Advertisement

Cognition in Rodents

  • Christopher Janus
  • Michael J. Galsworthy
  • David P. Wolfer
  • Hans Welzl

Cognition is a loosely defined term with divergent meanings in different disciplines and species. In human psychology, ‘cognition’ is often used in reference to concepts such as ‘mind’ or ‘higher mental functions’. However, in more general terms, ‘cognition’ is regularly used to refer to all manner of information organization by the brain: from collection, to processing, to storage and recognition or recall. Whereas ‘cognition’ would seem to permeate all mental functions, including subjective perception and innate responses, ‘cognitive ability’ has a slightly more specific connotation – something more akin to intelligence or information-processing ability. Thus, ‘cognition’ deals with mental process structure and ‘cognitive abilities’ with natural variations impinging upon functioning at the higher end of that structure. Although the term ‘cognition’ sometimes subsumes or substitutes ‘cognitive ability’ in the literature, understanding this methodological distinction allows us to read across the two fields without the misunderstandings that classical cognitive psychologists have sometimes shown for cognitive ability research.

Keywords

NMDA Receptor Synaptic Plasticity Mutant Mouse Water Maze Fear Conditioning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiba, A., Chen, C., Herrup, K., Rosenmund, C., Stevens, C. F., & Tonegawa, S. (1994a). Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell, 79, 365–375.PubMedGoogle Scholar
  2. Aiba, A., Kano, M., Chen, C., Stanton, M. E., Fox, G. D., Herrup, K., et al. (1994b). Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell, 79, 377–388.PubMedGoogle Scholar
  3. Albert, M. S. (1996). Cognitive and neurobiological markers of early Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 93, 13547–13551.PubMedGoogle Scholar
  4. Anderson, B. (1993). Evidence from the rat for a general factor that underlies cognitive performance and that relates to brain size: Intelligence? Neuroscience Letters, 153, 98–102.PubMedGoogle Scholar
  5. Andra, K., Abramowski, D., Duke, M., Probst, A., Wiederhold, K. H., Burki, K., et al. (1996). Expression of APP in transgenic mice: A comparison of neuron-specific promoters. Neurobiology of Aging, 17, 183–190.PubMedGoogle Scholar
  6. Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R., & Van Hoesen, G. W. (1991). The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebral Cortex, 1, 103–116.PubMedGoogle Scholar
  7. Ashe, K. (2001). Learning and memory in transgenic mice modelling Alzheimer’s disease. Learning & Memory, 8, 301–308.Google Scholar
  8. Austin, L., Arendash, G. W., Gordon, M. N., Diamond, D. M., DiCarlo, G., Dickey, C., et al. (2003). Short-term ß-amyloid vaccinations do not improve cognitive performance in cognitively impaired APP+PS1 mice. Behavioral Neuroscience, 117, 478–84.PubMedGoogle Scholar
  9. Bailey, C. H., & Kandel, E. R. (1993). Structural changes accompanying memory storage. Annual Review of Physiology, 55, 397–426.PubMedGoogle Scholar
  10. Bakker, C. R., & Oostra, B. A. (2003). Understanding fragile X syndrome: Insights from animal models. Cytogenet. Genome Research, 100, 111–123.Google Scholar
  11. Balschun, D., Wolfer, D. P., Gass, P., Mantamadiotis, T., Welzl, H., Schutz, G., et al. (2003). Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? The Journal of Neuroscience, 23, 6304–6314.PubMedGoogle Scholar
  12. Berger, S., Wolfer, D. P., Selbach, O., Alter, H., Erdmann, G., Reichardt, H. M., et al. (2006). Loss of the limbic mineralocorticoid receptor impairs behavioral plasticity. Proceedings of the National Academy of Sciences of the United States of America, 103, 195–200.PubMedGoogle Scholar
  13. Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L., & LaFerla, F. M. (2005). Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron, 45, 675–688.PubMedGoogle Scholar
  14. Blendy, J. A., Kaestner, K. H., Schmid, W., Gass, P., & Schütz, G. (1996). Targeting of the CREB gene leads to up-regulation of a novel CREB mRNA isoform. EMBO Journal, 15, 1098–1106.PubMedGoogle Scholar
  15. Bolivar, V., Cook, M., & Flaherty, L. (2000). List of transgenic and knockout mice: Behavioral profiles. Mammalian Genome, 11, 260–274.PubMedGoogle Scholar
  16. Bontekoe, C. J., Bakker, C. E., Nieuwenhuizen, I. M., van der Linde, H., Lans, H., de Lange, D., et al. (2001). Instability of a (CGG)98 repeat in the Fmr1 promotor. Human Molecular Genetics, 10, 1693–1699.Google Scholar
  17. Borchelt, D. R., Thinakaran, G., Eckman, C. B., Lee, M. K., Davenport, F., Ratovitsky, T., et al. (1996). Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron, 17, 1005–1013.PubMedGoogle Scholar
  18. Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., & Silva, A. J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 79, 59–68.PubMedGoogle Scholar
  19. Braak, H., & Braak, E. (1994). Pathology of Alzheimer’s disease. In D. B. Calne (Ed.), Neurodegenerative Diseases (pp. 585–613). Philadelphia: Saunders.Google Scholar
  20. Brambilla, R., Gnesutta, N., Minichiello, L., White, G., Roylance, A. J., Herron, C. E., et al. (1997). A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature, 390, 281–286.PubMedGoogle Scholar
