Skip to main content

The Genetics of Offensive Aggression in Mice

  • Chapter
Handbook of Behavior Genetics

Male aggression was the first behavior studied in inbred strains of mice. Differences were found by Scott (1942) and by Ginsburg and Allee (1942) across the same three inbred strains. Here was the first evidence that genetic variants may have an effect on individual differences in male mouse aggression. These two studies also showed the first strain by environment interaction for a mouse behavior. When C57BL/10 mice were transferred from cage to cage by picking them up by forceps on the tail, they were more aggressive than when they were transferred from cage to cage in a small box or allowed to do so on their own. This treatment had no effect on the aggressive behaviors of the other strains (C3H and Bagg albino [BALB/c]). This finding was replicated (Ginsburg & Jummonville, 1967). Also, the study of Ginsburg and Allee showed for the first time that individual difference in aggression suspected to be due to genes could be modified by experience. Mice of the most pacific strain could be rendered aggressive by helping them to win fights, and mice of the most pugnacious strain could be rendered pacific by subjecting them to a series of defeats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramov, U., Raud, S., Koks, S., Innos J., Kurrikoff, K., Matsui, T., et al. (2004). Targeted mutation of CCK(2) receptor gene antagonises behavioural changes induced by social isolation in female, but not in male mice. Behavioural Brain Research, 155, 1–11.

    PubMed  CAS  Google Scholar 

  • Adams, D. B. (1980). Motivational systems of agonistic behavior in muroid rodents: A comparative review and neural model. Aggressive Behavior, 4, 295–346.

    Google Scholar 

  • Barr, C. S., Newman, T. K., Becker, M. L., Parker, C. C., Champoux, M., Lesch, K. P., et al. (2003). The utility of the non-human primate model for studying gene by environment interactions in behavioral research. Genes, Brain, and Behavior, 2, 336–340.

    PubMed  CAS  Google Scholar 

  • Bennett, A. J., Lesch, K. P., Heils, A., Long, J. C., Lorenz, J. G., Shoaf, S. E., et al. (2002). Early experience and serotonin transporter gene variation interact to influence primate CNS function. Molecular Psychiatry, 7, 118–122.

    PubMed  CAS  Google Scholar 

  • Benus, R. F. (2001). Coping in female mice from lines bidirectionally selected for male aggression. Behaviour, 138, 997–1008.

    Google Scholar 

  • Benzer, S. (1971). From gene to behavior. Journal of the American Medical Association, 218, 1015–1022.

    PubMed  CAS  Google Scholar 

  • Beitchman, J. H., Baldassarra, L., Mik., H., De Luca, V., King, N., Bender, D., et al. (2006). Serotonin transporter polymorphisms and persistent, pervasive childhood aggression. American Journal of Psychiatry, 163, 1103–1105.

    PubMed  Google Scholar 

  • Blanchard, D. C., & Blanchard, R. J. (2006). Stress and aggressive behaviors. In R. J. Nelson (Ed.), Biology of Aggression (pp. 275–291). New York: Oxford University Press.

    Google Scholar 

  • Brunner, H. G. (1996). MAOA deficiency and abnormal behaviour: perspectives on an association. In: G. R. Bock & J. A. Goode (Eds.), Genetics of Criminal and Antisocial Behaviour (pp. 155–164) New York: Wiley.

    Google Scholar 

  • Cairns, R. B., MacCombie, D. J., & Hood, K. E. (1983). A developmental-genetic analysis of aggressive behavior in mice I: Behavioral outcomes. Journal of Comparative Psychology, 97, 69–89.

    PubMed  CAS  Google Scholar 

  • Cases, O., Seif, I., Grimsby, J., Gaspar, P., Chen, K., Pournin, S., et al. (1995). Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science, 268, 1763–1766.

    PubMed  CAS  Google Scholar 

  • Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851–854.

    PubMed  CAS  Google Scholar 

  • Cheh, M. A., Millonig, J. H., Roselli, L. M., Ming, X., Jacobsen, E., Kamdar, S., et al. (2006). En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Research, 1116, 166–176.

