Drosophila Model of Alzheimer’s Amyloidosis

The establishment of animal models of human diseases is crucial for understanding disease pathogenesis as well as for the discovery and evaluation of potential therapies. In the last decades, numerous models of human neurodegenerative diseases have been established in various laboratory organisms. The mouse has been the most popular choice for this purpose and has been used to test many hypotheses derived from in vitro and in vivo observations. In addition to these hypothesis-driven approaches, many groundbreaking discoveries in various biological contexts have been made by non-biased and systematic genome-wide genetic screenings using simple organisms.


Down Syndrome Amyloid Precursor Protein Cerebral Amyloid Angiopathy Mushroom Body Kenyon Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., et al. (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461), 2185–2195.PubMedCrossRefGoogle Scholar
  2. Auluck, P. K., Chan, H. Y., Trojanowski, J. Q., Lee, V. M., & Bonini, N. M. (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science, 295(5556), 865–868.PubMedCrossRefGoogle Scholar
  3. Bertram, L., & Tanzi, R. E. (2005). The genetic epidemiology of neurodegenerative disease. The Journal of Clinical Investigation, 115(6), 1449–1457.PubMedCrossRefGoogle Scholar
  4. Besson, M., & Martin, J. R. (2005). Centrophobism/thigmotaxis, a new role for the mushroom bodies in Drosophila. Journal of Neurobiology, 62(3), 386–396.PubMedCrossRefGoogle Scholar
  5. Bilen, J., & Bonini, N. M. (2005). Drosophila as a model for human neurodegenerative disease. Annual Review of Genetics, 39, 153–171.PubMedCrossRefGoogle Scholar
  6. Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118(2), 401–415.PubMedGoogle Scholar
  7. Casas, C., Sergeant, N., Itier, J. M., Blanchard, V., Wirths, O., van der Kolk, N., et al. (2004). Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. The American Journal of Pathology, 165(4), 1289–1300.PubMedGoogle Scholar
  8. Chen, S., Lee, A. Y., Bowens, N. M., Huber, R., & Kravitz, E. A. (2002). Fighting fruit flies: a model system for the study of aggression. Proceedings of the National Academy of Sciences of the USA, 99(8), 5664–5668.PubMedCrossRefGoogle Scholar
  9. Cleary, J. P., Walsh, D. M., Hofmeister, J. J., Shankar, G. M., Kuskowski, M. A., Selkoe, D. J., et al. (2005). Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nature Neuroscience, 8(1), 79–84.PubMedCrossRefGoogle Scholar
  10. Crowther, D. C., Kinghorn, K. J., Miranda, E., Page, R., Curry, J. A., Duthie, F. A., et al. (2005). Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease. Neuroscience, 132(1), 123–135.PubMedCrossRefGoogle Scholar
  11. Cummings, J. L. (2003). The neuropsychiatry of Alzheimer’s disease and other dementias. London: Martin Dunitz.Google Scholar
  12. Davies, P. (1983). An update on the neurochemistry of Alzheimer disease. Advances in Neurology, 38, 75–86.PubMedGoogle Scholar
  13. Deleault, N. R., Dolph, P. J., Feany, M. B., Cook, M. E., Nishina, K., Harris, D. A., et al. (2003). Post-transcriptional suppression of pathogenic prion protein expression in Drosophila neurons. Journal of Neurochemistry, 85(6), 1614–1623.PubMedCrossRefGoogle Scholar
  14. Dietzl, G., Chen, D., Schnorrer, F., Su, K. C., Barinova, Y., & Fellner, M., et al. (2007) Nature, 448(7150), 151–156.PubMedCrossRefGoogle Scholar
  15. Dubnau, J., Chiang, A. S., Grady, L., Barditch, J., Gossweiler, S., McNeil, J., et al. (2003). The staufen/pumilio pathway is involved in Drosophila long-term memory. Current Biology, 13(4), 286–296.PubMedCrossRefGoogle Scholar
  16. Dudai, Y., Jan, Y. N., Byers, D., Quinn, W. G., & Benzer, S. (1976). dunce, a mutant of Drosophila deficient in learning. Proceedings of the National Academy of Sciences of the USA, 73(5), 1684–1688.PubMedCrossRefGoogle Scholar
  17. Feany, M. B., & Bender, W. W. (2000). A Drosophila model of Parkinson’s disease. Nature, 404(6776), 394–398.PubMedCrossRefGoogle Scholar
  18. Finelli, A., Kelkar, A., Song, H. J., Yang, H., & Konsolaki, M. (2004). A model for studying Alzheimer’s Abeta42-induced toxicity in Drosophila melanogaster. Molecular and Cellular Neurosciences, 26(3), 365–375.PubMedCrossRefGoogle Scholar