  21. Branchi, I., Bichler, Z., Berger-Sweeney, J., & Ricceri, L. (2003). Animal models of mental retardation: From gene to cognitive function. Neuroscience & Biobehavioral Reviews, 27, 141–153.Google Scholar
  22. Brooks, S. P., Pask, T., Jones, L., & Dunnett, S. B. (2005). Behavioral profiles of inbred mouse strains used as transgenic backgrounds. II: Cognitive tests. Genes, Brain and Behavior, 4, 307–17.Google Scholar
  23. Buhot, M.-C., Wolff, M., Benhassine, N., Costet, P., Hen, R., & Segu, L. (2003). Spatial learning in the 5-HT1B receptor knockout mouse: Selective facilitation/impairment depending on the cognitive demand. Learning & Memory, 10, 466–477.Google Scholar
  24. Bush, A. I. (2001). Therapeutic targets in the biology of Alzheimer’s disease. Current Opinion in Psychiatry, 14, 341–348.Google Scholar
  25. Butcher, L. M., Kennedy, J. K. J., & Plomin, R. (2006). Generalist genes and cognitive neuroscience. Current Opinion in Neurobiology, 16, 145–151.PubMedGoogle Scholar
  26. Carlezon, W. A., Jr., Duman, R. S., & Nestler, E. J. (2005). The many faces of CREB. Trends in Neurosciences, 28, 436–445.PubMedGoogle Scholar
  27. Cavallaro, S., D’Agata, V., Manickam, P., & Alkon, D. L. (2002). Memory-specific temporal profiles of gene expression in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 99, 16279–16284.PubMedGoogle Scholar
  28. Chen, C., & Tonegawa, S. (1997). Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annual Review of Neuroscience, 20, 157–184.PubMedGoogle Scholar
  29. Chishti, M. A., Yang, D. S., Janus, C., Phinney, A. L., Horne, P., Pearson, J., et al. (2001). Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. The Journal of Biological Chemistry, 276, 21562–21570.PubMedGoogle Scholar
  30. Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., et al. (1997). Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid ß-protein in both transfected cells and transgenic mice. Nature Medicine, 3, 67–72.PubMedGoogle Scholar
  31. Conquet, F., Bashir, Z. I., Davies, C. H., Daniel, H., Ferraguti, F., Bordi, F., et al. (1994). Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature, 372, 237–243.PubMedGoogle Scholar
  32. Costa, R. M., & Silva, A. J. (2003). Mouse models of neurofibromatosis type I: Bridging the GAP. Trends in Molecular Medicine, 9, 19–23.PubMedGoogle Scholar
  33. Cremer, H., Lange, R., Christoph, A., Plomann, M., Vopper, G., Roes, J., et al. (1994). Inactivation of the NCAM gene in mice results in size-reduction of the olfactory bulb and deficits in spatial learning. Nature, 367, 455–459.PubMedGoogle Scholar
  34. Crestani, F., Keist, R., Fritschy, J. M., Benke, D., Vogt, K., Prut, L., et al. (2002). Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proceedings of the National Academy of Sciences of the United States of America, 99, 8980–8985.PubMedGoogle Scholar
  35. Crestani, F., Lorez, M., Baer, K., Essrich, C., Benke, D., Laurent, J. P., et al. (1999). Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nature Neuroscience, 2, 833–839.PubMedGoogle Scholar
  36. Crow, T. (2004). Pavlovian conditioning of Hermissenda: Current cellular, molecular, and circuit perspectives. Learning & Memory, 11, 229–38.Google Scholar
  37. Cryan, J. F., Kelly, P. H., Neijt, H. C., Sansig, G., Flor, P. J., & van der Putten, H. (2003). Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. European Journal of Neuroscience, 17, 2409–2417.PubMedGoogle Scholar
  38. Cui, Z., Lindl, K. A., Mei, B., Zhang, S., & Tsien, J. Z. (2005). Requirement of NMDA receptor reactivation for consolidation and storage of nondeclarative taste memory revealed by inducible NR1 knockout. European Journal of Neuroscience, 22, 755–763.PubMedGoogle Scholar
  39. Cui, Z., Wang, H., Tan, Y., Zaia, K. A., Zhang, S., & Tsien, J. Z. (2004). Inducible and reversible NR1 knockout reveals crucial role of the NMDA receptor in preserving remote memories in the brain. Neuron, 41, 781–793.PubMedGoogle Scholar
  40. D’Adamo, P., Welzl, H., Papadimitriou, S., Raffaele di Barletta, M., Tiveron, C., Tatangelo, L., et al. (2002). Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Human Molecular Genetics, 11, 2567–2580.PubMedGoogle Scholar
  41. D’Agata, V., & Cavallaro, S. (2003) Hippocampal gene expression profiles in passive avoidance conditioning. European Journal of Neuroscience, 18, 2835–2841.PubMedGoogle Scholar
  42. Davis, H. P., & Squire, L. R. (1984). Protein synthesis and memory: A review. Psychological Bulletin, 96, 518–559.PubMedGoogle Scholar
  43. Day, M., & Morris, R. G. M. (2001). Memory consolidation and NMDA receptors: Discrepancy between genetic and pharmacological approaches. Science, 293, 755a.Google Scholar
  44. Deutsch, J. A. (1993). Spatial learning in mutant mice. Science, 262, 760–761.PubMedGoogle Scholar
  45. Dineley, K. T., Xia, X., Bui, D., Sweatt, J. D., & Zheng, H. (2002). Accelerated plaque accumulation, associative learning deficits, and up-regulation of alpha 7 nicotinic receptor protein in transgenic mice co-expressing mutant human presenilin 1 and amyloid precursor proteins. The Journal of Biological Chemistry, 277, 22768–22780.PubMedGoogle Scholar