    PubMed  CAS  Google Scholar 

  • Chen, K., & Shih, J. C. (2006) MAO A knock-out (KO), MAOA AB KO and forebrain specific MAOA knock-in transgenic mice as models for studying aggressive behavior. XVII World Meeting of the International Society for Research on Aggression. Minneapolis, MN. July 26, 2006.

    Google Scholar 

  • Chen, K., Cases, O., Rebrin, I., Wu, W., Gallaher, T. K., Seif, I., et al. (2007). Forebrain-specific expression of monoamine oxidase A reduces neurotransmitter levels, restores the brain structure, and rescues aggressive behavior in monoamine oxidase A-deficient mice. Journal of Biological Chemistry, 282, 115–123.

    PubMed  CAS  Google Scholar 

  • Coste, S. C., Heard, A. D., Phillips. T. J., & Stenzel-Poore, M. P. (2006). Corticotropin-releasing factor receptor type 2-deficient mice display impaired coping behaviors during stress. Genes, Brain, and Behavior, 5, 131–138.

    PubMed  CAS  Google Scholar 

  • Del Punta, K., Leinders-Zufall, T., Rodriguez, I., Jukam, D, Wysocki, C. J., Ogawa, S., et al. (2002). Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature, 419, 70–74.

    PubMed  CAS  Google Scholar 

  • Delville, Y., De Vries, G. J., & Ferris, C. F. (2000). Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain, Behavior, and Evolution, 55, 53–76.

    CAS  Google Scholar 

  • Dulac, C., & Wagner, S. (2006). Genetic analysis of brain circuits underlying pheromone signaling. Annual Review of Genetics, 40, 449–467.

    PubMed  CAS  Google Scholar 

  • Duncan, G. E., Moy, S. S., Perez, A., Eddy, D. M., Zinzow, W. M., Lieberman, J. A., et al. (2004) Deficits in sensorimotor gating and tests of social behavior in a genetic model of reduced NMDA receptor function. Behavioural Brain Research, 53, 507–519.

    Google Scholar 

  • Ebert, P. D. (1976). Agonistic behavior in wild and inbred Mus musculus. Behavioral Biology, 18, 291–294.

    CAS  Google Scholar 

  • Ebert, P. D. (1983). Selection for aggression in a natural population. In E. C. Simmel, M. E. Hahn & J. K. Walters (Eds.), Aggressive behavior: Genetic and neural Approaches (pp. 103–127). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Fredericson, E. (1950). The effect of food deprivation upon competitive and spontaneous combat in C57 black mice. Journal of Psychology, 29, 89–100.

    PubMed  CAS  Google Scholar 

  • Fredericson, E., & Birnbaum, E. A. (1954). Competitive fighting between mice with different hereditary backgrounds. Journal of Genetic Psychology, 85, 271–280.

    PubMed  CAS  Google Scholar 

  • Gammie, S. C. (2005). Current models and future directions for understanding the neural circuitries of maternal behaviors in rodents. Behavioral and Cognitive Neuroscience Reviews, 4, 119–135.

    PubMed  Google Scholar 

  • Gammie, S. C., & Lonstein, J. S. (2006). Maternal aggression. In R. J. Nelson (Ed.), Biology of Aggression (pp. 250–274). New York: Oxford University Press.

    Google Scholar 

  • Gammie, S. C., Hasen, N. S., Stevenson, S. A., Bale, T. L., & D’Anna, K. L. (2005). Elevated stress sensitivity in corticotropin-releasing factor receptor 2 deficient mice decreases maternal, but not intermale aggression. Behavioural Brain Research, 160, 169–177.

    PubMed  CAS  Google Scholar 

  • Ginsburg, B. E. (1958). Genetics as a tool in the study of behavior. Perspectives in Biology and Medicine, 1, 397–424.

    PubMed  CAS  Google Scholar 

  • Ginsburg, B. E., & Allee, W. C. (1942). Some effects of conditioning on social dominance and subordination in inbred strains of mice. Physiology and Zoology, 15, 485–506.

