Some Guidelines for Defining Personality Differences in Rats

  • Peter Driscoll
  • Alberto Fernàndez-Teruel
  • Maria G. Corda
  • Osvaldo Giorgi
  • Thierry Steimer

Whereas many behavioral studies with rats have been traditionally concerned with tests and/or models attempting to deal with subjects such as anxiety, depression, hyperactivity, alcoholism and drug abuse, as they pertain to the human conditions, critical and integrated analyses of the vast amounts of information which have been accumulated, and an application of the same to the realm of personality traits, are long overdue. One such application, for example, might deal with the etiology of substance use and abuse toward which different animal models, considered together, can undoubtedly play a decisive role, especially as genetic factors are known to be extensively involved in the temperament differences underlying these phenomena in both rats and humans. The major contributions of such models toward this goal will, of course, pertain to unraveling the fundamental neurochemical processes involved and to deciphering their genetic origins.


Force Swim Test Behavior Genetic Brown Norway Behavioural Brain Research Brain Research Bulletin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilar, R., Gil, L., Tobeña, A., Escorihuela, R. M., & Fernández-Teruel, A. (2000). Differential effects of cohort removal stress on the acoustic startle response of the Roman/Verh rat strains. Behavior Genetics, 30, 71–75.PubMedCrossRefGoogle Scholar
  2. Aguilar, R., Escorihuela, R. M., Gil, L., Tobeña, A., & Fernández-Teruel, A. (2002a). Differences between two psychogenetically selected lines of rats in a swimming pool matching-to-place task: Long term effects of infantile stimulation. Behavior Genetics, 32, 127–134.PubMedCrossRefGoogle Scholar
  3. Aguilar, R., Gil, L., Flint, J., Gray, J. A., Dawson, G. R., Driscoll, P.,et al. (2002b). Learned fear, emotional reactivity and fear of heights: A fear analytic map from a large F2 intercross of Roman rat strains. Brain Research Bulletin, 57, 17–26.PubMedCrossRefGoogle Scholar
  4. Ambrosio, E., Goldberg, S. R., & Elmer, G. I. (1995). Behavior genetic investigation of the relationship between spontaneous locomotor activity and the acquisition of morphine self-administration behavior. Behavioral Pharmacology, 6, 229–237.Google Scholar
  5. Aubry, J.-M., Bartanusz, V., Driscoll, P., Schulz, P., Steimer, T., & Kiss, J. Z. (1995). Corticotropin-releasing factor and vasopressin mRNA levels in Roman high- and low-avoidance rats: Response to open-field exposure. Neuroendocrinology, 61, 89–97.PubMedCrossRefGoogle Scholar
  6. Ayensu, W. K., Pucilowski, O., Mason, G. A., Overstreet, D. H., Rezvani, A. H., & Janowsky, D. S. (1995). Effects of chronic mild stress on serum complement activity, saccharin preference, and corticosterone levels in Flinders lines of rats. Physiology & Behavior, 57, 165–169.CrossRefGoogle Scholar
  7. Badishtov, B. A., Overstreet, D. H., Kashevskaya, O. P., Viglinskaya, I. V., Kampov-Polevoy, A. B., Seredenin, S. B., et al. (1995). To drink or not to drink: Open field behavior in alcohol-preferring and nonpreferring rat strains. Physiology & Behavior, 57, 585–589.CrossRefGoogle Scholar
  8. Bardo, M. T., Donohew, R. L., & Harrington, N. G. (1996). Psychobiology of novelty seeking and drug seeking behavior. Behavioural Brain Research, 77, 23–43.PubMedCrossRefGoogle Scholar
  9. Beitner-Johnson, D., Guitart, X., & Nestler, E. J. (1991). Dopaminergic brain reward regions of Lewis and Fischer rats display different levels of tyrosine hydroxylase and other morphine- and cocaine-regulated phosphoproteins. Brain Research, 561, 147–150.PubMedCrossRefGoogle Scholar
  10. Bell, S. M., Reynolds, J. G., Thiele, T. E., Gan, J., Figlewicz, D. P., & Woods, S. C. (1998). Effects of third intracerebroventricular injections of corticotrophin-releasing factor (CRF) on ethanol drinking and food intake. Psychopharmacology, 139, 128–135.PubMedCrossRefGoogle Scholar
  11. Bentareha, R., Araujo, F., Ruano, D., Driscoll, P., Escorihuela, R. M., Tobeña, A., et al. (1998). Pharmacological properties of the GABA-A receptor complex from brain regions of (hypoemotional) Roman high- and (hyperemotional) low-avoidance rats. European Journal of Pharmacology, 354, 91–97.PubMedCrossRefGoogle Scholar
  12. Bignami, G. (1965). Selection for high rates and low rates of avoidance conditioning in the rat. Animal Behaviour, 13, 221–227.PubMedCrossRefGoogle Scholar
  13. Blizard, D. A., & Adams, N. (2002). The Maudsley reactive and nonreactive strains: A new perspective. Behavior Genetics, 32, 277–299.PubMedCrossRefGoogle Scholar
  14. Broadhurst, P. L. (1960). Experiments in psychogenetics: Application of biometrical genetics to the inheritance of behaviour. In H. J. Eysenck (Ed.), Experiments in Personality: Psychogenetics and Psychopharmacology, (Vol. 1, pp. 1–102). London: Routledge and Kegan Paul.Google Scholar
  15. Broadhurst, P. (1975). The Maudsley reactive and nonreactive strains of rats: A survey. Behavior Genetics, 5, 299–319.PubMedCrossRefGoogle Scholar
  16. Brush, F. R. (1991). Genetic determinants of individual differences in avoidance learning: Behavioral and endocrine characteristics. Experientia, 47, 1039–1050.PubMedCrossRefGoogle Scholar
  17. Brush, F. R. (2003). The Syracuse strains, selectively bred for differences in active avoidance learning, may be models of genetic differences in trait and state anxiety. Stress, 6, 77–85.PubMedGoogle Scholar
  18. Brush, F. R., Froehlich, J. C., & Sakellaris, P. C. (1979). Genetic selection for avoidance behavior in the rat. Behavior Genetics, 9, 309–316.PubMedCrossRefGoogle Scholar
  19. Cailhol, S., & Mormède, P. (2000). Effects of cocaine-induced sensitization on ethanol drinking: Sex and strain differences. Behavioural Pharmacology, 11, 387–394.PubMedGoogle Scholar
  20. Campbell, S. C. & Gerdes, M. (1987). Regional differences in cardiac myocyte dimensions and number in Sprague-Dawley rats from different suppliers. Proceedings of the Society for Experimental Biology and Medicine, 186, 211–217.PubMedGoogle Scholar
  21. Castanon, N., & Mormède, P. (1994). Psychobiogenetics: Adapted tools for the study of the coupling between behavioral and neuroendocrine traits of emotional reactivity. Psychoneuroendocrinology, 19, 257–282.PubMedCrossRefGoogle Scholar
  22. Castanon, N., Dulluc, J., LeMoal, M., & Mormède, P. (1992). Prolactin as a link between behavioral and immune differences between the Roman rat lines. Physiology & Behavior, 51, 1235–1241.CrossRefGoogle Scholar
  23. Castanon, N., Hendley, E. D., Fan, X.-M., & Mormède, P. (1993). Psychoneuroendocrine profile associated with hypertension or hyperactivity in spontaneously hypertensive rats. American Journal of Physiology, 265, R1304–R1310.PubMedGoogle Scholar
  24. Castanon, N., Dulluc, J., LeMoal, M., & Mormède, P., (1994). Maturation of the behavioral and neuroendocrine differences between the Roman rat lines. Physiology & Behavior, 55, 775–782.CrossRefGoogle Scholar
