Skip to main content

Drosophila Model of Alzheimer’s Amyloidosis

  • Chapter
Handbook of Behavior Genetics

The establishment of animal models of human diseases is crucial for understanding disease pathogenesis as well as for the discovery and evaluation of potential therapies. In the last decades, numerous models of human neurodegenerative diseases have been established in various laboratory organisms. The mouse has been the most popular choice for this purpose and has been used to test many hypotheses derived from in vitro and in vivo observations. In addition to these hypothesis-driven approaches, many groundbreaking discoveries in various biological contexts have been made by non-biased and systematic genome-wide genetic screenings using simple organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., et al. (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461), 2185–2195.

    Article  PubMed  Google Scholar 

  • Auluck, P. K., Chan, H. Y., Trojanowski, J. Q., Lee, V. M., & Bonini, N. M. (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science, 295(5556), 865–868.

    Article  PubMed  CAS  Google Scholar 

  • Bertram, L., & Tanzi, R. E. (2005). The genetic epidemiology of neurodegenerative disease. The Journal of Clinical Investigation, 115(6), 1449–1457.

    Article  PubMed  CAS  Google Scholar 

  • Besson, M., & Martin, J. R. (2005). Centrophobism/thigmotaxis, a new role for the mushroom bodies in Drosophila. Journal of Neurobiology, 62(3), 386–396.

    Article  PubMed  Google Scholar 

  • Bilen, J., & Bonini, N. M. (2005). Drosophila as a model for human neurodegenerative disease. Annual Review of Genetics, 39, 153–171.

    Article  PubMed  CAS  Google Scholar 

  • Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118(2), 401–415.

    PubMed  CAS  Google Scholar 

  • Casas, C., Sergeant, N., Itier, J. M., Blanchard, V., Wirths, O., van der Kolk, N., et al. (2004). Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. The American Journal of Pathology, 165(4), 1289–1300.

    PubMed  CAS  Google Scholar 

  • Chen, S., Lee, A. Y., Bowens, N. M., Huber, R., & Kravitz, E. A. (2002). Fighting fruit flies: a model system for the study of aggression. Proceedings of the National Academy of Sciences of the USA, 99(8), 5664–5668.

    Article  PubMed  CAS  Google Scholar 

  • Cleary, J. P., Walsh, D. M., Hofmeister, J. J., Shankar, G. M., Kuskowski, M. A., Selkoe, D. J., et al. (2005). Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nature Neuroscience, 8(1), 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Crowther, D. C., Kinghorn, K. J., Miranda, E., Page, R., Curry, J. A., Duthie, F. A., et al. (2005). Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease. Neuroscience, 132(1), 123–135.

    Article  PubMed  CAS  Google Scholar 

  • Cummings, J. L. (2003). The neuropsychiatry of Alzheimer’s disease and other dementias. London: Martin Dunitz.

    Google Scholar 

  • Davies, P. (1983). An update on the neurochemistry of Alzheimer disease. Advances in Neurology, 38, 75–86.

    PubMed  CAS  Google Scholar 

  • Deleault, N. R., Dolph, P. J., Feany, M. B., Cook, M. E., Nishina, K., Harris, D. A., et al. (2003). Post-transcriptional suppression of pathogenic prion protein expression in Drosophila neurons. Journal of Neurochemistry, 85(6), 1614–1623.

    Article  PubMed  CAS  Google Scholar 

  • Dietzl, G., Chen, D., Schnorrer, F., Su, K. C., Barinova, Y., & Fellner, M., et al. (2007) Nature, 448(7150), 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Dubnau, J., Chiang, A. S., Grady, L., Barditch, J., Gossweiler, S., McNeil, J., et al. (2003). The staufen/pumilio pathway is involved in Drosophila long-term memory. Current Biology, 13(4), 286–296.

    Article  PubMed  CAS  Google Scholar 

  • Dudai, Y., Jan, Y. N., Byers, D., Quinn, W. G., & Benzer, S. (1976). dunce, a mutant of Drosophila deficient in learning. Proceedings of the National Academy of Sciences of the USA, 73(5), 1684–1688.

    Article  PubMed  CAS  Google Scholar 

  • Feany, M. B., & Bender, W. W. (2000). A Drosophila model of Parkinson’s disease. Nature, 404(6776), 394–398.