    Google Scholar 

  • Ginsburg, B. E., & Jummonville, J. E. (1967). Genetic variability in response to early stimulation viewed as an adaptive mechanism in population ecology. American Zoologist, 7, 795.

    Google Scholar 

  • Guillot, P. V., Roubertoux, P. L, & Crusio, W. E. (1994). Hippocampal mossy fiber distributions and intermale aggression in seven inbred mouse strains. Brain Research, 660, 167–169.

    PubMed  CAS  Google Scholar 

  • Haberstick, B. C., Smolen, A., & Hewitt, J. K.. (2006). Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children. Biological Psychiatry, 9, 836–843.

    Google Scholar 

  • Haller, J., & Kruk, M. R. (2006). Normal and abnormal aggression: Human disorders and novel laboratory models. Neuroscience and Biobehavioral Reviews, 30, 292–303.

    PubMed  Google Scholar 

  • Haller, J., Toth, M., Halasz, J., & De Boer, S. F. (2006). Patterns of violent aggression-induced brain c-fos expression in male mice selected for aggressiveness. Physiology and Behavior, 88, 173–182.

    PubMed  CAS  Google Scholar 

  • Halasz, J., Liposits, Z., Meelis, W., Kruk, M. R., & Haller, J. (2002). Hypothalamic attack area-mediated activation of the forebrain in aggression. Neuroreport, 13, 1267–1270.

    PubMed  Google Scholar 

  • Haug, M., Johnson, F. J., & Brain, P. F. (1992). Biological correlates of attack on lactating intruders by female mice: A topical review. In K. Bjorkqvist & P. Nielmela (Eds.), Of Mice and Women: Aspects of Female Aggression (pp. 381–393). New York: Academic Press.

    Google Scholar 

  • Hensbroek, R. A., Sluyter, F., Guillot, P. V., Van Oortmerssen, G. A., & Crusio, W. E. (1995). Y chromosomal effects on hippocampal mossy fiber distributions in mice selected for aggression. Brain Research, 682, 203–206.

    PubMed  CAS  Google Scholar 

  • Holmes, A., Murphy, D. L, & Crawley, J. N. (2002). Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology, 161, 160–167.

    PubMed  CAS  Google Scholar 

  • Hood, K. E., & Cairns, R. B. (1988). A developmental-genetic analysis of aggressive behavior in mice. II. Cross-sex inheritance. Behavior Genetics, 18, 605–619.

    PubMed  CAS  Google Scholar 

  • Hrabovsky, E., Halasz, J., Meelis, W., Kruk, M. R., Liposits, Zs., & Haller, J. (2005). Neurochemical characterization of hypothalamic neurons involved in attack behavior: Glutamatergic dominance and co-expression of thyrotropin-releasing hormone in a subset of glutamatergic neurons. Neuroscience, 133, 657–666.

    Google Scholar 

  • Hyde, J. S., & Sawyer, T. F. (1979). Correlated response to selection for aggressiveness in female mice. II Maternal aggression. Behavior Genetics, 9, 571–577.

    PubMed  CAS  Google Scholar 

  • Jamot, L., Bertholet, J.-Y., & Crusio, W. E. (1994). Neuroanatomical divergence between two substrains of C57BL/6J inbred mice entails differential radial-maze learning. Brain Research, 644, 352–356.

    PubMed  CAS  Google Scholar 

  • Jones, S. E., & Brain P. F. (1987). Performances of inbred and outbred laboratory mice in putative tests of aggression. Behavior Genetics, 17, 87–96.

    PubMed  CAS  Google Scholar 

  • Karl, T., Lin, S., Schwarzer, C., Sainsbury, A., Couzens, M., Wittmann, W., et al. (2004). Y1 receptors regulate aggressive behavior by modulating serotonin pathways. Proceedings of the National Academy of Science USA, 101, 12742–12747.

    CAS  Google Scholar 

  • Kessler, S., Harmatz, P., & Gerling, S. A. (1975). The genetics of pheromonally mediated aggression in mice. I. Strain difference in the capacity of male urinary odors to elicit aggression. Behavior Genetics, 5, 233–238.