  25. Castanon, N., Perez-Diaz, F., & Mormède, P. (1995). Genetic analysis of the relationships between behavioral and neuroendocrine traits in Roman high and low avoidance rat lines. Behavior Genetics, 25, 371–384.PubMedCrossRefGoogle Scholar
  26. Chaouloff, F., Castanon, N., & Mormède, P. (1994). Paradoxical differences in animal models of anxiety among the Roman rat lines. Neuroscience Letters, 182, 217–221.PubMedCrossRefGoogle Scholar
  27. Clark, F. M., & Proudfit, H. K. (1992). Anatomical evidence for genetic differences in the innervation of the rat spinal cord by noradrenergic locus coeruleus neurons. Brain Research, 591, 44–53.PubMedCrossRefGoogle Scholar
  28. Clark, F. M., Yeomans, D. C., & Proudfit, H. K. (1991). The noradrenergic innervation of the spinal cord: Differences between two substrains of Sprague-Dawley rats determined by using retrograde tracers combined with immunocytochemistry. Neuroscience Letters, 125, 155–158.PubMedCrossRefGoogle Scholar
  29. Cloninger, C. R., Sigvardsson, S., & Bohman, M. (1988). Childhood personality predicts alcohol abuse in young adults. Alcoholism: Clinical & Experimental Research, 12, 494–505.CrossRefGoogle Scholar
  30. Commissaris, R. L., Ardayfio, P. A., McQueen, D. A., Gilchrist, G. A., & Overstreet, D. H. (2000). Conflict behavior and the effects of 8-OH DPAT treatment in rats selectively bred for differential 5-HT1A-induced hypothermia. Pharmacology, Biochemistry & Behavior, 67, 199–205.CrossRefGoogle Scholar
  31. Conti, L. H., MacIver, C. R., Ferkany, J. W., & Abreu, M. E. (1990). Footshock-induced freezing behavior in rats as a model for assessing anxiolytics. Psychopharmacology, 102, 492–497.PubMedCrossRefGoogle Scholar
  32. Cools, A. R., & Gingras, M. A. (1998). Nijmegen high and low responders to novelty: A new tool in the search after the neurobiology of drug abuse liability. Pharmacology, Biochemistry & Behavior, 60, 151–159.CrossRefGoogle Scholar
  33. Cools, A. R., Brachten, R., Heeren, D., Willemen, A., & Ellenbroek, B. (1990). Search after neurobiological profile of individual-specific features of Wistar rats. Brain Research Bulletin, 24, 49–69.PubMedCrossRefGoogle Scholar
  34. Cools, A., Dierx, J., Coenders, C., Heeren, D., Ried, S., Jenks, B. G., et al. (1993). Apomorphine-susceptible and apomorphine-unsusceptible Wistar rats differ in novelty-induced changes in hippocampal dinorphin B expression and two-way active avoidance: A new key in the search for the role of the hippocampal-accumbens axis. Behavioural Brain research, 55, 213–221.PubMedCrossRefGoogle Scholar
  35. Corda, M. G., Lecca, D., Piras, G., DiChiara, G., & Giorgi, O. (1997). Biochemical parameters of dopaminergic and GABAergic neurotransmission in the CNS of Roman high-avoidance and Roman low-avoidance rats. Behavior Genetics, 27, 527–536.PubMedCrossRefGoogle Scholar
  36. Corda, M. G., Piras, G., Valentini, V., Scano, P., & Giorgi, O. (1998). Differential sensitivity to shock-induced suppression of drinking in the Roman/Verh lines and strains of rats. Society of Neuroscience Abstracts, 24, 1182.Google Scholar
  37. Corda, M. G., Piras, G., Lecca, D., Fernández-Teruel, A., Driscoll, P., & Giorgi, O. (2005). The psychogenetically selected Roman rat lines differ in the susceptibility to develop amphetamine sensitization. Behavioural Brain Research, 157, 147–156.PubMedCrossRefGoogle Scholar
  38. Crane, J. W., Ebner, K., & Day, T. A. (2003). Medial prefrontal cortex suppression of the hypothalamic-pituitary-adrenal axis response to a physical stressor, systematic delivery if interleukin-1B. European Journal of Neuroscience, 17, 1473–1481.PubMedCrossRefGoogle Scholar
  39. Crawley, J. N., & Moody, T. W. (1983). Anxiolytics block excessive grooming behavior induced by ACTH and Bombesin. Brain Research Bulletin, 10, 399–401.PubMedCrossRefGoogle Scholar
  40. Crocker, A. D., & Overstreet, D. H. (1991). Dopamine sensitivity in rats selectively bred for increases in cholinergic function. Pharmacology, Biochemistry & Behavior, 38, 105–108.CrossRefGoogle Scholar
  41. D’Angio, M., Serrano, A., Driscoll, P., & Scatton, B. (1988). Stressful environmental stimuli increase extracellular DOPAC levels in the prefrontal cortex of hypoemotional (Roman high-avoidance) but not hyperemotional (Roman low-avoidance) rats. An in vivo voltametric study. Brain Research, 451, 237–247.PubMedCrossRefGoogle Scholar
  42. Davids, E., Zhang, K., Tarazi, F. I., & Baldessarini, R. J. (2003). Animal models of attention-deficit hyperactivity disorder. Brain Research Reviews, 42, 1–21.PubMedCrossRefGoogle Scholar
  43. Dawson, G. R., Crawford, S. P., Collinson, N., Iversen, S. D., & Tricklebank, M. D. (1995). Evidence that the anxiolytic-like effects of chlordiazepoxide on the elevated plus maze are confounded by increases in locomotor activity. Psychopharmacology, 118, 316–323.PubMedCrossRefGoogle Scholar
  44. Dess, N. K., & Minor, T. R. (1996). Taste and emotionality in rats selectively bred for high versus low saccharin intake. Animal Learning & Behavior, 24, 105–115.Google Scholar
  45. Dess, N. K., Badia-Elder, N. E., Thiele, T. E., Kiefer, S. W., & Blizard, D. A. (1998). Ethanol consumption in rats selectively bred for differential saccharin intake. Alcohol, 16, 275–278.PubMedCrossRefGoogle Scholar
  46. Drewek, K. J., & Broadhurst, P. L. (1979). Alcohol selection by strains of rats selectively bred for behavior. Journal of Studies on Alcohol, 40, 723–728.PubMedGoogle Scholar
  47. Driscoll, P., (1986). Roman high- and low-avoidance rats: Present status of the Swiss sublines, RHA/Verh and RLA/Verh, and effects of amphetamine on shuttle-box performance. Behavior Genetics, 16, 355–364.PubMedCrossRefGoogle Scholar
  48. Driscoll, P., & Bättig, K. (1982). Behavioral, emotional and neurochemical profiles of rats selected for extreme differences in active, two-way avoidance performance. In I. Lieblich (Ed.), Genetics of the Brain (pp. 95–123). Amsterdam: Elsevier.Google Scholar
  49. Driscoll, P., & Käsermann, H. P., (1977). Differences in the response to pentobarbital sodium of Roman high- and low-avoidance rats. Arzneimittel-Forschung, 27, 1582–1584.PubMedGoogle Scholar
  50. Driscoll, P., & Martin, J. R. (1986). The relationship between genetic selection for extreme differences in two-way avoidance and two types of “aggressive” behavior in the rat. International Journal of Neuroscience, 32, 318–319.Google Scholar
  51. Driscoll, P., Fümm, H., & Bättig, K. (1979). Maternal behavior in two rat lines selected for differences in the acquisition of two-way avoidance. Experientia, 35, 786–788.PubMedCrossRefGoogle Scholar
  52. Driscoll, P., Woodson, P., Fuemm, H., & Bättig, K. (1980). Selection for two-way avoidance deficit inhibits shock-induced fighting in the rat. Physiology & Behavior, 24, 793–795.CrossRefGoogle Scholar
  53. Driscoll, P., Dedek, J., Martin, J. R., & Zivkovic, B., (1983). Two-way avoidance and acute shock stress induced alterations of regional noradrenergic, dopaminergic and serotonergic activity in Roman high- and low-avoidance rats. Life Sciences, 33, 1719–1725.PubMedCrossRefGoogle Scholar