  46. Dluzen, D. E., Gao, X., Story, G. M., Anderson, L. I., Kucera, J., & Walro, J. M. (2001). Evaluation of nigrostriatal dopaminergic function in adult +/+ and +/- BDNF mutant mice. Experimental Neurology, 170, 121–8.PubMedGoogle Scholar
  47. Dodart, J. C., Bales, K. R., Gannon, K. S., Greene, S. J., DeMattos, R. B., Mathis, C., et al. (2002a). Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nature Neuroscience, 5, 452–457.PubMedGoogle Scholar
  48. Dodart, J.-C., Marr, R. A., Koistinaho, M., Gregersen, B. M., Malkani, S., Verma, I. M., et al. (2005). Gene delivery of human apolipoprotein E alters brain A β burden in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 102, 1211–1216.PubMedGoogle Scholar
  49. Dodart, J. C., Mathis, C., Bales, K. R., & Paul, S. M. (2002b). Does my mouse have Alzheimer’s disease? Genes, Brain and Behavior, 1, 142–155.Google Scholar
  50. Drago, J., McColl, C. D., Horne, M. K., Finkelstein, D. I., & Ross, S. A. (2003). Neuronal nicotinic receptors: Insights gained from gene knockout and knockin mutant mice. Cellular and Molecular Life Sciences, 60, 1267–1280.PubMedGoogle Scholar
  51. Duff, K. (1999). Curing amyloidosis: Will it work in humans? Trends in Neurosciences, 22, 485–486.PubMedGoogle Scholar
  52. Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C.-M., Pereztur, J., et al. (1996). Increased amyloid-ß42(43) in brains of mice expressing mutant presenilin 1. Nature, 383, 710–713.PubMedGoogle Scholar
  53. Elgersma, Y., Sweatt, J. D., & Giese, K. P. (2004). Mouse Genetic Approaches to Investigating Calcium/Calmodulin-Dependent Protein Kinase II Function in Plasticity and Cognition The Journal of Neurosciences, 24, 8410–8415.Google Scholar
  54. Frankland, P. W., Cestari, V., Filipkowski, R. K., McDonald, R. J., & Silva, A. J. (1998). The dorsal hippocampus is essential for context discrimination but not for contextual conditioning. Behavioral Neuroscience, 112, 863–874.PubMedGoogle Scholar
  55. Fransen, E., D’Hooge, R., Van Camp, G., Verhoye, M., Sijbers, J., Reyniers, E., et al. (1998). L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Human Molecular Genetetics, 7, 999–1009.Google Scholar
  56. Fratiglioni, L., Small, B. J., Winblad, B., & Bäckman, L. (2001). The Transition from Normal Functioning to Dementia in the Aging Population. In K. Iqbal, S. Sisodia, & B. Winblad (Eds.), Alzheimer’s disease: Advances in etiology, pathogenesis and therapeutics (pp. 3–10). Chichester: John Wiley & Sons. Ltd.Google Scholar
  57. Galsworthy, M. J., Paya-Cano, J. L., Liu, L., Monleòn, S., Gregoryan, G., Fernandes, C., et al. (2005). Assessing reliability, heritability and general cognitive ability in a battery of cognitive tasks for laboratory mice. Behavior Genetics, 35, 675–692.PubMedGoogle Scholar
  58. Galsworthy, M. J., Paya-Cano, J. L., Monleòn, S., & Plomin, R. (2002). Evidence for general cognitive ability (g) in heterogeneous stock (HS) mice and an analysis of potential confounds. Genes, Brain and Behavior, 1, 88–95.Google Scholar
  59. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., et al. (1995). Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature, 373, 523–527.PubMedGoogle Scholar
  60. Gardner, H. (1983) Frames of Mind: The theory of multiple intelligences. New York: Basic Books.Google Scholar
  61. Gass, P., Wolfer, D. P., Balschun, D., Rudolph, D., Frey, U., Lipp, H. P., et al. (1998). Deficits in memory tasks of mice with CREB mutations depend on gene dosage. Learning & Memory, 5, 274–288.Google Scholar
  62. Genoux, D., Haditsch, U., Knobloch, M., Michalon, A., Storm, D., & Mansuy, I. M. (2002). Protein phosphatase 1 is a molecular constraint on learning and memory. Nature, 418, 929–930.Google Scholar
  63. Gerlai, R., McNamara, A., Choi-Lundberg, D. L., Armanini, M., Ross, J., Powell-Braxton, L., et al. (2001). Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation. European Journal of Neuroscience, 14, 1153–63.PubMedGoogle Scholar
  64. Giese, K. P., Friedman, E., Telliez, J. B., Fedorov, N. B., Wines, M., Feig, L. A., et al. (2001). Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide releasing factor 1 (Ras-GRF1). Neuropharmacology, 41, 791–800.PubMedGoogle Scholar
  65. Gilman, S., Koller, M., Black, R. S., Jenkins, L., Griffith, S. G., Fox, N. C., et al. (2005). Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology, 64, 1553–1562.PubMedGoogle Scholar
  66. Grant, S. G., O’Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P., & Kandel, E. R. (1992). Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science, 258, 1903–10.PubMedGoogle Scholar
  67. Greenberg, B. D., Savage, M. J., Howland, D. S., Ali, S. M., Siedlak, S. L., Perry, G., et al. (1996). APP transgenesis: Approaches toward the development of animal models for Alzheimer disease neuropathology. Neurobiology of Aging, 17, 153–171.PubMedGoogle Scholar
  68. Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.PubMedGoogle Scholar
  69. Higgins, G. A., & Jacobsen, H. (2003). Transgenic mouse models of Alzheimer’s disease: Phenotype and application. Behavioural Pharmacology, 14, 419–438.PubMedGoogle Scholar
  70. Hock, C., Konietzko, U., Papassotiropoulos, A., Wollmer, A., Streffer, J., von Rotz, R., et al. (2002). Generation of antibodies specific for ß-amyloid by vaccination of patients with Alzheimer disease. Nature Medicine, 8, 1270–1275.PubMedGoogle Scholar