  19. Folkers, E., Drain, P., & Quinn, W. G. (1993). Radish, a Drosophila mutant deficient in consolidated memory. Proceedings of the National Academy of Sciences of the USA, 90(17), 8123–8127.PubMedCrossRefGoogle Scholar
  20. Fortini, M. E., Skupski, M. P., Boguski, M. S., & Hariharan, I. K. (2000). A survey of human disease gene counterparts in the Drosophila genome. The Journal of Cell Biology, 150(2), F23–F30.PubMedCrossRefGoogle Scholar
  21. Fossgreen, A., Bruckner, B., Czech, C., Masters, C. L., Beyreuther, K., & Paro, R. (1998). Transgenic Drosophila expressing human amyloid precursor protein show gamma-secretase activity and a blistered-wing phenotype. Proceedings of the National Academy of Sciences of the USA, 95(23), 13703–13708.PubMedCrossRefGoogle Scholar
  22. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., et al. (1995). Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature, 373(6514), 523–527.PubMedCrossRefGoogle Scholar
  23. Gandy, S. (2005). The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. The Journal of Clinical Investigation, 115(5), 1121–1129.PubMedGoogle Scholar
  24. Glenner, G. G., & Wong, C. W. (1984). Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochemical and Biophysical Research Communications, 122(3), 1131–1135.PubMedCrossRefGoogle Scholar
  25. Gouras, G. K., Tsai, J., Naslund, J., Vincent, B., Edgar, M., Checler, F., et al. (2000). Intraneuronal Abeta42 accumulation in human brain. The American Journal of Pathology, 156(1), 15–20.PubMedGoogle Scholar
  26. Greeve, I., Kretzschmar, D., Tschape, J. A., Beyn, A., Brellinger, C., Schweizer, M., et al. (2004). Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. The Journal of Neuroscience, 24(16), 3899–3906.PubMedCrossRefGoogle Scholar
  27. Grotewiel, M. S., Beck, C. D., Wu, K. H., Zhu, X. R., & Davis, R. L. (1998). Integrin-mediated short-term memory in Drosophila. Nature, 391(6666), 455–460.PubMedCrossRefGoogle Scholar
  28. Grotewiel, M. S., Martin, I., Bhandari, P., & Cook-Wiens, E. (2005). Functional senescence in Drosophila melanogaster. Ageing Research Reviews, 4(3), 372–397.PubMedCrossRefGoogle Scholar
  29. Guo, H. F., Tong, J., Hannan, F., Luo, L., & Zhong, Y. (2000) Nature, 403(6772), 895–898.PubMedCrossRefGoogle Scholar
  30. Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 297(5580), 353–356.PubMedCrossRefGoogle Scholar
  31. Heisenberg, M. (2003). Mushroom body memoir: from maps to models. Nature Reviews Neuroscience, 4(4), 266–275.PubMedCrossRefGoogle Scholar
  32. Hendricks, J. C., Williams, J. A., Panckeri, K., Kirk, D., Tello, M., Yin, J. C., et al. (2001). A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nature Neuroscience, 4(11), 1108–1115.PubMedCrossRefGoogle Scholar
  33. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., et al. (1996). Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science, 274(5284), 99–102.PubMedCrossRefGoogle Scholar
  34. Iijima, K., Liu, H. P., Chiang, A. S., Hearn, S. A., Konsolaki, M., & Zhong, Y. (2004). Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: a potential model for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the USA, 101(17), 6623–6628.PubMedCrossRefGoogle Scholar
  35. Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., & Ihara, Y. (1994). Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron, 13(1), 45–53.PubMedCrossRefGoogle Scholar
  36. Jackson, G. R., Salecker, I., Dong, X., Yao, X., Arnheim, N., Faber, P. W., et al. (1998). Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron, 21(3), 633–642.PubMedCrossRefGoogle Scholar
  37. Jackson, G. R., Wiedau-Pazos, M., Sang, T. K., Wagle, N., Brown, C. A., Massachi, S., et al. (2002). Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron, 34(4), 509–519.PubMedCrossRefGoogle Scholar
  38. Jefferis, G. S., & Hummel, T. (2006). Wiring specificity in the olfactory system. Seminars in Cell & Developmental Biology, 17(1), 50–65.CrossRefGoogle Scholar
  39. Kitamoto, T. (2001). Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. Journal of Neurobiology, 47(2), 81–92.PubMedCrossRefGoogle Scholar