    Article  PubMed  CAS  Google Scholar 

  • Finelli, A., Kelkar, A., Song, H. J., Yang, H., & Konsolaki, M. (2004). A model for studying Alzheimer’s Abeta42-induced toxicity in Drosophila melanogaster. Molecular and Cellular Neurosciences, 26(3), 365–375.

    Article  PubMed  CAS  Google Scholar 

  • Folkers, E., Drain, P., & Quinn, W. G. (1993). Radish, a Drosophila mutant deficient in consolidated memory. Proceedings of the National Academy of Sciences of the USA, 90(17), 8123–8127.

    Article  PubMed  CAS  Google Scholar 

  • Fortini, M. E., Skupski, M. P., Boguski, M. S., & Hariharan, I. K. (2000). A survey of human disease gene counterparts in the Drosophila genome. The Journal of Cell Biology, 150(2), F23–F30.

    Article  PubMed  CAS  Google Scholar 

  • Fossgreen, A., Bruckner, B., Czech, C., Masters, C. L., Beyreuther, K., & Paro, R. (1998). Transgenic Drosophila expressing human amyloid precursor protein show gamma-secretase activity and a blistered-wing phenotype. Proceedings of the National Academy of Sciences of the USA, 95(23), 13703–13708.

    Article  PubMed  CAS  Google Scholar 

  • Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., et al. (1995). Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature, 373(6514), 523–527.

    Article  PubMed  CAS  Google Scholar 

  • Gandy, S. (2005). The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. The Journal of Clinical Investigation, 115(5), 1121–1129.

    PubMed  CAS  Google Scholar 

  • Glenner, G. G., & Wong, C. W. (1984). Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochemical and Biophysical Research Communications, 122(3), 1131–1135.

    Article  PubMed  CAS  Google Scholar 

  • Gouras, G. K., Tsai, J., Naslund, J., Vincent, B., Edgar, M., Checler, F., et al. (2000). Intraneuronal Abeta42 accumulation in human brain. The American Journal of Pathology, 156(1), 15–20.

    PubMed  CAS  Google Scholar 

  • Greeve, I., Kretzschmar, D., Tschape, J. A., Beyn, A., Brellinger, C., Schweizer, M., et al. (2004). Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. The Journal of Neuroscience, 24(16), 3899–3906.

    Article  PubMed  CAS  Google Scholar 

  • Grotewiel, M. S., Beck, C. D., Wu, K. H., Zhu, X. R., & Davis, R. L. (1998). Integrin-mediated short-term memory in Drosophila. Nature, 391(6666), 455–460.

    Article  PubMed  CAS  Google Scholar 

  • Grotewiel, M. S., Martin, I., Bhandari, P., & Cook-Wiens, E. (2005). Functional senescence in Drosophila melanogaster. Ageing Research Reviews, 4(3), 372–397.

    Article  PubMed  CAS  Google Scholar 

  • Guo, H. F., Tong, J., Hannan, F., Luo, L., & Zhong, Y. (2000) Nature, 403(6772), 895–898.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 297(5580), 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg, M. (2003). Mushroom body memoir: from maps to models. Nature Reviews Neuroscience, 4(4), 266–275.

    Article  PubMed  CAS  Google Scholar 

  • Hendricks, J. C., Williams, J. A., Panckeri, K., Kirk, D., Tello, M., Yin, J. C., et al. (2001). A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nature Neuroscience, 4(11), 1108–1115.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., et al. (1996). Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science, 274(5284), 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Iijima, K., Liu, H. P., Chiang, A. S., Hearn, S. A., Konsolaki, M., & Zhong, Y. (2004). Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: a potential model for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the USA, 101(17), 6623–6628.

    Article  PubMed  CAS  Google Scholar 

  • Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., & Ihara, Y. (1994). Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron, 13(1), 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, G. R., Salecker, I., Dong, X., Yao, X., Arnheim, N., Faber, P. W., et al. (1998). Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron, 21(3), 633–642.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, G. R., Wiedau-Pazos, M., Sang, T. K., Wagle, N., Brown, C. A., Massachi, S., et al. (2002). Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron, 34(4), 509–519.

    Article  PubMed  CAS  Google Scholar 

  • Jefferis, G. S., & Hummel, T. (2006). Wiring specificity in the olfactory system. Seminars in Cell & Developmental Biology, 17(1), 50–65.

    Article  Google Scholar 

  • Kitamoto, T. (2001). Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. Journal of Neurobiology, 47(2), 81–92.

