 61,341–350.Google Scholar
  136. Ringo, J. M. (1978). A multivariate analysis of behavioral divergence among closely related species of endemic Hawaiian Drosophila. Evolution, 32, 389–397.Google Scholar
  137. Ringo, J. M., & Hodosh, R. J. (1978). A multivariate analysis of behavioral divergence among closely related species of endemic Hawaiian Drosophila. Evolution, 32, 389–397.Google Scholar
  138. Ritchie, M. G., & Gleason, J. M. (1995). Rapid evolution of courtship song pattern in Drosophila willistoni sibling species. Journal of Evolutionary Biology, 8, 463–479.Google Scholar
  139. Ritchie, M. G., & Kyriacou, C. P. (1996). Artificial selection for a courtship signal in Drosophila melanogaster. Animal Behaviour, 52, 603–611.Google Scholar
  140. Ritchie, M. G., Saarikettu, M., Livingstone, S., & Hoikkala, A. (2001). Characterisation of female preference functions for a sexually selected acoustic signal in D. montana, and a test of the “temperature coupling” hypothesis. Evolution, 55, 721–727.PubMedGoogle Scholar
  141. Ritchie, M. G. Townhill, R. M., & Hoikkala, A. (1998). Female preference for fly song: Playback experiments confirm the targets of sexual selection. Animal Behaviour, 56, 713–717.PubMedGoogle Scholar
  142. Robertson, F. W., & Reeve, E. (1952). Studies in quantitative inheritance. I. The effects of selection on wing and thorax length in Drosophila melanogaster. Journal of Genetics, 50, 414–448.Google Scholar
  143. Robin, C., Daborn, P. J., & Hoffmann, A. A. (2006). Fighting fly genes. Trends in Genetics, 23, 51–54.PubMedGoogle Scholar
  144. Roman, G., & Davis, R. L. (2001). Molecular biology and anatomy of Drosophila olfactory associative learning. Bioessays, 23, 571–581.PubMedGoogle Scholar
  145. Saarikettu, M., Liimatainen, J., & Hoikkala, A. (2005). The role of male courtship song in species recognition in Drosophila montana. Behavior Genetics, 35, 257–263.PubMedGoogle Scholar
  146. Santos, M., Ruiz, A., Barbadilla, A., Hasson, E., & Fontdevila, A. (1988). The evolutionary history of Drosophila. XIV. Larger flies mate more often in nature. Heredity, 61, 255–262.Google Scholar
  147. Savarit, F., Sureau, G., Cobb, M., & Ferveur, J.-F. (1999). Genetic elimination of known pheromones reveals the fundamental chemical bases of mating and isolation in Drosophila. Proceedings of the National Academy of Sciences USA, 96, 9015–9020.Google Scholar
  148. Singh, R. N., & Singh, K. (1984). Fine-structure of the sensory organs of Drosophila melanogaster meigen larva. International Journal of Insect Morphology and Embryology, 13, 255–273.Google Scholar
  149. Skrzipek, K. H., Kroner, B., & Hager, H. (1979). Aggression bei Drosophila melanogaster – Laboruntersuchungen. Journal of Comparative Psychology, 49, 87–103.Google Scholar
  150. Snook, R. R., Robertson, A., Crudgington, H. S., & Ritchie, M. G. (2005). Experimental manipulation of sexual selection and the evolution of courtship song in Drosophila pseudoobscura. Behavior Genetics, 35, 245–255.PubMedGoogle Scholar
  151. Spiess, E. B. (1987). Discrimination among prospective mates in Drosophila. In D. J. C. Fletcher & C. D. Michener (Eds.), Kin recognition in animals (pp. 75–119). New York: John Wiley & Sons.Google Scholar
  152. Spiess, E. B., & Langer, B. (1964). Mating speed control by gene arrangements in Drosophila pseudoobscura homokaryotypes. Proceedings of the National Academy of Sciences USA, 51, 1015–1019.Google Scholar
  153. Spieth, H. T. (1966). Courtship behavior of endemic Hawaiian Drosophila. Studies in Genetics III. University of Texas Publication 6615, 245–313.Google Scholar
  154. Spieth, H. T. (1968). Evolutionary implications of sexual behavior in Drosophila. Evolutionary Biology, 2, 157–193.Google Scholar
  155. Spieth, H. T. (1974). Courtship behavior in Drosophila. Annual Reviews of Entomology, 19, 385–405.Google Scholar
  156. Spieth, H. T. (1978). Courtship patterns and evolution of the Drosophila adiastola and planitibia species subgroup. Evolution, 32, 435–451.Google Scholar