  71. Hock, C., Konietzko, U., Streffer, J. R., Tracy, J., Signorell, A., Muller-Tillmanns, B., et al. (2003). Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron, 38, 547–554.PubMedGoogle Scholar
  72. Holcomb, L. A., Gordon, M. N., Jantzen, P., Hsiao, K., Duff, K., & Morgan, D. (1999). Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: Lack of association with amyloid deposits. Behavior Genetics, 29, 177–185.PubMedGoogle Scholar
  73. Holcomb, L., Gordon, M. N., McGowan, E., Yu, X., Benkovic, S., Jantzen, P., et al. (1998). Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nature Medicine, 4, 97–100.PubMedGoogle Scholar
  74. Hölscher, C., Schmid, S., Pilz, P. K. D., Sansig, G., van der Putten, H., & Plappert, C. F. (2004). Lack of the metabotropic glutamate receptor subtype 7 selectively impairs short-term working memory but not long-term memory. Behavioural Brain Research, 154, 473–481.PubMedGoogle Scholar
  75. Horn, R., Ostertun, B., Fric, M., Solymosi, L., Steudel, A., & Möller, H.-J. (1996). Atrophy of hippocampus in patients with Alzheimer’s Disease and other diseases with memory impairment. Dementia, 7, 182–186.PubMedGoogle Scholar
  76. Hsiao, K. K., Borchelt, D. R., Olson, K., Johannsdottir, R., Kitt, C., Yunis, W., et al. (1995). Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron, 15, 1203–1218.PubMedGoogle Scholar
  77. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., et al. (1996). Correlative memory deficits, a-beta elevation, and amyloid plaques in transgenic mice. Science, 274, 99–102.PubMedGoogle Scholar
  78. Huerta, P. T., Sun, L. D., Wilson, M. A., & Tonegawa, S. (2000). Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron, 25, 473–80.PubMedGoogle Scholar
  79. Hyman, B. T., Van Hoesen, G. W., Damasio, A. R., & Barnes, C. L. (1984). Alzheimer’s Disease: Cell-specific pathology isolates the hippocampus formation. Science, 225, 1168–1170.PubMedGoogle Scholar
  80. Inlow, J. K., & Restifo, L. L. (2004). Molecular and comparative genetics of mental retardation. Genetics, 166, 835–881.PubMedGoogle Scholar
  81. Janus, C. (2003). Vaccines for Alzheimer’s disease: how close are we? CNS Drugs, 17, 457–538.PubMedGoogle Scholar
  82. Janus, C., D’Amelio, S., Amitay, O., Chishti, M. A., Strome, R., Fraser, P., et al. (2000a). Spatial learning in transgenic mice expressing human presenilin 1 (PS1) transgenes. Neurobiology of Aging, 21, 541–549.PubMedGoogle Scholar
  83. Janus, C., Pearson, J., McLaurin, J., Mathews, P. M., Jiang, Y., Schmidt, S. D., et al. (2000b). A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature, 408, 979–982.PubMedGoogle Scholar
  84. Janus, C., Phinney, A. L., Chishti, M. A., & Westaway, D. (2001). New developments in animal models of Alzheimer’s disease. Current Neurology and Neuroscience Reports, 1, 451–457.PubMedGoogle Scholar
  85. Janus, C., & Westaway, D. (2001). Transgenic mouse models of Alzheimer’s disease. Physiology & Behavior, 73, 873–886.Google Scholar
  86. Jope, R. S., Song, L., & Powers, R. E. (1997). Cholinergic activation of phosphoinositide signaling is impaired in Alzheimer’s disease brain. Neurobiology of Aging, 18, 111–120.PubMedGoogle Scholar
  87. Jin, P., & Warren, S. T. (2003). New insights into fragile X syndrome: From molecules to neurobehaviors. Trends in Biochemical Sciences, 28, 152–158.PubMedGoogle Scholar
  88. Kandel, E. R. (2001). The molecular biology of memory storage: A dialogue between genes and synapses. Science, 294, 1030–1038.PubMedGoogle Scholar
  89. Kew, J. N.-C., Koester, A., Moreau, J.-L., Jenck, F., Ouagazzal, A.-M., Mutel, V., et al. (2000). Functional consequences of reduction in NMDA receptor glycine affinity in mice carrying targeted point mutations in the glycine binding site. The Journal of Neuroscience, 20, 4037–4049.PubMedGoogle Scholar
  90. Kim, D., Chae, S., Lee, J., Yang, H., & Shin, H. S. (2005). Variations in the behaviors to novel objects among five inbred strains of mice. Genes, Brain and Behavior, 4, 302–6.Google Scholar
  91. Kishimoto, Y., Kawahara, S., Kirino, Y., Kadotani, H., Nakamura, Y., Ikeda, M., et al. (1997). Conditioned eyeblink response is impaired in mutant mice lacking NMDA receptor subunit NR2A. Neuroreport, 8, 3717–3721.PubMedGoogle Scholar
  92. Kishimoto, Y., Kawahara, S., Mori, H., Mishina, M., & Kirino, Y. (2001a). Long-trace interval eyeblink conditioning is impaired in mutant mice lacking the NMDA receptor subunit ε1. European Journal of Neuroscience, 13, 1221–1227.PubMedGoogle Scholar
  93. Kishimoto, Y., Kawahara, S., Suzuki, M., Mori, H., Mishina, M., & Kirino, Y. (2001b). Classical eyeblink conditioning in glutamate receptor subunit delta 2 mutant mice is impaired in the delay paradigm but not in the trace paradigm. European Journal of Neuroscience, 13, 1249–53.PubMedGoogle Scholar
  94. Kobayashi, K., & Kobayashi, T. (2001). Genetic evidence for noradrenergic control of long-term memory consolidation. Brain and Development, 23, S16–S23.PubMedGoogle Scholar
  95. Kogan, J. H., Frankland, P. W., Blendy, J. A., Coblentz, J., Marowitz, Z., Schutz, G., et al. (1996). Spaced training induces normal long-term memory in CREB mutant mice. Current Biology, 7, 1–11.Google Scholar