  54. Driscoll, P., Dedek, J., Fuchs, A., & Gentsch, C. (1985). Stereotypic, hypothermic, and central dopaminergic effects of apomorphine in Roman high-avoidance (RHA/Verh) and Roman low-avoidance (RLA/Verh) rats. Behavior Genetics, 15, 591–592.Google Scholar
  55. Driscoll, P., Cohen, C., Fackelman, P., & Bättig, K. (1990a). Differential ethanol consumption in Roman high- and low-avoidance (RHA and RLA) rats, body weight, food intake, and the influence of pre- and post-natal exposure to nicotine and/or injection stress. Experientia, 46, supplement, A60.CrossRefGoogle Scholar
  56. Driscoll, P., Dedek, J., D’Angio, M., Claustre, Y., & Scatton, B. (1990b). A genetically-based model for divergent stress responses: Behavioral, neurochemical and hormonal aspects. Advances in Animal Breeding & Genetics, 5, 97–107.Google Scholar
  57. Driscoll, P., Ferré, P., Fernández-Teruel, A., Levi de Stein, M., Wolfman, C., Medina, J., et al. (1995). Effects of prenatal diazepam on two-way avoidance behavior, swimming navigation and brain levels of benzodiazepine-like molecules in male Roman high- and low-avoidance rats. Psychopharmacology, 122, 51–57.PubMedCrossRefGoogle Scholar
  58. Driscoll, P., Escorihuela, R. M., Fernández-Teruel, A., Giorgi, O., Schwegler, H., Steimer, T., et al. (1998). Genetic selection and differential stress responses. The Roman lines/strains of rats. Annals of the New York Academy of Sciences, 851, 501–510.PubMedCrossRefGoogle Scholar
  59. Dunn, A. J., & Berridge, C. W. (1990). Physiological and behavioral responses to corticotrophin-releasing factor administration: Is CRF a mediator of anxiety or stress responses? Brain Research Reviews, 15, 71–100.PubMedCrossRefGoogle Scholar
  60. Ellenbroek, B. A., & Cools, A. R. (2002). Apomorphine susceptibility and animal models for psychopathology: Genes and environment. Behavior Genetics, 32, 349–361.PubMedCrossRefGoogle Scholar
  61. Ellenbroek, B. A., Geyer, M. A., & Cools, A. R. (1995). The behavior of APO-SUS rats in animal models with construct validity for schizophrenia. Journal of Neuroscience, 15, 7604–7611.PubMedGoogle Scholar
  62. Ellenbroek, B. A., Sluyter, F., & Cools, A. R. (2000). The role of genetic and early environmental factors in determining apomorphine susceptibility. Psychopharmacology, 148, 124–131.PubMedCrossRefGoogle Scholar
  63. Enck, P., Merlin, V., Erckenbrecht, J. F., & Weinbeck, M. (1989). Stress effects on gastrointestinal transit in the rat. Gut, 30, 455–459.PubMedCrossRefGoogle Scholar
  64. Escorihuela, R. M., Tobeña, A., Driscoll, P., & Fernández-Teruel, A. (1995). Effects of training, early handling, and perinatal flumazenil on shuttle box acquisition in Roman low-avoidance rats: Toward overcoming a genetic deficit. Neuroscience & Biobehavioral Reviews, 19, 353–367.CrossRefGoogle Scholar
  65. Escorihuela, R. M., Fernández-Teruel, A., Tobeña, A., Langhans, W., Bättig, K., & Driscoll, P. (1997). Labyrinth exploration, emotional reactivity, and conditioned fear in young Roman/Verh inbred rats. Behavior Genetics, 27, 573–578.PubMedCrossRefGoogle Scholar
  66. Escorihuela, R. M., Fernández-Teruel, A., Gil, L., Aguilar, R., Tobeña, A., & Driscoll, P. (1999). Inbred Roman high- and low-avoidance rats: Differences in anxiety, novelty-seeking, and shuttlebox behaviors. Physiology & Behavior, 67, 19–26.CrossRefGoogle Scholar
  67. Everitt, B. J., & Wolf, M. E. (2002). Psychomotor stimulant addiction: A neural systems perspective. Journal of Neuroscience, 22, 3312–3320.PubMedGoogle Scholar
  68. Ezerman, E. B., & Kromer, L. F. (1985). Outbred Sprague-Dawley rats from two breeders exhibit different incidences of neuroanatomical abnormalities affecting the primary cerebellar fissure. Experimental Brain Research, 59, 625–628.CrossRefGoogle Scholar
  69. Fattore, L., Piras, G., Corda, M. G., & Giorgi, O. (2008). The Roman high- and low-avoidance rat lines differ in the acquisition, maintenance, extinction, and reinstatement of intravenous cocaine self-administration. Neuropsychopharmacology, in the press.Google Scholar
  70. Feldman, S., Conforti, N., & Melamed, E. (1987). Paraventricular nucleus serotonin mediates neurally stimulated adrenocortical secretion. Brain Research Bulletin, 18, 165–168.PubMedCrossRefGoogle Scholar
  71. Fernandes, C., & File, S. E. (1996). The influence of open arm ledges and maze experience in the elevated plus-maze. Pharmacology, Biochemistry & Behavior, 54, 31–40.CrossRefGoogle Scholar
  72. Fernández-Teruel, A., Escorihuela, R. M., Nuñez, J. F., Zapata, A., Boix, F., Salazar, W., et al. (1991). The early acquisition of two-way (shuttle-box) avoidance is an anxiety-mediated behavior: Psychopharmacological validation. Brain Research Bulletin, 26, 173–176.PubMedCrossRefGoogle Scholar
  73. Fernández-Teruel, A., Escorihuela, R. M., Nuñez, J. F., Goma, M., Driscoll, P., & Tobeña, A. (1992). Early stimulation effects on novelty-induced behavior in two psychogenetically-selected rat lines with divergent emotionality profiles. Neuroscience Letters, 137, 185–188.PubMedCrossRefGoogle Scholar
  74. Fernández-Teruel, A., Escorihuela, R. M., Castellano, B., González, B., & Tobeña, A. (1997a). Neonatal handling and environmental enrichment effects on emotionality, novelty/reward seeking, and age-related cognitive and hippocampal impairments: Focus on the Roman rat lines. Behavior Genetics, 27, 513–526.PubMedCrossRefGoogle Scholar
  75. Fernández-Teruel, A., Escorihuela, R. M., Tobeña, A., & Driscoll, P. (1997b). The inbred Roman rat strains: Similarities in morphological and pharmacological findings to the outbred Roman lines. Behavior Genetics, 27, 589.Google Scholar
  76. Fernández-Teruel, A., Driscoll, P., Gil, L., Aguilar, R., Tobeña, A., & Escorihuela, R. M. (2002a). Enduring effects of environmental enrichment on novelty seeking, saccharin and ethanol intake in two rat lines (RHA/Verh and RLA/Verh) differing in incentive-seeking behavior. Pharmacology, Biochemistry & Behavior, 73, 225–231.CrossRefGoogle Scholar
  77. Fernández-Teruel, A., Escorihuela, R. M., Gray, J. A., Aguilar, R., Gil, L., Giménez-Llort, L., et al. (2002b). A quantitative trait locus influencing anxiety in the laboratory rat. Genome Research, 12, 618–626.PubMedGoogle Scholar
  78. Ferré, P., Fernández-Teruel, A., Escorihuela, R. M., Driscoll, P., Corda, M. G., Giorgi, O., et al. (1995). Behavior of the Roman/Verh high- and low-avoidance rat lines in anxiety tests: Relationship with defecation and self-grooming. Physiology & Behavior, 58, 1209–1213.CrossRefGoogle Scholar
  79. File, S. E., & Velucci, S. V. (1979). Behavioural and biochemical measures of stress in hooded rats from different sources. Physiology & Behavior, 22, 31–35.CrossRefGoogle Scholar
  80. Fuemm, H., & Driscoll, P. (1981). Litter size manipulations do not alter maternal behaviour traits in selected lines of rats. Animal Behaviour, 29, 1267–1269.CrossRefGoogle Scholar