  40. Lee, V. M., Balin, B. J., Otvos, L., Jr., & Trojanowski, J. Q. (1991). A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science, 251(4994), 675–678.PubMedCrossRefGoogle Scholar
  41. Lee, V. M., Kenyon, T. K., & Trojanowski, J. Q. (2005). Transgenic animal models of tauopathies. Biochimica et Biophysica Acta, 1739(2–3), 251–259.PubMedGoogle Scholar
  42. Lesne, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., et al. (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 440(7082), 352–357.PubMedCrossRefGoogle Scholar
  43. Link, C. D. (2005). Invertebrate models of Alzheimer’s disease. Genes, Brain, and Behavior, 4(3), 147–156.PubMedCrossRefGoogle Scholar
  44. Livingstone, M. S., Sziber, P. P., & Quinn, W. G. (1984). Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell, 37(1), 205–215.PubMedCrossRefGoogle Scholar
  45. Luo, L., Tully, T., & White, K. (1992). Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for Appl gene. Neuron, 9(4), 595–605.PubMedCrossRefGoogle Scholar
  46. Marsh, J. L., & Thompson, L. M. (2004). Can flies help humans treat neurodegenerative diseases? Bioessays, 26(5), 485–496.PubMedCrossRefGoogle Scholar
  47. Marsh, J. L., & Thompson, L. M. (2006). Drosophila in the study of neurodegenerative disease. Neuron, 52(1), 169–178.PubMedCrossRefGoogle Scholar
  48. McGowan, E., Eriksen, J., & Hutton, M. (2006). A decade of modeling Alzheimer’s disease in transgenic mice. Trends in Genetics, 22, 281–289.PubMedCrossRefGoogle Scholar
  49. McGowan, E., Pickford, F., Kim, J., Onstead, L., Eriksen, J., Yu, C., et al. (2005). Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron, 47(2), 191–199.PubMedCrossRefGoogle Scholar
  50. McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K., & Davis, R. L. (2003). Spatiotemporal rescue of memory dysfunction in Drosophila. Science, 302(5651), 1765–1768.Google Scholar
  51. Morante, J., & Desplan, C. (2004). Building a projection map for photoreceptor neurons in the Drosophila optic lobes. Seminars in Cell & Developmental Biology, 15(1), 137–143.CrossRefGoogle Scholar
  52. Oakley, H., Cole, S. L., Logan, S., Maus, E., Shao, P., Craft, J., et al. (2006). Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. The Journal of Neuroscience, 26(40), 10129–10140.PubMedCrossRefGoogle Scholar
  53. Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., et al. (2003). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron, 39(3), 409–421.PubMedCrossRefGoogle Scholar
  54. Outeiro, T. F., & Giorgini, F. (2006). Yeast as a drug discovery platform in Huntington’s and Parkinson’s diseases. Biotechnology Journal, 1(3), 258–269.PubMedCrossRefGoogle Scholar
  55. Price, D. L., Tanzi, R. E., Borchelt, D. R., & Sisodia, S. S. (1998). Alzheimer’s disease: genetic studies and transgenic models. Annual Review of Genetics, 32, 461–493.PubMedCrossRefGoogle Scholar
  56. Quinn, W. G., Harris, W. A., & Benzer, S. (1974). Conditioned behavior in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA, 71(3), 708–712.PubMedCrossRefGoogle Scholar
  57. Quinn, W. G., Sziber, P. P., & Booker, R. (1979). The Drosophila memory mutant amnesiac. Nature, 277(5693), 212–214.PubMedCrossRefGoogle Scholar
  58. Raeber, A. J., Muramoto, T., Kornberg, T. B., & Prusiner, S. B. (1995). Expression and targeting of Syrian hamster prion protein induced by heat shock in transgenic Drosophila melanogaster. Mechanisms of Development, 51(2–3), 317–327.PubMedCrossRefGoogle Scholar
  59. Reiter, L. T., Potocki, L., Chien, S., Gribskov, M., & Bier, E. (2001). A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Research, 11(6), 1114–1125.PubMedCrossRefGoogle Scholar
  60. Rorth, P., Szabo, K., Bailey, A., Laverty, T., Rehm, J., Rubin, G. M., et al. (1998). Systematic gain-of-function genetics in Drosophila. Development, 125(6), 1049–1057.PubMedGoogle Scholar
  61. Rovelet-Lecrux, A., Hannequin, D., Raux, G., Le Meur, N., Laquerriere, A., Vital, A., et al. (2006). APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genetics, 38(1), 24–26.PubMedCrossRefGoogle Scholar
  62. Sang, T. K., & Jackson, G. R. (2005). Drosophila models of neurodegenerative disease. NeuroRx, 2(3), 438–446.PubMedCrossRefGoogle Scholar
  63. Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298(5594), 789–791.PubMedCrossRefGoogle Scholar