  96. Kooy, R. F. (2003). Of mice and the fragile X syndrome. Trends in Genetics, 19, 148–154.PubMedGoogle Scholar
  97. Kotilinek, L. A., Bacskai, B., Westerman, M., Kawarabayashi, T., Younkin, L., Hyman, B. T., et al. (2002). Reversible memory loss in a mouse transgenic model of Alzheimer’s disease. The Journal of Neuroscience, 22, 6331–6335.PubMedGoogle Scholar
  98. Lamb, B. T., Sisodia, S. S., Lawler, A. M., Slunt, H. H., Kitt, C. A., Kearns, W. G., et al. (1993). Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice. Nature Genetics, 5, 22–30.PubMedGoogle Scholar
  99. Law, J. W. S., Lee, A. Y. W., Sun, M., Nikonenko, A. G., Chung, S. K., Dityatev, A., et al. (2003). Decreased anxiety, altered place learning, and increased CA1 basal excitatory synaptic transmission in mice with conditional ablation of the neural cell adhesion molecule L1. The Journal of Neuroscience, 23, 10419–10432.PubMedGoogle Scholar
  100. Lee, V. M., Goedert, M., & Trojanowski, J. Q. (2001). Neurodegenerative tauopathies. Annual Review of Neuroscience, 24, 1121–1159.PubMedGoogle Scholar
  101. Leil, T. A., Ossadtchi, A., Cortes, J. S., Leahy, R. M., & Smith, D. J. (2002). Finding new candidate for learning and memory. Journal of Neuroscience Research, 68, 127–137.PubMedGoogle Scholar
  102. Leil, T. A., Ossadtchi, A., Nichols, T. E., Leahy, R. M., & Smith, D. J. (2003). Genes regulated by learning in the hippocampus. Journal of Neuroscience Research, 71, 763–768.PubMedGoogle Scholar
  103. Letwin, N. E., Kafkafi, N., Benjamini, Y., Mayo, C., Frank, B. C., Luu, T., et al. (2006). Combined application of behavior genetics and microarray analysis to identify regional expression themes and gene–behavior associations. The Journal of Neuroscience, 26, 5277–87.PubMedGoogle Scholar
  104. Li, F., Calingasan, N. Y., Yu, F., Mauck, W. M., Toidze, M., Almeida, C. G., et al. (2004). Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. Journal of Neurochemistry, 89, 1308–1312.PubMedGoogle Scholar
  105. Linnarsson, S., Bjorklund, A., & Ernfors, P. (1997). Learning deficit in BDNF mutant mice. European Journal of Neuroscience, 9, 2581–7.PubMedGoogle Scholar
  106. Locurto, C., Fortin, E., & Sullivan, R. (2003). The structure of individual differences in Heterogeneous Stock mice across problem types and motivational systems. Genes, Brain and Behavior, 2, 40–55.Google Scholar
  107. Lonze, B. E., & Ginty, D. D. (2002). Function and regulation of CREB family transcription factors in the nervous system. Neuron, 35, 605–623.PubMedGoogle Scholar
  108. Lu, Y.-M., Jia, Z., Janus, C., Henderson, J. T., Gerlai, R., Wojtowicz, J. M., et al. (1997). Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. The Journal of Neuroscience, 17, 5196–5205.PubMedGoogle Scholar
  109. Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience, 25, 103–126.PubMedGoogle Scholar
  110. Masugi, M., Yokoi, M., Shigemoto, R., Muguruma, K., Watanabe, Y., Sansig, G., et al. (1999). Metabotropic glutamate receptor subtype 7 ablation causes deficit in fear response and conditioned taste aversion. The Journal of Neuroscience, 19, 955–963.PubMedGoogle Scholar
  111. Matsui, M., Yamada, S., Oki, T., Manabe, T., Taketo, M. M., & Ehlert, F. J. (2004). Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sciences, 75, 2971–2981.PubMedGoogle Scholar
  112. Mattson, M. P., & Pedersen, W. A. (1998). Effects of amyloid precursor protein derivatives and oxidative stress on basal forebrain cholinergic systems in Alzheimer’s disease. International Journal of Developmental Neuroscience, 16, 737–753.PubMedGoogle Scholar
  113. Matzel, L. D., Han, Y. R., Grossman, H., Karnik, M. S., Patel, D., Scott, N., et al. (2003). Individual differences in the expression of a ‘general’ learning ability in mice. The Journal of Neuroscience, 23, 6423–6433.PubMedGoogle Scholar
  114. Mazzucchelli, C., Vantaggiato, C., Ciamei, A., Fasano, S., Pakhotin, P., Krezel, W., et al. (2002). Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron, 34, 807–820.PubMedGoogle Scholar
  115. McManus, M. T., & Sharp, P. A. (2002). Gene silencing in mammals by small interfering RNAs. Nature Reviews Genetics, 3, 737–747.PubMedGoogle Scholar
  116. Michalon, A., Koshibu, K., Baumgartel, K., Spirig, D. H., & Mansuy, I. M. (2005). Inducible and neuron-specific gene expression in the adult mouse brain with the rtTA2S-M2 system. Genesis, 43, 205–12.PubMedGoogle Scholar
  117. Minichiello, L., Korte, M., Wolfer, D., Kuhn, R., Unsicker, K., Cestari, V., et al. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron, 24, 401–14.PubMedGoogle Scholar
  118. Miyamoto, Y., Yamada, K., Noda, Y., Mori, H., Mishina, M., & Nabeshima, T. (2001). Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor 1 subunit. The Journal of Neuroscience, 21, 750–757.PubMedGoogle Scholar
  119. Moechars, D., Dewachter, I., Lorent, K., Reverse, D., Baekelandt, V., Naidu, A., et al. (1999). Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. Journal of Biological Chemistry, 274, 6483–6492.PubMedGoogle Scholar