  81. Gentsch, C., Lichtsteiner, M., & Feer, H. (1981). Locomotor activity, defecation score and corticosterone levels during an openfield exposure: A comparison among individually and group-housed rats, and genetically selected rat lines. Physiology & Behavior, 27, 183–186.CrossRefGoogle Scholar
  82. Gentsch, C., Lichtsteiner, M., Driscoll, P., & Feer, H. (1982). Differential hormonal and physiological responses to stress in Roman high- and low-avoidance rats. Physiology & Behavior, 28, 259–263.CrossRefGoogle Scholar
  83. Gentsch, C., Lichtsteiner, M., & Feer, H. (1988). Genetic and environmental influences on behavioral and neurochemical aspects of emotionality in rats. Experientia, 44, 482–490.PubMedCrossRefGoogle Scholar
  84. Gentsch, C., Lichtsteiner, M., & Driscoll, P. (1989). Apomorphine-induced gnawing and licking: A comparison between RHA/Verh and RLA/Verh rats. European Journal of Neuroscience, S2, 315.Google Scholar
  85. Gentsch, C., Lichtsteiner, M., & Feer, H. (1991). Genetic and environmental influences on reactive and spontaneous locomotor activities in rats. Experientia, 47, 998–1008.PubMedCrossRefGoogle Scholar
  86. Giménez-Llort, L., Cañete, T., Guitart-Masip, M., Fernández-Teruel, A., & Tobeña, A. (2005). Two distinctive apomorphine-induced phenotypes in the Roman high- and low-avoidance rats. Physiology & Behavior, 86, 458–466.CrossRefGoogle Scholar
  87. Gingras, M. A., & Cools, A. R. (1995). Differential ethanol intake in high and low responders to novelty. Behavioural Pharmacology, 6, 718–723.PubMedCrossRefGoogle Scholar
  88. Gingras, M. A., & Cools, A. R. (1997). Different behavioral effects of daily or intermittent dexamphetamine administration in Nijmegen high and low responders. Psychopharmacology, 132, 188–194.PubMedCrossRefGoogle Scholar
  89. Giorgi, O., Orlandi, M., Escorihuela, R. M., Driscoll, P., Lecca, D., & Corda, M. G. (1994). GABAergic and dopaminergic transmission in the brain of Roman high-avoidance and Roman low-avoidance rats. Brain Research, 638, 133–138.PubMedCrossRefGoogle Scholar
  90. Giorgi, O., Corda, M. G., Orlandi, M., Valentini, V., Carboni, G., Frau, V., et al. (1996). Differential ethanol (ETH) consumption in Roman high-avoidance (RHA) and low-avoidance (RLA) rats. Society of Neuroscience Abstracts, 22, 700.Google Scholar
  91. Giorgi, O., Corda, M. G., Carboni, G., Frau, V., Valentini, V., & DiChiara, G. (1997). Effects of cocaine and morphine in rats from two psychogenetically selected lines: A behavioral and brain dialysis study. Behavior Genetics, 27, 537–546.PubMedCrossRefGoogle Scholar
  92. Giorgi, O., Valentini, V., Piras, G., DiChiara, G., & Corda, M. G. (1999). Palatable food differentially activated dopaminergic function in the CNS of Roman/Verh lines and strains of rats. Society of Neuroscience Abstracts, 25, 2152.Google Scholar
  93. Giorgi, O., Piras, G., Lecca, D., & Corda, M. G. (2005a). Differential activation of dopamine release in the nucleus accumbens core and shell after acute or repeated amphetamine injections: A comparative study in the Roman high- and low-avoidance rat lines. Neuroscience, 135, 987–998.PubMedCrossRefGoogle Scholar
  94. Giorgi, O., Piras, G., Lecca, D., & Corda, M. G. (2005b). Behavioural effects of acute and repeated cocaine treatments: A comparative study in sensitization-prone RHA rats and their sensitization-resistant RLA counterparts. Psychopharmacology, 180, 530–538.PubMedCrossRefGoogle Scholar
  95. Giorgi, O., Piras, G., & Corda, M. G. (2007). The psychogenetically selected Roman high- and low-avoidance rat lines: A model to study the individual vulnerability to drug addiction. Neuroscience & Biobehavioral Reviews, 31, 148–163.CrossRefGoogle Scholar
  96. Glick, S. D., Shapiro, R. M., Drew, K. L., Hinds, P. A., & Carlson, J. N. (1986). Differences in spontaneous and amphetamine-induced rotational behavior, and in sensitization to amphetamine, among Sprague-Dawley derived rats from different sources. Physiology & Behavior, 38, 67–70.CrossRefGoogle Scholar
  97. Glowa, J. R., & Hansen, C. T. (1994). Differences in response to an acoustic startle stimulus among forty-six rat strains. Behavior Genetics, 24, 79–84.PubMedCrossRefGoogle Scholar
  98. Griebel, G., Moreau, J.-L., Jenck, F., Martin, J. R., & Misslin, R. (1993). Some critical determinants of the behaviour of rats in the elevated plus-maze. Behavioural Processes, 29, 37–48.CrossRefGoogle Scholar
  99. Grillon, C., Warner, V., Hille, J., Merikangas, K. R., Bruder, G. E., Tenke, C. E., et al. (2005). Families at high and low risk for depression: A three-generation startle study. Biological Psychiatry, 57, 953–960.PubMedCrossRefGoogle Scholar
  100. Guitart-Masip, M., Giménez-Llort, L., Fernández-Teruel, A., Cañete, T., Tobeña, A., Ögren, S. O., et al. (2006a). Reduced ethanol response in the alcohol-preferring RHA rats and neuropeptide mRNAs in relevant structures. European Journal of Neuroscience, 23, 531–540.PubMedCrossRefGoogle Scholar
  101. Guitart-Masip, M., Johansson, B., Fernández-Teruel, A., Cañete, T., Tobeña, A., Terenius, L., et al. (2006b). Divergent anatomical pattern of D1 and D3 binding and dopamine- and cyclic AMP-regulated phosphoprotein of 32 kDa mRNA expression in the Roman rat strains: Implications for drug addiction. Neuroscience, 142, 1231–1243.PubMedCrossRefGoogle Scholar
  102. Hall, C. S. (1938). The inheritance of emotionality. American Scientist, 26, 17–27.Google Scholar
  103. Haney, M., Castanon, N., Cador, M., LeMoal, M., & Mormède, P. (1994). Cocaine sensitivity in Roman high and low avoidance rats is modulated by sex and gonadal hormone status. Brain Research, 645, 179–185.PubMedCrossRefGoogle Scholar
  104. Hédou, G., Feldon, J., & Heidbreder, C. A. (1999). Effects of cocaine on dopamine in subregions of the rat prefrontal cortex and their efferents to subterritories of the nucleus accumbens. European Journal of Pharmacology, 372, 143–155.PubMedCrossRefGoogle Scholar
  105. Hendley, E. D. (2000). WKHA rats with genetic hyperactivity and hyperreactivity to stress: A review. Neuroscience and Biobehavioral Reviews, 24, 41–44.PubMedCrossRefGoogle Scholar
  106. Henke, P. G. (1988). Electrophysiological activity in the central nucleus of the amygdale: Emotionality and stress ulcers in rats. Behavioral Neuroscience, 102, 77–83.PubMedCrossRefGoogle Scholar
  107. Henninger, M. S. H., Ohl, F., Hölter, S. M., Weissenbacher, P., Toschi, N., Löracher, P., et al. (2000). Unconditioned anxiety and social behaviour in two rat lines selectively bred for high and low anxiety-related behaviour. Behavioural Brain Research, 111, 153–163.CrossRefGoogle Scholar
  108. Hogg, S. (1996). A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacology, Biochemistry & Behavior, 54, 21–30.CrossRefGoogle Scholar
  109. Honkanen, A., Mikkola, J., Korpi, E. R., Hyytiä, P., Seppälä, T., & Ahtee, L. (1999). Enhanced morphine- and cocaine-induced behavioral sensitization in alcohol-preferring AA rats. Psychopharmacology, 142, 244–252.PubMedCrossRefGoogle Scholar