  64. Shulman, J. M., Shulman, L. M., Weiner, W. J., & Feany, M. B. (2003). From fruit fly to bedside: translating lessons from Drosophila models of neurodegenerative disease. Current Opinion in Neurology, 16(4), 443–449.PubMedCrossRefGoogle Scholar
  65. Spires, T. L., & Hyman, B. T. (2005). Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx, 2(3), 423–437.PubMedCrossRefGoogle Scholar
  66. Steffan, J. S., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B. L., et al. (2001). Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature, 413(6857), 739–743.PubMedCrossRefGoogle Scholar
  67. Takahashi, R. H., Milner, T. A., Li, F., Nam, E. E., Edgar, M. A., Yamaguchi, H., et al. (2002). Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. The American Journal of Pathology, 161(5), 1869–1879.PubMedGoogle Scholar
  68. Tanzi, R. E., & Bertram, L. (2005). Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell, 120(4), 545–555.PubMedCrossRefGoogle Scholar
  69. Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., et al. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Annals of Neurology, 30(4), 572–580.PubMedCrossRefGoogle Scholar
  70. Toba, G., Ohsako, T., Miyata, N., Ohtsuka, T., Seong, K. H., & Aigaki, T. (1999). The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster. Genetics, 151(2), 725–737.PubMedGoogle Scholar
  71. Tully, T., & Quinn, W. G. (1985). Classical conditioning and retention in normal and mutant Drosophila melanogaster. Journal of Comparative Physiology A, 157(2), 263–277.CrossRefGoogle Scholar
  72. Ueda, R. (2001). Rnai: a new technology in the post-genomic sequencing era. Journal of Neurogenetics, 15(3–4), 193–204.PubMedCrossRefGoogle Scholar
  73. van Swinderen, B., & Greenspan, R. J. (2003). Salience modulates 20–30 Hz brain activity in Drosophila. Nature Neuroscience, 6(6), 579–586.PubMedCrossRefGoogle Scholar
  74. Waddell, S., & Quinn, W. G. (2001). What can we teach Drosophila? What can they teach us? Trends in Genetics, 17(12), 719–726.PubMedCrossRefGoogle Scholar
  75. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416(6880), 535–539.PubMedCrossRefGoogle Scholar
  76. Wang, Y., Guo, H. F., Pologruto, T. A., Hannan, F., Hakker, I., Svoboda, K., et al. (2004). Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. The Journal of Neuroscience, 24(29), 6507–6514.PubMedCrossRefGoogle Scholar
  77. Warrick, J. M., Paulson, H. L., Gray-Board, G. L., Bui, Q. T., Fischbeck, K. H., Pittman, R. N., et al. (1998). Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell, 93(6), 939–949.PubMedCrossRefGoogle Scholar
  78. Wirths, O., Weis, J., Szczygielski, J., Multhaup, G., & Bayer, T. A. (2006). Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer’s disease. Acta Neuropathologica (Berl), 111(4), 312–319.CrossRefGoogle Scholar
  79. Wittmann, C. W., Wszolek, M. F., Shulman, J. M., Salvaterra, P. M., Lewis, J., Hutton, M., et al. (2001). Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science, 293(5530), 711–714.PubMedCrossRefGoogle Scholar
  80. Yasuyama, K., Kitamoto, T., & Salvaterra, P. M. (1995). Immunocytochemical study of choline acetyltransferase in Drosophila melanogaster: an analysis of cis-regulatory regions controlling expression in the brain of cDNA-transformed flies. The Journal of Comparative Neurology, 361(1), 25–37.PubMedCrossRefGoogle Scholar
  81. Yin, J. C., & Tully, T. (1996). CREB and the formation of long-term memory. Current Opinion in Neurobiology, 6(2), 264–268.PubMedCrossRefGoogle Scholar
  82. Yin, J. C., Wallach, J. S., Del Vecchio, M., Wilder, E. L., Zhou, H., Quinn, W. G., et al. (1994). Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell, 79(1), 49–58.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratory of Neurodegenerative Diseases and Gene Discovery, Farber Institute for Neurosciences, Department of Biochemistry and Molecular BiologyThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Laboratory of Neurogenetics and Pathobiology; Farber Institute for Neurosciences; Department of Biochemistry and Molecular BiologyThomas Jefferson UniversityPhiladelphiaUSA
  3. 3.Cold Spring Harbor LaboratoryCold Spring HarborUSA

Personalised recommendations