    PubMed  CAS  Google Scholar 

  • Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., et al. (2006). MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis. Molecular Psychiatry, 11, 903–913.

    PubMed  CAS  Google Scholar 

  • Kulikov, A. V., Osipova, D. V., Naumenko, V. S., & Popova, N. K. (2005). Association between Tph2 gene polymorphism, brain tryptophan hydroxylase activity and aggressiveness in mouse strains. Genes, Brain, and Behavior, 4, 482–485.

    PubMed  CAS  Google Scholar 

  • Lagerspetz, K. M. J. (1964). Studies on the aggressive behavior in mice. Annales Academiae Scientiarum Fenniae, Series B, 131, 1–131.

    Google Scholar 

  • Ledent, C., Vaugeois. J. M., Schiffmann, S. N., Pedrazzini, T., El Yacoubi, M., Vanderhaeghen, J, J., et al. (1997). Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature, 388, 674–678.

    PubMed  CAS  Google Scholar 

  • LeRoy, I., Mortaud, S., Tordjman, S., Donsez-Darcel, E., Carlier, M., Degrelle, H., et al. (1999). Genetic correlation between steroid sulfatase concentration and initiation of attack behavior in mice. Behavior Genetics, 29, 131–136.

    CAS  Google Scholar 

  • Leypold, B. G., Yu, C. R., Leinders-Zufall, T., Kim, M. M., Zufal, F., & Axel, R. (2002). Altered sexual and social behaviors in trp2 mutant mice. Proceedings of the National Academy of Sciences U S A, 99, 6376–6381.

    CAS  Google Scholar 

  • Mandiyan, V. S., Coats, J. K., & Shah, N. M. (2005). Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nature Neuroscience, 8, 1660–1662.

    PubMed  CAS  Google Scholar 

  • Marino, M. D., Bourdelat-Parks, B. N., Cameron Liles, L., & Weinshenker, D. (2005). Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behavioural Brain Research, 161, 197–203.

    PubMed  CAS  Google Scholar 

  • Martin, M., Ledent, C., Parmentier, M., Maldonado, R., & Valverde, O. (2002). Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berl), 159, 379–387.

    CAS  Google Scholar 

  • Maxson, S. C. (1992a). Methodological issues in genetic analyses of an agonistic behavior (offense) in male mice. In D. Goldowitz, D. Wahlsten, & R. E. Wimer (Eds.), Techniques for the genetic analysis of brain and behavior: Focus on the mouse. (pp. 349–373). Amsterdam: Elsevier.

    Google Scholar 

  • Maxson, S. C. (1992b). MHC genes, chemosignals, and genetic analyses of murine social behaviors. In R. L. Doty & D. Muller-Schwarze (Eds.), Chemical Signals in Vertebrates 6 (pp. 197–203). New York: Plenum Press.

    Google Scholar 

  • Maxson, S. C. (1998) Homologous genes, aggression and animal models. Developmental Neuropsychology, 14, 143–156.

    Google Scholar 

  • Maxson, S. C., & Canastar, A. (2003). Conceptual and methodological issues in the genetics of mouse agonistic behavior. Hormones & Behavior, 44, 258–262.

    Google Scholar 

  • Maxson, S. C., & Canastar, A. (2006). Aggression: Concepts and methods relevant to genetic analyses in mice and humans. In B. Jones & P. Mormede (Eds.), Neurobehavioral Genetics: Methods and Applications, Second Edition. (pp. 281–289) Boca Ratan: CRC Press.

    Google Scholar 

  • Maxson, S. C., & Canastar, A. (2007). The genetics of aggression in mice. In D. J. Flannery, A. Vazsony, & I. Waldman (Eds.), The Cambridge Handbook of Violent Behavior (pp. 91–110). New York: Cambridge University Press

    Google Scholar 

  • Maxson, S. C., Roubertoux, P. L., Guillot, P., & Goldman, D. (2001). The genetics of aggression: From mice to humans. In M. Martinez (Ed.), Prevention and Control of Aggression and the Impact on its Victims, (pp. 71–81), New York: Kluwer Academic.