  157. Spieth, H. T. (1981). Drosophila heteroneura and Drosophila silvestris: Head shapes, behavior and evolution. Evolution, 35, 921–930.Google Scholar
  158. Spieth, H. T. (1982). Behavioral biology and evolution of the Hawaiian picture-winged species group of Drosophila. Evolutionary Biology, 14, 351–437.Google Scholar
  159. Spieth, H. T., & Heed, W. B. (1975). The Drosophila pinicola species group. Pan-Pacific Entomologist, 51, 287–295.Google Scholar
  160. Strausfeld, N. J., Hansen, L., Li, Y., Gomez, R. S., & Ito. K. (1998). Evolution, discovery and interpretations of arthropod mushroom bodies. Leaning & Memory, 5, 11–37.Google Scholar
  161. Svetec, N., Cobb, M., & Ferveur, J.-F., (2005). Chemical stimuli induce courtship dominance in Drosophila. Current Biology, 15(19), R790–R792.PubMedGoogle Scholar
  162. Svetec, N., & Ferveur, J.-F. (2005). Social experience and pheromonal perception can exchange male-male interactions in Drosophila melanogaster. Journal of Experimental Biology, 208, 891–898.PubMedGoogle Scholar
  163. Tauber, E., & Eberl, D. F. (2002). The effect of male competition on the courtship song of Drosophila melanogaster. Journal of Insect Behavior, 15, 109–120.Google Scholar
  164. Tauber, E., & Eberl, D. F. (2003). Acoustic communication in Drosophila. Behavioural Processes, 64, 197–210.PubMedGoogle Scholar
  165. Technau, G. M. (1984). Fiber number in the mushroom bodies of adult Drosophila melanogaster depends on age, sex and experience. Journal of Neurogenetics, 1, 113–126.PubMedGoogle Scholar
  166. Technau, G. M., & Heisenberg, M. (1982). Neural reorganization during metamorphosis of the corpora pedunculata in Drosophila melanogaster. Nautre, 295, 405–407.Google Scholar
  167. Templeton, A. R. (1977). Analysis of head shape differences between two interfertile species of Hawaiian Drosophila. Evolution, 31, 630–641.Google Scholar
  168. Ueda, A., & Kidokoro, Y. (2002). Aggressive behaviours of female Drosophila melanogaster are influenced by their social experience and food resources. Phsiological Entomology, 27, 21–28.Google Scholar
  169. Vrontou, E., Nilsen, S. P., Kravitz, E. A., & Dickson, B. J. (2006). fruitless regulates aggression and dominance in Drosophila. Nature Neuroscience, 9, 1469–1471.PubMedGoogle Scholar
  170. Waddell, S., & Quinn, W. G. (2001). What can we teach Drosophila? What can they teach us? Trends in Genetics, 17, 719–726.PubMedGoogle Scholar
  171. Wallace, B. (1974). Studies on intra- and inter-specific competition in Drosophila. Ecology, 55, 227–244.Google Scholar
  172. Wheeler, C. J., Fields, W. L., & Hall, J. C. (1988). Spectral analysis of Drosophila courtship songs: D. melanogaster, D. simulans, and their interspecific hybrids. Behavior Genetics, 18, 675–703.PubMedGoogle Scholar
  173. Wilkinson, G. S., & Johns, P. M. (2005). Sexual selection and the evolution of mating systems in flies. In D. K. Yates & B. M. Wiegmann (Eds.), The evolutionary biology of flies (pp. 312–339). New York: Columbia University Press.Google Scholar
  174. Williams, M. A., Blouin, A. G., & Noor, M. A. F. (2001). Courtship songs of Drosophila pseudoobscura and D. persimilis. II. Genetics of species differences. Heredity, 86, 68–77.Google Scholar
  175. Yurkovic, A., Wang, O., Basu, A. C., & Kravitz, E. A. (2006). Learning and memory associated with aggression in Drosophila melanogaster. Proceedings of the National Academy of Sciences USA, 103, 17519–17524.Google Scholar
  176. Zamudio, K. R., Huey, R. B., & Crill, W. D. (1995). Bigger isn’t always better: Body size, developmental and parental temperature and male territorial success in Drosophila melanogaster. Animal Behaviour, 49, 671–677.Google Scholar
  177. Zars, T., Fischer, M., Schulz, R., & Heisenberg, M. (2000). Localization of a short-term memory in Drosophila. Science, 288, 672–675.PubMedGoogle Scholar
  178. Zhang, S.-D., & Odenwald, W. F. (1995). Misexpression of the white (w) gene triggers male-male courtship in Drosophila. Proceedings of the National Academy of Sciences USA, 92, 5525–5529.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of GeneticsUniversity of GeorgiaAthensUSA

Personalised recommendations