  110. Howes, S. R., Dalley, J. W., Morrison, C. H., Robbins, T. W., & Everitt, B. J. (2000). Leftward shift in the acquisition of cocaine self-administration in isolation-reared rats: Relationship to extracellular levels of dopamine, serotonin and glutamate in the nucleus accumbens and amygdala-striatal FOS expression. Psychopharmacology, 151, 55–63.PubMedCrossRefGoogle Scholar
  111. Huber, D., Veinante, P., & Stoop, R. (2005). Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science, 308, 245–248.PubMedCrossRefGoogle Scholar
  112. Hwang, B. H., Lumeng, L., Wu, J.-Y., & Li, T.-K. (1990). Increased number of GABAergic terminals in the nucleus accumbens is associated with alcohol preference in rats. Alcoholism: Clinical & Experimental Research, 14, 503–507.CrossRefGoogle Scholar
  113. Imada, H. (1972). Emotional reactivity and conditionability in four strains of rats. Journal of Comparative & Physiological Psychology, 79, 474–480.CrossRefGoogle Scholar
  114. Janowsky, D. S., Risch, S. C., Parker, D., Huey, L. Y., & Judd, L. L. (1980). Increased vulnerability to cholinergic stimulation in affective disorder patients. Psychopharmacology Bulletin, 16, 29–31.PubMedGoogle Scholar
  115. Jones, A. E., McBride, W. J., Murphy, J. M., Lumeng, L., Li, T.-K., Shekhar, A., et al. (2000). Effects of ethanol on startle responding in alcohol-preferring and –non-preferring rats. Pharmacology, Biochemistry & Behavior, 67, 313–318.CrossRefGoogle Scholar
  116. Kabbaj, M., Devine, D. P., Savage, V. R., & Akil, H. (2000). Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: Differential expression of stress-related molecules. Journal of Neuroscience, 20, 6983–6988.PubMedGoogle Scholar
  117. Kalisch, R., Salomé, N., Platzer, S., Wigger, A., Czisch, M., Sommer, W., et al. (2004). High trait anxiety and hyperactivity to stress of the dorsomedial prefrontal cortex: A combined ph MRI AND FOS study in rats. NeuroImage, 23, 382–391.PubMedCrossRefGoogle Scholar
  118. Keck, M. E., Wigger, A., Welt, T., Müller, M. B., Gesing, A., Reul, J. M. H. M., et al. (2002). Vasopressin mediates the response of the combined dexamethasone/CRH test in hyper-anxious rats: Implications for pathogenesis of affective disorders. Neuropsychopharmacology, 26, 94–105.PubMedCrossRefGoogle Scholar
  119. Koolhaas, J. M., Korte, S. M., DeBoer, S. F., van der Vegt, B. J., van Reenen, C. G., Hopster, H., et al. (1999). Coping styles in animals: Current status in behavior and stress-physiology. Neuroscience & Biobehavioral Reviews, 23, 925–935.CrossRefGoogle Scholar
  120. Kurtz, D. L., Stewart, R. B., Zweifel, M., Li, T.-K., & Froehlich, J. C. (1996). Genetic differences in tolerance and sensitization to the sedative/hypnotic effects of alcohol. Pharmacology, Biochemistry & Behavior, 53, 585–591.CrossRefGoogle Scholar
  121. Landgraf, R., & Wigger, A. (2002). High vs low anxiety-related behavior in rats: An animal model of extremes in trait anxiety. Behavior Genetics, 32, 301–314.PubMedCrossRefGoogle Scholar
  122. Landgraf, R., & Wigger, A. (2003). Born to be anxious: Neuroendocrine and genetic correlates of trait anxiety in HAB rats. Stress, 6, 111–119.PubMedGoogle Scholar
  123. Landgraf, R., Wigger, A., Holsboer, F., & Neumann, I. D. (1999). Hyper-reactive hypothalamo-pituitary-adrenocortical axis in rats bred for high anxiety-related behaviour. Journal of Neuroendocrinology, 11, 405–407.PubMedCrossRefGoogle Scholar
  124. Landgraf, R., Kessler, M. S., Bunck, M., Murgatroyd, C., Spengler, D., Zimbelmann, M., et al. (2007). Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: Focus on vasopressin and glyoxalase-1. Neuroscience & Biobehavioral Reviews, 31, 89–102.CrossRefGoogle Scholar
  125. Lecca, D., Piras, G., Driscoll, P., Giorgi, O., & Corda, M. G. (2004). A differential activation of dopamine output in the shell and core of the nucleus accumbens is associated with the motor responses to addictive drugs: A brain dialysis study in Roman high- and low-avoidance rats. Neuropharmacology, 46, 688–699.PubMedCrossRefGoogle Scholar
  126. LeDoux, J. (1998). Fear and the brain: Where have we been, and where are we going? Biological Psychiatry, 44, 1229–1238.PubMedCrossRefGoogle Scholar
  127. Li, Y., Acerbo, M. J., & Robinson, T. E. (2004). The induction of behavioural sensitization is associated with cocaine-induced structural plasticity in the core (but not shell) of the nucleus accumbens. European Journal of Neuroscience, 20, 1647–1654.PubMedCrossRefGoogle Scholar
  128. Liebsch, G., Linthorst, A. C. E., Neumann, I. D., Reul, J. M. H. M., Holsboer, F., & Landgraf, R. (1998a). Behavioral, physiological and neuroendocrine stress responses and differential sensitivity to diazepam in two Wistar rat lines selectively bred for high- and low-anxiety-related behavior. Neuropsychopharmacology, 19, 381–396.PubMedCrossRefGoogle Scholar
  129. Liebsch, G., Montkowski, A., Holsboer, F., & Landgraf, R. (1998b). Behavioural profiles of two Wistar rat lines selectively bred for high and low anxiety-related behaviour. Behavioural Brain Research, 94, 301–310.PubMedCrossRefGoogle Scholar
  130. Lipp, H.-P., Schwegler, H., Crusio, W. E., Wolfer, D. P., Leisinger-Trigona, M.-C., Heimrich, B., et al. (1989). Using genetically-defined rodent strains for the identification of hippocampal traits relevant for two-way avoidance behavior: A non-invasive approach. Experientia, 45, 845–859.PubMedCrossRefGoogle Scholar
  131. López-Aumatell, R., Blazquez, G., Giménez-Llort, L., Gil, L., Aguilar, R., Tobeña, A., et al. (2005). Differences in classical fear conditioning and fear-potentiated startle between the Roman rat strains. Presented at the 11th EBPS meeting in Barcelona, September, 2005.Google Scholar
  132. Markou, A., Matthews, K., Overstreet, D. H., Koob, G. F., & Geyer, M. A. (1994). Flinders resistant hypocholinergic rats exhibit startle sensitization and reduced startle thresholds. Biological Psychiatry, 36, 680–688.PubMedCrossRefGoogle Scholar
  133. Martin, J. R., Driscoll, P., & Gentsch, C. (1984). Differential response to cholinergic stimulation in psychogenetically selected rat lines. Psychopharmacology, 83, 262–267.PubMedCrossRefGoogle Scholar
  134. McKinzie, D. L., Sajdyk, T. J., McBride, W. J., Murphy, J. M., Lumeng, L., Li, T.-K., et al. (2000). Acoustic startle and fear-potentiated startle in alcohol-preferring (P) and –nonpreferring (NP) lines of rats. Pharmacology, Biochemistry & Behavior, 65, 691–696.CrossRefGoogle Scholar
  135. Meerlo, P., Overkamp, G. J. F., & Koolhaas, J. (1997). Behavioural and physiological consequences of a single social defeat in Roman high- and low-avoidance rats. Psychoneuroendocrinology, 22, 155–168.PubMedCrossRefGoogle Scholar
  136. Mönnikes, H., Heymann-Mönnikes, I., & Taché, Y. (1992). CRF in the paraventricular nucleus of the hypothalamus induces dose-related behavioral profile in rats. Brain Research, 574, 70–76.PubMedCrossRefGoogle Scholar
  137. Mormède, P., Moneva, E., Bruneval, C., Chaouloff, F., & Moisan, M.-P. (2002). Marker-assisted selection of a neuro-behavioural trait related to behavioural inhibition in the SHR strain, an animal model of ADHD. Genes, Brain & Behavior, 1, 111–116.CrossRefGoogle Scholar