    Google Scholar 

  • Meyer-Lindenberg, A., Buckholtz, J. W., Kolachana, B. R., Hariri, A., Pezawas, L., Blasi, G., et al. (2006). Neural mechanisms of genetic risk for impulsivity and violence in humans. Proceedings of the Naional Academy of Science USA, 103, 6269–6274

    CAS  Google Scholar 

  • Miczek, K. A., Maxson, S. C., Fish, E. W., & Faccidomo, S. (2001). Aggressive behavioral phenotypes in mice. Behavioural Brain Research, 125, 167–181.

    PubMed  CAS  Google Scholar 

  • Mickek, K. A., & Fish, E. W. (2006). Monoamines, GABA, glutamate and aggression. In R. J. Nelson (Ed.), Biology of Aggression (pp 114–149). New York: Oxford University Press.

    Google Scholar 

  • Moechars, D., Gilis, M., Kuipéri, C., Laenen, I., & Van Leuven, F. (1999). Aggressive behaviour in transgenic mice expressing APP is alleviated by serotonergic drugs. Neuroreport, 9, 3561–3564.

    Google Scholar 

  • Monahan, E. J., & Maxson, S. C. (1998). Y chromosome, urinary chemosignals, and an agonistic behavior (offense) of mice. Physiology and Behavior, 64, 123–132.

    PubMed  CAS  Google Scholar 

  • Morgan, C., & Cone, R. D. (2006). Melanocortin-5 receptor deficiency in mice blocks a novel pathway influencing pheromone-induced aggression. Behavior Genetics, 36, 291–300.

    PubMed  Google Scholar 

  • Mossner, R., Albert, D., Persico, A. M., Hennig, T., Bengel, D., Holtman, B., et al. (2000). Differential regulation of adenosine A(1) and A(2A) receptors in serotonin transporter and monoamine oxidase A-deficient mice. European Journal of Neuropsychopharmacology, 10, 489–493.

    CAS  Google Scholar 

  • Newman, T. K., Syagailo, Y. V., Barr, C. S., Wendland, J. R., Champoux, M., Graessle, M, et al. (2005). Monoamine oxidase A gene promoter variation and rearing experience influences aggressive behavior in rhesus monkeys. Biological Psychiatry, 57, 167–172.

    PubMed  CAS  Google Scholar 

  • Nicot, A., Otto, T., Brabet, P., & Dicicco-Bloom, E. M.. (2004). Altered social behavior in pituitary adenylate cyclase-activating polypeptide type I receptor-deficient mice. Journal of Neuroscience, 24, 8786–8795.

    PubMed  CAS  Google Scholar 

  • Norlin, E. M., Gussing, F., & Berghard, A. (2003). Vomeronasal phenotype and behavioral alterations in Gαi2 mutant mice Current Biology, 13, 1214–1219

    PubMed  CAS  Google Scholar 

  • Ogawa, S., & Makino, J. (1981). Maternal aggression in inbred strains of mice: Effects of reproductive state. The Japanese Journal of Psychology, 52, 78–84.

    Google Scholar 

  • Ogawa, S., & Makino, J. (1984). Aggressive behavior in inbred strains of mice during pregnancy. Behavioral and Neural Biology, 40, 195–204.

    PubMed  CAS  Google Scholar 

  • Ogawa, S., Eng, V., Taylor, J., Lubahn, D. B., Korach, K. S., & Pfaff, D. W. (1998). Roles of estrogen receptor-alpha gene expression in reproduction-related behaviors in female mice. Endocrinology, 139, 5070–5081.

    PubMed  CAS  Google Scholar 

  • Parmigiani, S., Brain, P. F., Mainardi, D., & Brunoni, V. (1988) Different patterns of biting attack employed by lactating female mice (Mus domesticus) in encounters with male and female conspecific intruders. Journal of Comparative Psychology, 102, 287–293.