    Article  PubMed  CAS  Google Scholar 

  • Lee, V. M., Balin, B. J., Otvos, L., Jr., & Trojanowski, J. Q. (1991). A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science, 251(4994), 675–678.

    Article  PubMed  CAS  Google Scholar 

  • Lee, V. M., Kenyon, T. K., & Trojanowski, J. Q. (2005). Transgenic animal models of tauopathies. Biochimica et Biophysica Acta, 1739(2–3), 251–259.

    PubMed  CAS  Google Scholar 

  • Lesne, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., et al. (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 440(7082), 352–357.

    Article  PubMed  CAS  Google Scholar 

  • Link, C. D. (2005). Invertebrate models of Alzheimer’s disease. Genes, Brain, and Behavior, 4(3), 147–156.

    Article  PubMed  CAS  Google Scholar 

  • Livingstone, M. S., Sziber, P. P., & Quinn, W. G. (1984). Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell, 37(1), 205–215.

    Article  PubMed  CAS  Google Scholar 

  • Luo, L., Tully, T., & White, K. (1992). Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for Appl gene. Neuron, 9(4), 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, J. L., & Thompson, L. M. (2004). Can flies help humans treat neurodegenerative diseases? Bioessays, 26(5), 485–496.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, J. L., & Thompson, L. M. (2006). Drosophila in the study of neurodegenerative disease. Neuron, 52(1), 169–178.

    Article  PubMed  CAS  Google Scholar 

  • McGowan, E., Eriksen, J., & Hutton, M. (2006). A decade of modeling Alzheimer’s disease in transgenic mice. Trends in Genetics, 22, 281–289.

    Article  PubMed  CAS  Google Scholar 

  • McGowan, E., Pickford, F., Kim, J., Onstead, L., Eriksen, J., Yu, C., et al. (2005). Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron, 47(2), 191–199.

    Article  PubMed  CAS  Google Scholar 

  • McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K., & Davis, R. L. (2003). Spatiotemporal rescue of memory dysfunction in Drosophila. Science, 302(5651), 1765–1768.

    Google Scholar 

  • Morante, J., & Desplan, C. (2004). Building a projection map for photoreceptor neurons in the Drosophila optic lobes. Seminars in Cell & Developmental Biology, 15(1), 137–143.

    Article  Google Scholar 

  • Oakley, H., Cole, S. L., Logan, S., Maus, E., Shao, P., Craft, J., et al. (2006). Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. The Journal of Neuroscience, 26(40), 10129–10140.

    Article  PubMed  CAS  Google Scholar 

  • Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., et al. (2003). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron, 39(3), 409–421.

    Article  PubMed  CAS  Google Scholar 

  • Outeiro, T. F., & Giorgini, F. (2006). Yeast as a drug discovery platform in Huntington’s and Parkinson’s diseases. Biotechnology Journal, 1(3), 258–269.

    Article  PubMed  CAS  Google Scholar 

  • Price, D. L., Tanzi, R. E., Borchelt, D. R., & Sisodia, S. S. (1998). Alzheimer’s disease: genetic studies and transgenic models. Annual Review of Genetics, 32, 461–493.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, W. G., Harris, W. A., & Benzer, S. (1974). Conditioned behavior in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA, 71(3), 708–712.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, W. G., Sziber, P. P., & Booker, R. (1979). The Drosophila memory mutant amnesiac. Nature, 277(5693), 212–214.

    Article  PubMed  CAS  Google Scholar 

  • Raeber, A. J., Muramoto, T., Kornberg, T. B., & Prusiner, S. B. (1995). Expression and targeting of Syrian hamster prion protein induced by heat shock in transgenic Drosophila melanogaster. Mechanisms of Development, 51(2–3), 317–327.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, L. T., Potocki, L., Chien, S., Gribskov, M., & Bier, E. (2001). A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Research, 11(6), 1114–1125.

    Article  PubMed  CAS  Google Scholar 

  • Rorth, P., Szabo, K., Bailey, A., Laverty, T., Rehm, J., Rubin, G. M., et al. (1998). Systematic gain-of-function genetics in Drosophila. Development, 125(6), 1049–1057.

    PubMed  CAS  Google Scholar 

  • Rovelet-Lecrux, A., Hannequin, D., Raux, G., Le Meur, N., Laquerriere, A., Vital, A., et al. (2006). APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genetics, 38(1), 24–26.