  138. Murphy, J. M., Stewart, R. B., Bell, R. L., Badia-Elder, N. E., Carr, L. G., McBride, W. J., et al. (2002). Phenotypic and genotypic characterization of the Indiana University rat lines selectively bred for high and low alcohol preference. Behavior Genetics, 32, 363–388.PubMedCrossRefGoogle Scholar
  139. Nestler, E. J. (2000). Genes and addiction. Nature Genetics, 26, 277–281.PubMedCrossRefGoogle Scholar
  140. Neumann, I. D., Wigger, A., Krömer, S., Frank, E., Landgraf, R., & Bosch, O. J. (2005). Differential effects of periodic maternal separation on adult stress coping in a rat model of extremes in trait anxiety. Neuroscience, 132, 867–877.PubMedCrossRefGoogle Scholar
  141. Nil, R., & Bättig, K. (1981). Spontaneous maze ambulation and Hebb-Williams learning in Roman high-avoidance and Roman low-avoidance rats. Behavioral & Neural Biology, 33, 465–475.CrossRefGoogle Scholar
  142. Nowak, K. L., McBride, W. J., Lumeng, L., Li, T.-K., & Murphy, J. M. (1998). Blocking GABA-A receptors in the anterior ventral tegmental area attenuates ethanol intake of the alcohol-preferring P rat. Psychopharmacology, 139, 108–116.PubMedCrossRefGoogle Scholar
  143. Nowak, K. L., Ingraham, C. M., McKinzie, D. L., McBride, W. J., Lumeng, L., Li, T.-K., et al. (2000). An assessment of novelty-seeking behavior in alcohol-preferring and nonpreferring rats. Pharmacology, Biochemistry & Behavior, 66, 113–121.CrossRefGoogle Scholar
  144. O’Brien, C. P., & McLellan, A. T. (1996). Myths about the treatment of addiction. Lancet, 347, 237–240.PubMedCrossRefGoogle Scholar
  145. Ojanen, S., Koistinen, M., Bäckström, P., Kankaanpää, A., Tuomainen, P., Hyytiä, P., et al. (2003). Differential behavioural sensitization to intermittent morphine treatment in alcohol-preferring AA and alcohol-avoiding ANA rats: Role of mesolimbic dopamine. European Journal of Neuroscience, 17, 1655–1663.PubMedCrossRefGoogle Scholar
  146. Overstreet, D. H. (2002). Behavioral characteristics of rat lines selected for differential hypothermic responses to cholinergic or serotonergic agonists. Behavior Genetics, 32, 335–348.PubMedCrossRefGoogle Scholar
  147. Overstreet, D. H., & Rezvani, A. H. (1996). Behavioral differences between two inbred strains of Fawn-Hooded rat: A model of serotonin dysfunction. Psychopharmacology, 128, 328–330.PubMedCrossRefGoogle Scholar
  148. Overstreet, D. H., Rezvani, A. H., & Janowsky, D. S. (1990). Impaired active avoidance responding in rats selectively bred for increased cholinergic function. Physiology & Behavior, 47, 787–788.CrossRefGoogle Scholar
  149. Overstreet, D. H., Kampov-Polevoy, A. B., Rezvani, A. H., Murrelle, L., Halikas, J. A., & Janowsky, D. S. (1993). Saccharin intake predicts ethanol intake in genetically heterogeneous rats as well as different rat strains. Alcoholism: Clinical & Experimental Research, 17, 366–369.CrossRefGoogle Scholar
  150. Overstreet, D. H., Friedman, E., Mathé, A. A., & Yadid, G. (2005). The Flinders sensitive line rat: A selectively bred putative animal model of depression. Neuroscience & Biobehavioral Reviews, 29, 739–759.CrossRefGoogle Scholar
  151. Overstreet, D. H., Rezvani, A. H., Djouma, E., Parsian, A., & Lawrence, A. J. (2007). Depressive-like behavior and high alcohol drinking co-occur in the FH/Wjd rat but appear to be under independent genetic control. Neuroscience & Biobehavioral Reviews, 31, 103–114.CrossRefGoogle Scholar
  152. Paré, W. P., & Kluczynski, J. (1997). Differences in the stress response of Wistar-Kyoto (WKY) rats from different vendors. Physiology & Behavior, 62, 643–648.CrossRefGoogle Scholar
  153. Paré, W. P., Glavin, G. B., & Vincent, G. P. (1977). Vendor differences in starvation-induced gastric ulceration. Physiology & Behavior, 19, 315–317.CrossRefGoogle Scholar
  154. Piazza, P. V., Deminière, J.-M., LeMoal, M., & Simon, H. (1989). Factors that predict individual vulnerability to amphetamine self-administration. Science, 245, 1511–1513.PubMedCrossRefGoogle Scholar
  155. Piazza, P. V., Deminière, J.-M., Maccari, S., Mormède, P., LeMoal, M., & Simon, H. (1990). Individual reactivity to novelty predicts probability to amphetamine self-administration. Behavioral Pharmacology, 1, 339–345.Google Scholar
  156. Piazza, P. V., Maccari, S., Deminière, J.-M., LeMoal, M., Mormède, P., & Simon, H. (1991). Corticosterone levels determine individual vulnerability to amphetamine self-administration. Proceedings of the National Academy of Sciences USA, 88, 2088–2092.CrossRefGoogle Scholar
  157. Piras, G., Lecca, D., Corda, M. G., & Giorgi, O. (2003). Repeated morphine injections induce behavioral sensitization in Roman high- but not in Roman low-avoidance rats. Neuroreport, 14, 2433–2438.PubMedCrossRefGoogle Scholar
  158. Pisula, W. (2003). The Roman high- and low-avoidance rats respond differently to novelty in a familiarized environment. Behavioral Processes, 63, 63–72.CrossRefGoogle Scholar
  159. Poulos, C. X., Le, A. D., & Parker, J. L. (1995). Impulsivity predicts individual susceptibility to high levels of alcohol self-administration. Behavioral Pharmacology, 6, 810–814.Google Scholar
  160. Ramos, A., Berton, O., Mormède, P., & Chaouloff, F. (1997). A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behavioural Brain Research, 85, 57–69.PubMedCrossRefGoogle Scholar
  161. Ramos, A., Mellerin, Y., Mormède, P., & Chaouloff, F. (1998). A genetic and multifactorial analysis of anxiety-related behaviours in Lewis and SHR intercrosses. Behavioural Brain Research, 96, 195–205.PubMedCrossRefGoogle Scholar
  162. Ramos, A., Moisan, M.-P., Chaouloff, F., Mormède, C., & Mormède, P. (1999). Identification of female-specific QTLs affecting an emotionality-related behavior in rats. Molecular Psychiatry, 4, 453–462.PubMedCrossRefGoogle Scholar
  163. Razafimanalina, R., Mormède, P., & Velley, L. (1996). Gustatory preference-aversion profiles for saccharin, quinine and alcohol in Roman high- and low-avoidance lines. Behavioral Pharmacology, 7, 78–84.Google Scholar
  164. Reich, T., Hinrichs, A., Culverhouse, R., & Bierut, L. (1999). Genetic studies of alcoholism and substance dependence. American Journal of Human Genetics, 65, 599–605.PubMedCrossRefGoogle Scholar
  165. Rezvani, A,H., Overstreet, D. H., Ejantkar, A., & Gordon, C. J. (1994). Autonomic and behavioral responses of selectively bred hypercholinergic rats to oxotremorine and diisopropyl fluorophosphate. Pharmacology, Biochemistry & Behavior, 48, 703–707.CrossRefGoogle Scholar
  166. Rezvani, A. H., Parsian, A., & Overstreet, D. H. (2002). The Fawn-Hooded (FH/Wjd) rat: A genetic animal model of comorbid depression and alcoholism. Psychiatric Genetics, 12, 1–16.PubMedCrossRefGoogle Scholar
  167. Robinson, T. E., & Berridge, K. C. (2001). Incentive-sensitization and addiction. Addiction, 96, 103–114.PubMedCrossRefGoogle Scholar
  168. Rodgers, R. J. (1997). Animal models of “anxiety”: Where next? Behavioral Pharmacology, 8, 477–496.CrossRefGoogle Scholar