  120. Moran, J. L., Bolton, A. D., Tran, P. V., Brown, A., Dwyer, N. D., Manning, D. K., et al. (2006). Utilization of a whole genome SNP panel for efficient genetic mapping in the mouse. Genome Research, 16, 436–440.PubMedGoogle Scholar
  121. Moriya, T., Kouzu, Y., Shibata, S., Kadotani, H., Fukunaga, K., Miyamoto, E., et al. (2000). Close linkage between calcium/calmodulin kinase II ±/β and NMDA-2A receptors in the lateral amygdala and significance for retrieval of auditory fear conditioning. European Journal of Neuroscience, 12, 3307–14.PubMedGoogle Scholar
  122. Morley, K. I., & Montgomery, G. W. (2001). The genetics of cognitive processes: Candidate genes in humans and animals. Behavior Genetics, 31, 511–531.PubMedGoogle Scholar
  123. Morris, R. G., Anderson, E., Lynch, G. S., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319, 774–776.PubMedGoogle Scholar
  124. Morrison, J. H., & Hof, P. R. (1997). Life and death of neurons in the aging brain. Science, 278, 412–419.PubMedGoogle Scholar
  125. Mucke, L., Masliah, E., Yu, G. Q., Mallory, M., Rockenstein, E. M., Tatsuno, G., et al. (2000). High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. The Journal of Neuroscience, 20, 4050–4058.PubMedGoogle Scholar
  126. Müller, U. (1999). Ten years of gene targeting: Targeted mouse mutants, from vector design to phenotype analysis. Mechanisms of Development, 82, 3–21.PubMedGoogle Scholar
  127. Nakazawa, K., McHugh, T. J., Wilson, M. A., & Tonegawa, S. (2004). NMDA receptors, place cells and hippocampal spatial memory. Nature Review Neuroscience, 5, 361–372.Google Scholar
  128. Nimchinsky, E. A., Sabatini, B. L., & Svoboda, K. (2002). Structure and function of dendritic spines. Annual Review of Physiology, 64, 313–53.PubMedGoogle Scholar
  129. Novina, C. D., & Sharp, P. A. (2004). The RNAi revolution. Nature, 430, 161–164.PubMedGoogle Scholar
  130. Oddo, S., Caccamo, A., Kitazawa, M., Tseng, B. P., & LaFerla, F. M. (2003a). Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiology of Aging, 24, 1063–1070.PubMedGoogle Scholar
  131. Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., et al. (2003b). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron, 39, 409–421.PubMedGoogle Scholar
  132. Oitzl, M. S., de Kloet, E. R., Joels, M., Schmid, W., & Cole, T. J. (1997). Spatial learning deficits in mice with a targeted glucocorticoid receptor gene disruption. European Journal of Neuroscience, 9, 2284–96.PubMedGoogle Scholar
  133. Oitzl, M. S., Reichardt, H. M., Joels, M., & de Kloet, E. R. (2000). Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 98, 12790–12795.Google Scholar
  134. Orgogozo, J. M., Gilman, S., Dartigues, J. F., Laurent, B., Puel, M., Kirby, L. C., et al. (2003). Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology, 61, 46–54.PubMedGoogle Scholar
  135. Paratore, S., Alessi, E., Coffa, S., Torrisi, A., Mastrobuono, F., & Cavallaro, S. (2006). Early genomics of learning and memory: A review. Genes, Brain and Behavior, 5, 209–221.Google Scholar
  136. Parish, C. L., Nunan, J., Finkelstein, D. I., McNamara, F. N., Wong, J. Y., Waddington, J. L., et al. (2005). Mice Lacking the 4 Nicotinic Receptor Subunit Fail to Modulate Dopaminergic Neuronal Arbors and Possess Impaired Dopamine Transporter Function. Molecular Pharmacology, 68, 1376–1386.PubMedGoogle Scholar
  137. Petkov, P. M., Cassell, M. A., Sargent, E. E., Donnelly, C. J., Robinson, P., Crew, V., et al. (2004). Development of a SNP genotyping panel for genetic monitoring of the laboratory mouse. Genomics, 83, 902–911.PubMedGoogle Scholar
  138. Pittenger, C., Huang, Y. Y., Paletzki, R. F., Bourtchouladze, R., Scanlin, H., Vronskaya, S., et al. (2002). Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron, 34, 447–462.PubMedGoogle Scholar
  139. Plomin, R. (2001). The genetics of g in human and mouse. Nature Review Neuroscience, 2, 136–141.Google Scholar
  140. Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2001). Behavioral genetics (4th ed.). New York: Worth Publishers.Google Scholar
  141. Plomin, R., & Kosslyn, S. M. (2001). Genes, brain and cognition. Nature Neuroscience, 4, 1153–55.PubMedGoogle Scholar
  142. Plomin, R., & Galsworthy, M.J. (2003). Intelligence and Cognition. In D. N. Cooper (Ed.), Nature Encyclopedia of the Human Genome (Vol. 3, pp. 508–514). London: Nature Publishing Group.Google Scholar
  143. Poirier, R., Jacquot, S., Vaillend, C., Soutthiphong, A. A., Libbey, M., Davis, S., et al. (2006). Deletion of the Coffin–Lowry syndrome gene Rsk2 in mice is associated with impaired spatial learning and reduced control of exploratory behavior. Behavior Genetics, 37, 31–50.PubMedGoogle Scholar
  144. Powell, C. M. (2006). Gene targeting of presynaptic proteins in synaptic plasticity and memory: Across the great divide. Neurobiology of Learning and Memory, 85, 2–15.PubMedGoogle Scholar
  145. Price, J. L., Davies, P. B., Morris, J. C., & White, D. L. (1991). The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiology of Aging, 12, 295–312.PubMedGoogle Scholar
  146. Rabenstein, R. L., Addy, N. A., Caldarone, B. J., Asaka, Y., Gruenbaum, L. M., Peters, L. L., et al. (2005). Impaired synaptic plasticity and learning in mice lacking β-adducin, an actin-regulating protein. The Journal of Neuroscience, 25, 2138–2145.PubMedGoogle Scholar