    PubMed  CAS  Google Scholar 

  • Parmiginai, S., Palanza, P. S., Rodgers, J., & Ferrari, P. F. (1999). Selection, evolution of behavior and animal models in behavioral neuroscience. Neuroscience and Biobehavioral Reviews, 23, 957–969.

    Google Scholar 

  • Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., et al. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neuroscience, 8, 828–834.

    PubMed  CAS  Google Scholar 

  • Prom, E. C., Eaves, L. J., Foley, D. L., Gardner, C. O., Wormley, B. K., Riley, B. P., et al. (2006, July 26). Gender differences in the interaction of monoamine oxidase-A and childhood adversity as risk factor in conduct disorders. XVII World Meeting of the International Society for Research on Aggression. Minneapolis, MN.

    Google Scholar 

  • Ragnauth, A. K., Devidze, N., Moy, V., Finley, K., Goodwillie, A., Kow, L. M., et al. (2005). Female oxytocin gene-knockout mice, in a semi-natural environment, display exaggerated aggressive behavior. Genes, Brain, and Behavior, 4, 229–239.

    PubMed  CAS  Google Scholar 

  • Robinson, G. E., Grozinger, C. M., & Whitfield, C. W. (2005), Sociogenomics: social life in molecular terms. Nature Reviews Genetics, 6, 257–270.

    PubMed  CAS  Google Scholar 

  • Roubertoux, P. L., & Carlier, M. (2003). Y chromosome and antisocial behavior. In M. P. Mattson (Ed.), Neurobiology of Aggression: Understanding and Preventing Violence (pp. 119–134). Totowa, NJ: Humana Press.

    Google Scholar 

  • Roubertoux, P. L., Le Roy, I., Mortaud, S., Perez-Diaz, F., & Tordjman, S. (1999) Measuring aggression in the mouse. In W. E. Crusio & R. T. Gerlai (Eds.), Handbook of Molecular-Genetic Techniques for Brain and Behavior Research (pp. 696–709). Amsterdam: Elsevier.

    Google Scholar 

  • Roubertoux, P. L., Guillot, P. V., Mortaud, S., Pratte, M., Jamon, M., Cohen-Salmon, C., et al. (2005). Attack behaviors in mice: From factorial structure to quantitative trait loci mapping. European Journal of Pharmacology, 526, 172–185.

    PubMed  CAS  Google Scholar 

  • Sandnabba, N. K. (1992). Aggressive behavior in female mice as a correlated characteristic in selection for aggressiveness in male mice. In K. Bjorkqvist & P. Niemela (Eds.), Of Mice and Women: Aspects of Female Aggression. (pp. 367–379). New York: Academic Press.

    Google Scholar 

  • St John, R. D., & Corning, P. A. (1973). Maternal aggression in mice. Behavioral Biology, 9, 635–639.

    PubMed  CAS  Google Scholar 

  • Schellinck, H. M., Monahan, E., Brown, R. E., & Maxson, S. C. (1993). A comparison of the contribution of the major histocompatibility complex (MHC) and Y chromosomes to the discriminability of individual urine odors of mice by Long-Evans rats. Behavior Genetics, 23, 257–263.

    PubMed  CAS  Google Scholar 

  • Scott, J. P. (1942). Genetic differences in the social behavior of inbred strains of mice. Journal of Heredity, 33, 11–15.

    Google Scholar 

  • Scott, J. P. (1984). The dog as a model for human aggression. In K. J. Flannelly, R. J. Blanchard, & D. C. Blanchard (Eds.), Biological Perspectives on Aggression (pp. 97–107). New York: Alan R. Liss.

    Google Scholar 

  • Scott, J. P. (1989). The Evolution of Social Systems. New York: Gordon and Breach.

    Google Scholar 

  • Shelbourne, P. F., Killeen, N., Hevner, R. F., Johnston, H. M., Tecott, L., Lewandoski, M., et al. (2006). A Huntington’s disease CAG expansion at the murine Hdh locus is unstable and associated with behavioural abnormalities in mice. Human Molecular Genetics, 8, 763–774

    Google Scholar 

  • Shimshek, D. R., Bus, T., Grinevich, V., Single, F. N., Mack, V., Sprengel, R., et al. (2006). Impaired reproductive behavior by lack of GluR-B containing AMPA receptors but not of NMDA receptors in hypothalamic and septal neurons. Molecular Endocrinology, 20, 219–231.