  169. Roozendaal, B., Koolhaas, J. M., & Bohus, B. (1991). Attenuated cardiovascular, neuroendocrine, and behavioral responses after a single footshock in central amygdaloid lesioned male rats. Physiology & Behavior, 50, 771–775.CrossRefGoogle Scholar
  170. Roozendaal, B., Wiersma, A., Driscoll, P., Koolhaas, J. M., & Bohus, B. (1992). Vasopressinergic modulation of stress responses in the central amygdala of the Roman high-avoidance and low-avoidance rat. Brain Research, 596, 35–40.PubMedCrossRefGoogle Scholar
  171. Rots, N. Y., Cools, A. R., Oitzl, M. S., de Jong, J., Sutanto, W., & de Kloet, E. R. (1996). Divergent prolactin and pituitary-adrenal activity in rats selectively bred for different dopamine responsiveness. Endocrinology, 137, 1678–1686.PubMedCrossRefGoogle Scholar
  172. Sagvolden, T. (2000). Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neuroscience & Biobehavioral Reviews, 24, 31–39.CrossRefGoogle Scholar
  173. Saigusa, T., Tuinstra, T., Koshikawa, N., & Cools, A. R. (1999). High and low responders to novelty: Effects of a catecholamine synthesis inhibitor on novelty-induced changes in behaviour and release of accumbal dopamine. Neuroscience, 88, 1153–1163.PubMedCrossRefGoogle Scholar
  174. Salomé, N., Salchner, P., Viltart, O., Sequeira, H., Wigger, A., Landgraf, R., et al. (2004). Neurobiological correlates of high (HAB) versus low anxiety-related behavior (LAB): Differential Fos expression in HAB and LAB rats. Biological Psychiatry, 55, 715–723.PubMedCrossRefGoogle Scholar
  175. Sandi, C., Castanon, N., Vitiello, S., Neveu, P. J., & Mormède, P. (1991). Different responsiveness of spleen lymphocytes from two lines of psychogenetically selected rats (Roman high and low avoidance). Journal of Neuroimmunology, 31, 27–33.PubMedCrossRefGoogle Scholar
  176. Sarrieau, A., & Mormède, P. (1998). Hypothalamic-pituitary-adrenal axis activity in the inbred Brown Norway and Fischer 344 rat strains. Life Sciences, 62, 1417–1425.PubMedCrossRefGoogle Scholar
  177. Sarrieau, A., Chaouloff, F., Lemaire, V., & Mormède, P. (1998). Comparison of the neuroendocrine responses to stress in outbred, inbred and F1 hybrid rats. Life Sciences, 63, 87–96.PubMedCrossRefGoogle Scholar
  178. Satinder, K. P. (1975). Interactions of age, sex and long-term alcohol intake in selectively bred strains of rats. Journal of Studies on Alcohol, 36, 1493–1507.PubMedGoogle Scholar
  179. Saxton, P. M., Siegel, J., & Lukas, J. H. (1987). Visual evoked potential augmenting/reducing slopes in cats – 2. correlations with behavior. Personality & Individual Differences, 8, 511–519.CrossRefGoogle Scholar
  180. Schuckit, M. A., & Hesselbrock, V. (1994). Alcohol dependence and anxiety disorders: What is the relationship? American Journal of Psychiatry, 151, 1723–1734.PubMedGoogle Scholar
  181. Schwarz, R. M., Burkhart, B. R., & Green, S. B. (1982). Sensation-seeking and anxiety as factors in social drinking by men. Journal of Studies on Alcohol, 43, 1108–1114.PubMedGoogle Scholar
  182. Schwegler, H., Pilz, P. K. D., Koch, M., Fendt, M., Linke, R., & Driscoll, P. (1997). The acoustic startle response in inbred Roman high- and low-avoidance rats. Behavior Genetics, 27, 579–582.PubMedCrossRefGoogle Scholar
  183. Setem, J., Pinheiro, A. P., Motta, V. A., Morato, S., & Cruz, A. P. M. (1999). Ethopharmacological analysis of 5-HT ligands on the rat elevated plus maze. Pharmacology, Biochemistry & Behavior, 62, 515–521.CrossRefGoogle Scholar
  184. Shephard, R. A., & Broadhurst, P. L. (1983). Hyponeophagia in the Roman rat strains: Effects of 5-methoxy-N,N-dimethyltryptamine, diazepam, methysergide and the stereoisomers of propranol. European Journal of Pharmacology, 95, 177–184.PubMedCrossRefGoogle Scholar
  185. Siegel, J. (1997). Augmenting and reducing of visual evoked potentials in high- and low-sensation seeking humans, cats and rats. Behavior Genetics, 27, 557–563.PubMedCrossRefGoogle Scholar
  186. Siegel, J., Sisson, D. F., & Driscoll, P. (1993). Augmenting and reducing of visual evoked potentials in Roman high- and low-avoidance rats. Physiology & Behavior, 54, 707–711.CrossRefGoogle Scholar
  187. Siegel, J., Gayle, D., Sharma, A., & Driscoll, P. (1996). The locus of origin of augmenting and reducing of visual evoked potentials in rat brain. Physiology & Behavior, 60, 287–291.CrossRefGoogle Scholar
  188. Sinclair, J. D., Kampov-Polevoy, A., Stewart, R., & Li, T.-K. (1992). Taste preferences in rat lines selected for low and high alcohol consumption. Alcohol, 9, 155–160.PubMedCrossRefGoogle Scholar
  189. Sluka, K. A., & Westlund, K. N. (1992). Spinal projections of the locus coeruleus and the nucleus subcoeruleus in the Harlan and the Sasco Sprague-Dawley rat. Brain Research, 579, 67–73.PubMedCrossRefGoogle Scholar
  190. Sluyter, F., Hof, M., Ellenbroek, B. A., Degen, S. B. & Cools, A. R. (2000). Genetic, sex and early environmental effects on the voluntary alcohol intake in Wistar rats. Pharmacology, Biochemistry & Behavior, 67, 801–808.CrossRefGoogle Scholar
  191. Solanto, M. V. (2000). Clinical pharmacology of AD/HD: Implications for animal models. Neuroscience & Biobehavioral Reviews, 24, 27–30.CrossRefGoogle Scholar
  192. Spuhler, K., & Deitrich, R. A. (1984). Correlative analysis of ethanol-related phenotypes in rat inbred strains. Alcoholism: Clinical & Experimental Research, 8, 480–484.CrossRefGoogle Scholar
  193. Stead, J. D. H., Clinton, S., Neal, C., Schneider, J., Jama, A., Miller, S., et al. (2006). Selective breeding for divergence in novelty-seeking traits: Heritability and enrichment in spontaneous anxiety-related behaviors. Behavior Genetics, 36, 697–712.PubMedCrossRefGoogle Scholar
  194. Steimer, T., & Driscoll, P. (2003). Divergent stress responses and coping styles in psychogenetically selected Roman high- (RHA) and low- (RLA) avoidance rats: Behavioural, neuroendocrine and developmental aspects. Stress, 6, 87–100.PubMedCrossRefGoogle Scholar
  195. Steimer, T., & Driscoll, P. (2005). Inter-individual vs line/strain differences in psychogenetically selected Roman high- (RHA) and low- (RLA) avoidance rats: Neuroendocrine and behavioural aspects. Neuroscience & Biobehavioral Reviews, 29, 99–112.CrossRefGoogle Scholar
  196. Steimer, T., laFleur, S., & Schulz, P. E. (1997a). Neuroendocrine correlates of emotional reactivity and coping in male rats from the Roman high (RHA/Verh)- and low (RLA/Verh)-avoidance lines. Behavior Genetics, 27, 503–512.PubMedCrossRefGoogle Scholar
  197. Steimer, T., Driscoll, P., & Schulz, P. E. (1997b). Brain metabolism of progesterone, coping behaviour and emotional reactivity in male rats from two psychogenetically selected lines. Journal of Neuroendocrinology, 9, 169–175.PubMedCrossRefGoogle Scholar
  198. Steimer, T., Escorihuela, R. M., Fernández-Teruel, A., & Driscoll, P. (1998). Long-term behavioural and neuroendocrine changes in Roman high- (RHA/Verh) and low- (RLA/Verh) avoidance rats following neonatal handling. International Journal of Developmental Neuroscience, 16, 165–174.PubMedCrossRefGoogle Scholar