  147. Rammes, G., Steckler, T., Kresse, A., Schutz, G., Zieglgansberger, W., & Lutz, B. (2000). Synaptic plasticity in the basolateral amygdala in transgenic mice expressing dominant-negative cAMP response element-binding protein (CREB) in forebrain. European Journal of Neuroscience, 12, 2534–2546.PubMedGoogle Scholar
  148. Rampon, C., Tang, Y. P., Goodhouse, J., Shimizu, E., Kyin, M., & Tsien, J. Z. (2000). Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nature Neuroscience, 3, 238–244.PubMedGoogle Scholar
  149. Reisel, D., Bannerman, D. M., Schmitt, W. B., Deacon, R. M. J., Flint, J., Borchardt, T., et al. (2002). Spatial memory dissociations in mice lacking GluR1 Nature Neuroscience, 5, 868–873.PubMedGoogle Scholar
  150. Riedel, G., Platt, B., & Micheau, J. (2003). Glutamate receptor function in learning and memory. Behavioural Brain Research, 140, 1–47.PubMedGoogle Scholar
  151. Robbins, T. W., & Murphy, E. R. (2006). Behavioral pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition. Trends in Pharmacological Sciences, 27, 141–148.PubMedGoogle Scholar
  152. Robles, Y., Vivas-Mejìa, P. E., Ortiz-Zuazaga, H. G., Fèlix, J., Ramos, X., & Peña de Ortiz, S. (2003). Hippocampal gene expression profiling in spatial discrimination learning. Neurobiology of Learning and Memory, 80, 80–95.PubMedGoogle Scholar
  153. Rondi-Reig, L., Petit, G. H., Tobin, C., Tonegawa, S., Mariani, J., & Berthoz, A. (2001). Impaired Sequential Egocentric and Allocentric Memories in Forebrain-Specific-NMDA Receptor Knock-Out Mice during a New Task Dissociating Strategies of Navigation. The Journal of Neuroscience, 26, 4071–4081.Google Scholar
  154. Rousse, I., Beaulieu, S., Rowe, W., Meaney, M. J., Barden, N., & Rochford, J. (1997). Spatial memory in transgenic mice with impaired glucocorticoid receptor function. Neuroreport, 8, 841–845.PubMedGoogle Scholar
  155. Sakagawa, T., Okuyama, S., Kawashima, N., Hozumi, S., Nakagawasai, O., Tadano, T., et al. (2000). Pain threshold, learning and formation of brain edema in mice lacking the angiotensin II type 2 receptor. Life Sciences, 67, 2577–2585.PubMedGoogle Scholar
  156. Sakimura, K., Kutsuwada, T., Ito, I., Manabe, T., Takayama, C., Kushiya, E., et al. (1995). Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor 1 subunit. Nature, 373, 151–155.PubMedGoogle Scholar
  157. Samuel, W., Terry, R. D., Deteresa, R., Butters, N., & Masliah, E. (1994). Clinical Correlates of Cortical and Nucleus Basalis Pathology in Alzheimer Dementia. Archives of Neurology, 51, 772–778.PubMedGoogle Scholar
  158. Sapolsky, R. M. (2003). Altering behavior with gene transfer in the limbic system. Physiology & Behavior, 79, 479–486.Google Scholar
  159. Savitz, J., Solms, M., & Ramesar, R. (2006). The molecular genetics of cognition: Dopamine, COMT and BDNF. Genes, Brain and Behavior, 5, 311–328.Google Scholar
  160. Schmitt, W. B., Deacon, R. M. J., Seeburg, P. H., Rawlins, J. N. P., & Bannerman, D. M. (2003). A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-A-deficient mice. The Journal of Neuroscience, 23, 3953–3959.PubMedGoogle Scholar
  161. Seabrook G. R., & Rosahl, T. W. (1999). Transgenic animals relevant to Alzheimer’s disease. Neuropharmacology, 38, 1–17.PubMedGoogle Scholar
  162. Selcher, J. C., Nekrasova, T., Paylor, R., Landreth, G. E., & Sweatt, J. D. (2001). Mice lacking the ERK1 isoform of MAP kinase are unimpaired in emotional learning. Learning & Memory, 8, 11–19.Google Scholar
  163. Selkoe, D. J. (1997). Alzheimer’s Disease: Genotypes, phenotypes, and treatments. Science, 275, 630–631.PubMedGoogle Scholar
  164. Shahbazian, M. D., Young, J. I., Yuva-Paylor, L. A., Spencer, C. M., Antalffy, B. A., Noebels, J. L., et al. (2002). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35, 243–254.PubMedGoogle Scholar
  165. Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676–679.PubMedGoogle Scholar
  166. Shimizu, E., Tang, Y. P., Rampon, C., & Tsien, J. Z. (2000). NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science, 290, 1170–1174.PubMedGoogle Scholar
  167. Shors, T. J., & Matzel, L. D. (1997). Long-term potentiation: What’s learning got to do with it? Behavioral and Brain Sciences, 20, 597–655.PubMedGoogle Scholar
  168. Sigurdsson, E. M., Scholtzova, H., Mehta, P. D., Frangione, B., & Wisniewski, T. (2001). Immunization with a nontoxic/nonfibrillar amyloid-beta homologous peptide reduces Alzheimer’s disease-associated pathology in transgenic mice. American Journal of Pathology, 159, 439–447.PubMedGoogle Scholar
  169. Silva, A. J., Paylor, R., Wehner, J. M., & Tonegawa, S. (1992). Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science, 257, 206–211.PubMedGoogle Scholar
  170. Spearman, C. (1904). ‘General intelligence’ objectively determined and measured. American Journal of Psychology, 15, 201–293Google Scholar
  171. Spreng, M., Cotecchia, S., & Schenk, F. (2001). A behavioral study of alpha-1b adrenergic receptor knockout mice: Increased reaction to novelty and selectively reduced learning capacities. Neurobiology of Learning and Memory, 75, 214–229.PubMedGoogle Scholar
  172. Sprengel, R., Suchanek, B., Amico, C., Brusa, R., Burnashev, N., Rozov, A., et al. (1998). Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell, 92, 279–289.PubMedGoogle Scholar