    PubMed  CAS  Google Scholar 

  • Simon, N. G., & Lu, S.-F. (2006). Androgens and aggression. In R. J. Nelson (Ed.), Biology of Aggression (pp. 211–230). New York: Oxford University Press

    Google Scholar 

  • Sluyter, F., Jamot, L., van Oortmerssen, G. A., & Crusio, W. E. (1994). Hippocampal mossy fiber distributions in mice selected for aggression. Brain Research, 16, 145–148.

    Google Scholar 

  • Sluyter, F., Marican, C. C., & Crusio, W. E. (1999). Further phenotypical characterization of two substrains of C57BL/6J inbred mice differing by a spontaneous single-gene mutation. Behavioural Brain Research, 98, 39–43.

    PubMed  CAS  Google Scholar 

  • Sorensen, D. B., Johnsen, P. F., Bibby, B. M., Bottner A., Bornstein, S. R., Eisenhofer, G., et al. (2005). PNMT transgenic mice have an aggressive phenotype Hormones and Metabolic Research, 37, 159–163.

    CAS  Google Scholar 

  • Svare, B. (1989). Recent advances in the study of female aggressive behavior in mice. In P. F. Brain, D. Mainardi, & S. Parmigiani (Eds.) House Mouse Aggression (pp. 135–159). New York: Harwood Academic Press.

    Google Scholar 

  • Takayanagi, Y., Yoshida, M., Bielsky, I. F., Ross, H. E., Kawamata, M., Onaka, T., et al. (2005). Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proceedings of the National Academy Science USA, 102, 16096–16110

    CAS  Google Scholar 

  • van Oortmerssen, G. A., & Bakker, Th. C. M. (1981). Artificial selection for short and long attack latencies in wild Mus musculus domesticus. Behavior Genetics, 11, 115–126.

    PubMed  Google Scholar 

  • Vekovischeva, O. Y., Aitta-Aho, T., Echenko, O., Kankaanpaa, A., Seppala, T., Honkanen, A., et al. (2004). Reduced aggression in AMPA-type glutamate receptor GluR-A subunit-deficient mice. Genes, Brain, and Behavior, 3, 253–265.

    PubMed  CAS  Google Scholar 

  • Verona, E., Joiner, T. E., Johnson, F., & Bender, T. W. (2006). Gender specific gene-environment interactions on laboratory-assessed aggression. Biological Psychiatry, 71, 33–41.

    Google Scholar 

  • Vukhac, K.-L., Sankoorikal, E.-B., & Wang, Y. (2001). Dopamine D2L receptor- and age-related reduction in offensive aggression. Neuroreport, 12, 1035–1038.

    PubMed  CAS  Google Scholar 

  • Wang, Z., Balet Sindreu, C., Li, V., Nudelman, A., Chan, G. C.-K., & Storm, D. R. (2006). Pheromone detection in male mice depends on signaling through the type 3 adenylyl cyclase in the main olfactory epithelium. Journal of Neuroscience, 26, 7375–7379.

    PubMed  CAS  Google Scholar 

  • Wendland, J. R., Lesch, K. P., Newman, T. K., Timme, A., Gachot-Neveu, H., Thierry, B., et al. (2006). Differential functional variability of serotonin transporter and monoamine oxidase a genes in macaque species displaying contrasting levels of aggression-related behavior. Behavior Genetics, 36, 163–172.

    PubMed  Google Scholar 

  • Wersinger, S. R., Caldwell, H. K., Christiansen, M., & Young, W. S., III. (2007). Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain & Behavior, 6, 653–660.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Maxson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maxson, S.C. (2009). The Genetics of Offensive Aggression in Mice. In: Kim, YK. (eds) Handbook of Behavior Genetics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76727-7_21

Download citation

Publish with us

Policies and ethics