  199. Steimer, T., Python, A., Schulz, P. E., & Aubrey, J.-M. (2007). Plasma corticosterone, dexamethasone (DEX) suppression and DEX/CRH tests in a rat model of genetic vulnerability to depression. Psychoneuroendocrinology, 32, 575–579.PubMedCrossRefGoogle Scholar
  200. Stephens, D. N. (1997). Animal models of anxiety; grounds for depression? Commentary on Rodgers, “Animal models of anxiety: Where next?”. Behavioural Pharmacology, 8, 497–501.CrossRefGoogle Scholar
  201. Stewart, R. B., Gatto, G. J., Lumeng, L., Li, T.-K., & Murphy, J. M. (1993). Comparison of alcohol-preferring (P) and nonpreferring (NP) rats on tests of anxiety and for the anxiolytic effects of ethanol. Alcohol, 10, 1–10.PubMedCrossRefGoogle Scholar
  202. Swerdlow, N. R., Martinez, Z. A., Hanlon, F. M., Platten, A., Farid, M., Auerbach, P., et al. (2000). Toward understanding the biology of a complex phenotype: Rat strain and substrain differences in the sensorimotor gating-disruptive effects of dopamine agonists. Journal of Neuroscience, 20, 4325–4336.PubMedGoogle Scholar
  203. Thielen, R. J., McBride, W. J., Lumeng, L., & Li, T.-K. (1998). GABA-A receptor function in the cerebral cortex of alcohol-naive P and NP rats. Pharmacology, Biochemistry & Behavior, 59, 209–214.CrossRefGoogle Scholar
  204. Tryon, R. C. (1929). The genetics of learning ability in rats. Preliminary report. University of California Psychology Publications, 4, 71–89.Google Scholar
  205. Van Loo, K. M. J., & Martens, G. J. M. (2007). Identification of genetic and epigenetic variations in a rat model for neurodevelopmental disorders. Behavior Genetics, 37, 697–705.PubMedCrossRefGoogle Scholar
  206. Verheul, R., & van den Brink, W. (2000). The role of personality pathology in the etiology and treatment of substance use disorders. Current Opinions in Psychiatry, 13,163–169.CrossRefGoogle Scholar
  207. Viglinskaya, I. V., Overstreet, D. H., Kashevskaya, O. P., Badishtov, B. A., Kampov-Polevoy, A. B., Seredenin, S. B., et al. (1995). To drink or not to drink: Tests of anxiety and immobility in alcohol-preferring and alcohol-nonpreferring rat strains. Physiology & Behavior, 57, 937–941.CrossRefGoogle Scholar
  208. Wahlsten, D., Metten, P., Phillips, T. J., Boehm, S. L., Burkhart-Kasch, S., Dorow, J., et al. (2003). Different data from different labs: Lessons from studies of gene-environment interaction. Journal of Neurobiology, 54, 283-311.PubMedCrossRefGoogle Scholar
  209. Wahlsten, D., Bachmanov, A., Finn, D. A., & Crabbe, J. C. (2006). Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proceedings of the National Academy of Sciences USA, 103, 16364–16369.CrossRefGoogle Scholar
  210. Walker, C.-D., Rivest, R. W., Meaney, M. J., & Aubert, M. L. Differential activation of the pituitary-adrenocortical axis after stress in the rat: Use of two genetically selected lines (Roman low- and high-avoidance rats) as a model. Journal of Endocrinology, 123, 477–485.Google Scholar
  211. Walker, C.-D., Aubert, M. L., Meaney, M. J., & Driscoll, P. (1992). Individual differences in the activity of the hypothalamus-pituitary-adrenocortical system after stressors: Use of psychogenetically selected rat lines as a model. In P. Driscoll (Ed.), Genetically Defined Animal Models of Neurobehavioral Dysfunctions (pp. 276–296). Boston: Birkhäuser.Google Scholar
  212. Walker, D. L., & Davis, M. (1997). Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear . Journal of Neuroscience, 17, 9375–9383.PubMedGoogle Scholar
  213. Walker, D. L., Toufexis, D. J., & Davis, M. (2003). Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. European Journal of Pharmacology, 463, 199–216.PubMedCrossRefGoogle Scholar
  214. Whishaw, I. Q. (1999). The laboratory rat, the Pied Piper of twentieth century neuroscience. Brain Research Bulletin, 50, 411.PubMedCrossRefGoogle Scholar
  215. Wiersma, A., Konsman, J. P., Knollema, S., Bohus, B., & Koolhaas, J. M. (1998). Differential effects of CRH infusion into the central nucleus of the amygdala in the Roman high-avoidance and low-avoidance rats. Psychoneuroendocrinology, 23, 261–274.PubMedCrossRefGoogle Scholar
  216. Wigger, A., Sánchez, M. M., Mathys, K. C., Ebner, K., Frank, E., Liu, D., et al. (2004). Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: Critical role of vasopressin. Neuropsychopharmacology, 29, 1–14.PubMedCrossRefGoogle Scholar
  217. Wilcock, J., & Fulker, D. W. (1973). Avoidance learning in rats: Genetic evidence for two distinct behavioral processes in the shuttle-box. Journal of Comparative & Physiological Psychology, 82, 247–253.CrossRefGoogle Scholar
  218. Willig, F., M’Harzi, M., Bardelay, C., Viet, D., & Delacour, J. (1991a). Roman strains as a psychogenetic model for the study of working memory: Behavioral and biochemical data. Pharmacology, Biochemistry & Behavior, 40, 7–16.CrossRefGoogle Scholar
  219. Willig, F., M’Harzi, M., & Delacour, J. (1991b). Contribution of the Roman strains of rats to the elaboration of animal models of memory. Physiology & Behavior, 50, 913–919.CrossRefGoogle Scholar
  220. Windle, R. J., Gamble, L. E., Kershaw, Y. M., Wood, S. A., Lightman, S. L., & Ingram, C. D. (2006). Gonadal steroid modulation of stress-induced hypothalamo-pituitary-adrenal activity and anxiety behavior: Role of central oxytocin. Endocrinology, 147, 2423–2431.PubMedCrossRefGoogle Scholar
  221. Yadid, G., Overstreet, D. H., & Zangen, A. (2001). Limbic dopaminergic adaptation to a stressful stimulus in a rat model of depression. Brain Research, 896, 43–47.PubMedCrossRefGoogle Scholar
  222. Yilmazer-Hanke, D. M., Faber-Zuschratter, H., Linke, R., & Schwegler, H. (2002). Contribution of amygdala neurons containing peptides and calcium-binding proteins to fear-potentiated startle and exploration-related anxiety in inbred Roman high- and low-avoidance rats. European Journal of Neuroscience, 15, 1206–1218.PubMedCrossRefGoogle Scholar
  223. Yilmazer-Hanke, D. M., Wigger, A., Linke, R., Landgraf, R., & Schwegler, H. (2004). Two Wistar rat lines selectively bred for anxiety-related behavior show opposite reactions in elevated plus maze and fear-sensitized acoustic startle tests. Behavior Genetics, 34, 309–318.PubMedCrossRefGoogle Scholar
  224. Zeier, H., Baettig, K., & Driscoll, P. (1978). Acquisition of DRL-20 behavior in male and female, Roman high- and low-avoidance rats. Physiology & Behavior, 20, 791–793.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Peter Driscoll
    • 1
  • Alberto Fernàndez-Teruel
    • 2
  • Maria G. Corda
    • 3
  • Osvaldo Giorgi
    • 3
  • Thierry Steimer
    • 4
  1. 1.Institute for Animal ScienceETHZSchwerzenbach 8603Switzerland
  2. 2.Medical Psychology Unit, Department of Psychiatry and Forensic MedicineUniversity of BarcelonaBellaterra 08193Spain
  3. 3.Department of ToxicologyUniversity of CagliariCagliari 09124Italy
  4. 4.Clinical Psychopharmacology UnitUniversity Hospital of Geneva1225 Chêene-BourgSwitzerland

Personalised recommendations