  173. Steckler, T., Weis, C., Sauvage, M., Mederer, A., & Holsboer, F. (1999). Disrupted allocentric but preserved egocentric spatial learning in transgenic mice with impaired glucocorticoid receptor function. Behavioural Brain Research, 100, 77–89.PubMedGoogle Scholar
  174. Stork, O., & Welzl, H. (1999). Memory formation and the regulation of gene expression. Cellular and Molecular Life Sciences, 55, 575–592.PubMedGoogle Scholar
  175. Stork, O., Welzl, H., Wolfer, D., Schuster, T., Mantei, N., Stork, S., et al. (2000). Recovery of emotional behavior in neural cell adhesion molecule. (NCAM) null mutant mice through transgenic expression of NCAM180. European Journal of Neuroscience, 12, 3291–3306.PubMedGoogle Scholar
  176. Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K.-H., Mistl, C., Rothacher, S., et al. (1997). Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proceedings of the National Academy of Sciences of the United States of America, 94, 13287–13292.PubMedGoogle Scholar
  177. Sweatt, J. D. (2004). Mitogen-activated protein kinases in synaptic plasticity and memory. Current Opinion in Neurobiology, 14, 311–317.PubMedGoogle Scholar
  178. Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., et al. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 63–69.PubMedGoogle Scholar
  179. Tang, Y. P., Wang, H., Feng, R., Kyin, M., & Tsien, J. Z. (2001). Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology, 41, 779–790.PubMedGoogle Scholar
  180. Thomas, G. M., & Huganir, R. L. (2004). MAPK cascade signalling and synaptic plasticity. Nature Reviews Neuroscience, 5, 173–83.PubMedGoogle Scholar
  181. Thorndike, R. L. (1935). Organization of behavior in the albino rat. Genetic Psychology Monographs, 17, 1–70.Google Scholar
  182. Toga, A. W., & Thompson, P. M. (2005). Genetics of brain structure and intelligence. Annual Review of Neuroscience, 28, 1–23.PubMedGoogle Scholar
  183. Tong, X. K., & Hamel, E. (1999). Regional cholinergic denervation of cortical microvessels and nitric oxide synthase-containing neurons in Alzheimer’s disease. Neuroscience, 92, 163–175.PubMedGoogle Scholar
  184. Tsang, S., Sun, Z., Luke, B., Stewart, C., Lum, N., Gregory, M., et al. (2005). A comprehensive SNP-based genetic analysis of inbred mouse strains. Mammalian Genome, 16, 476–80.PubMedGoogle Scholar
  185. Tsien, J. Z., Huerta, P. T., & Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 87, 1327–1338.PubMedGoogle Scholar
  186. Uchida, S., Sakai, S., Furuichi, T., Hosoda, H., Toyota, K., Ishii, T., et al. (2006). Tight regulation of transgene expression by tetracycline-dependent activator and repressor in brain. Genes, Brain and Behavior, 5, 96–106.Google Scholar
  187. van Leuven, F. (2000). Single and multiple transgenic mice as models for Alzheimer’s disease. Progress in Neurobiology, 61, 305–312.PubMedGoogle Scholar
  188. Victoroff, J., Zarow, C., Mack, W. J., Hsu, E., & Chui, H. C. (1996). Physical aggression is associated with preservation of substantia nigra pars compacta in Alzheimer disease. Archives of Neurology, 53, 428–434.PubMedGoogle Scholar
  189. Waddell, S., & Quinn, W. G. (2001). Flies, genes, and learning. Annual Review of Neuroscience, 24, 1283–1309.PubMedGoogle Scholar
  190. Waltereit, R., & Weller, M. (2003). Signaling from cAMP/PKAto MAPK and synaptic plasticity. Molecular Neurobiology, 27, 99–106.PubMedGoogle Scholar
  191. Weeber, E. J., Levenson, J. M., & Sweatt, J. D. (2002). Molecular genetics of human cognition. Molecular Interventions, 2, 376–391.PubMedGoogle Scholar
  192. Welzl, H., D’Adamo, P., Wolfer, D. P., & Lipp, H. P. (2006). Mouse models of hereditary mental retardation. In G. S. Fisch & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders. R. Lydic & H. A. Baghdoyan (Series Eds.), Contemporary clinical neuroscience (pp. 101–125). Totowa, New Jersey USA: Humana Press.Google Scholar
  193. Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., & Delon, M. R. (1982). Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain. Science, 215, 1237–1239.PubMedGoogle Scholar
  194. Wolfer, D. P., Mohajeri, H. M., Lipp, H. P., & Schachner, M. (1998). Increased flexibility and selectivity in spatial learning of transgenic mice ectopically expressing the neural cell adhesion molecule L1 in astrocytes. European Journal of Neuroscience, 10, 708–717.PubMedGoogle Scholar
  195. Yan, Y., Wang, M., Lemon, W. J., & You, M. (2004). Single nucleotide polymorphism (SNP) analysis of mouse quantitative trait loci for identification of candidate genes. Journal of Medical Genetetics, 41, e111.Google Scholar
  196. Zamanillo, D., Sprengel, R., Hvalby, Ø., Jensen, V., Burnashev, N., Rozov, A., et al. (1999). Importance of AMPA Receptors for Hippocampal Synaptic Plasticity But Not for Spatial Learning. Science, 284, 1805–1811.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Christopher Janus
    • 1
  • Michael J. Galsworthy
    • 2
  • David P. Wolfer
    • 2
  • Hans Welzl
    • 2
  1. 1.Mayo Clinic Jacksonville, Department of NeuroscienceUniversity of FloridaJacksonvilleUSA
  2. 2.Division of Neuroanatomy and BehaviorInstitute of Anatomy, University of ZurichZurichSwitzerland

Personalised recommendations