    Article  PubMed  CAS  Google Scholar 

  • Sang, T. K., & Jackson, G. R. (2005). Drosophila models of neurodegenerative disease. NeuroRx, 2(3), 438–446.

    Article  PubMed  Google Scholar 

  • Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298(5594), 789–791.

    Article  PubMed  CAS  Google Scholar 

  • Shulman, J. M., Shulman, L. M., Weiner, W. J., & Feany, M. B. (2003). From fruit fly to bedside: translating lessons from Drosophila models of neurodegenerative disease. Current Opinion in Neurology, 16(4), 443–449.

    Article  PubMed  Google Scholar 

  • Spires, T. L., & Hyman, B. T. (2005). Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx, 2(3), 423–437.

    Article  PubMed  Google Scholar 

  • Steffan, J. S., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B. L., et al. (2001). Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature, 413(6857), 739–743.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, R. H., Milner, T. A., Li, F., Nam, E. E., Edgar, M. A., Yamaguchi, H., et al. (2002). Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. The American Journal of Pathology, 161(5), 1869–1879.

    PubMed  CAS  Google Scholar 

  • Tanzi, R. E., & Bertram, L. (2005). Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell, 120(4), 545–555.

    Article  PubMed  CAS  Google Scholar 

  • Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., et al. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Annals of Neurology, 30(4), 572–580.

    Article  PubMed  CAS  Google Scholar 

  • Toba, G., Ohsako, T., Miyata, N., Ohtsuka, T., Seong, K. H., & Aigaki, T. (1999). The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster. Genetics, 151(2), 725–737.

    PubMed  CAS  Google Scholar 

  • Tully, T., & Quinn, W. G. (1985). Classical conditioning and retention in normal and mutant Drosophila melanogaster. Journal of Comparative Physiology A, 157(2), 263–277.

    Article  CAS  Google Scholar 

  • Ueda, R. (2001). Rnai: a new technology in the post-genomic sequencing era. Journal of Neurogenetics, 15(3–4), 193–204.

    Article  PubMed  CAS  Google Scholar 

  • van Swinderen, B., & Greenspan, R. J. (2003). Salience modulates 20–30 Hz brain activity in Drosophila. Nature Neuroscience, 6(6), 579–586.

    Article  PubMed  CAS  Google Scholar 

  • Waddell, S., & Quinn, W. G. (2001). What can we teach Drosophila? What can they teach us? Trends in Genetics, 17(12), 719–726.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416(6880), 535–539.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Guo, H. F., Pologruto, T. A., Hannan, F., Hakker, I., Svoboda, K., et al. (2004). Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. The Journal of Neuroscience, 24(29), 6507–6514.

    Article  PubMed  CAS  Google Scholar 

  • Warrick, J. M., Paulson, H. L., Gray-Board, G. L., Bui, Q. T., Fischbeck, K. H., Pittman, R. N., et al. (1998). Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell, 93(6), 939–949.

    Article  PubMed  CAS  Google Scholar 

  • Wirths, O., Weis, J., Szczygielski, J., Multhaup, G., & Bayer, T. A. (2006). Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer’s disease. Acta Neuropathologica (Berl), 111(4), 312–319.

    Article  CAS  Google Scholar 

  • Wittmann, C. W., Wszolek, M. F., Shulman, J. M., Salvaterra, P. M., Lewis, J., Hutton, M., et al. (2001). Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science, 293(5530), 711–714.

    Article  PubMed  CAS  Google Scholar 

  • Yasuyama, K., Kitamoto, T., & Salvaterra, P. M. (1995). Immunocytochemical study of choline acetyltransferase in Drosophila melanogaster: an analysis of cis-regulatory regions controlling expression in the brain of cDNA-transformed flies. The Journal of Comparative Neurology, 361(1), 25–37.

    Article  PubMed  CAS  Google Scholar 

  • Yin, J. C., & Tully, T. (1996). CREB and the formation of long-term memory. Current Opinion in Neurobiology, 6(2), 264–268.

    Article  PubMed  CAS  Google Scholar 

  • Yin, J. C., Wallach, J. S., Del Vecchio, M., Wilder, E. L., Zhou, H., Quinn, W. G., et al. (1994). Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell, 79(1), 49–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Iijima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Iijima, K., Iijima-Ando, K., Zhong, Y. (2009). Drosophila Model of Alzheimer’s Amyloidosis. In: Kim, YK. (eds) Handbook of Behavior Genetics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76727-7_14

Download citation

Publish with us

Policies and ethics