Canine SINEs and Their Effects on Phenotypes of the Domestic Dog

  • Leigh Anne Clark
  • Jacquelyn M. Wahl
  • Christine A. Rees
  • George M. Strain
  • Edward J. Cargill
  • Sharon L. Vanderlip
  • Keith E. Murphy
Part of the Stadler Genetics Symposia Series book series (SGSS)


Short interspersed elements (SINEs) are mobile elements that contribute to genomic diversity through the addition of genetic material. Recent genomic analyses have vastly augmented our knowledge of both human- and canine-specific SINEs. SINEC_Cf is a major SINE of the canid family that has undergone recent expansion and is thought to be present in half of all genes. To date, only three phenotypes of the domestic dog have been attributed to a SINE. One of these is merle, a coat pattern characterized by patches of full color on a diluted background and associated with ocular and auditory anomalies. A SINEC_Cf in the SILV gene causes merle patterning by altering the cDNA transcript and has unique characteristics that are likely responsible for the random nature of the phenotype.


Brainstem Auditory Evoke Response Autoimmune Lymphoproliferative Syndrome Standard Poodle Centronuclear Myopathy Doberman Pinscher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Clark, L.A., Wahl, J.M., Rees, C.A., and Murphy, K.E., 2006, Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog, Proc. Natl. Acad. Sci. USA 103: 1376–1381.PubMedCrossRefGoogle Scholar
  2. Cordaux, R., and Batzer, M.A., 2006, Teaching an old dog new tricks: SINEs of canine genomic diversity, Proc. Natl. Acad. Sci. USA 103:1157–1158.PubMedCrossRefGoogle Scholar
  3. Dausch, D., Wegner, W., Michaelis, M., and Reetz, I., 1977, Ophthalmologische befunde in einer merlezucht. Dtsch. Tierarztl. Wschr. 84:453–492.Google Scholar
  4. Dewannieux M., Esnault, C., and Heidmann, T., 2003, LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35:41–48.PubMedCrossRefGoogle Scholar
  5. Fletcher, S., Carville, K.S., Howell, J.M., Mann, C.J., and Wilton, S.D., 2001, Evaluation of a short interspersed nucleotide element in the 3’ untranslated region of the defective dystrophin gene of dogs with muscular dystrophy, Am. J. Vet. Res. 62:1964–1968.PubMedCrossRefGoogle Scholar
  6. Ganguly, A., Dunbar, T., Chen, P., Godmilow, L., and Ganguly, T., 2003, Exon skipping caused by an intronic insertion of a young Alu Yb9 element leads to severe hemophilia A, Hum. Genet. 113:348–352.PubMedCrossRefGoogle Scholar
  7. Gelatt, K.N., and McGill, L.D., 1973, Clinical characteristics of microphthalmia with colobomas of the Australian shepherd dog, J. Am. Vet. Med. Assoc. 162:393–396.PubMedGoogle Scholar
  8. Jeoung, D., Myeong, H., Lee, H., Ha, J., Galibert, F., Hitte, C., and Park, C., 2000, A SINE element in the canine D2 dopamine receptor gene and its chromosomal location, Anim. Genet. 31:333–346.CrossRefGoogle Scholar
  9. Kerje, S., Sharma, P., Gunnarsson, U., Kim, H., Bagchi, S., Fredriksson, R., Schultz, K., Jensen, P., von Heijne, G., Okimoto, R., and Andersson, L., 2004, The dominant white, dun and smokey color variants in chickens are associated with insertion/deletion polymorphisms in the PMEL17 gene, Genetics 168:1507–1518.PubMedCrossRefGoogle Scholar
  10. Kijas, J.M.H., Moller, M., Plastow, G., and Anderson, L., 2001, A frameshift mutation in MCR1 and a high frequency of somatic reversions cause black spotting in pigs, Genetics 158:779–785.PubMedGoogle Scholar
  11. Kirkness, E.F., 2006, SINEs of canine genomic diversity, in Elaine A. Ostrander, Urs Giger, Kerstin Lindblad-Toh, eds., The Dog and Its Genome, Cold Spring Harbor Laboratory Press, Woodbury, New York, pp. 209–219.Google Scholar
  12. Kirkness, E.F., Bafna, V., Halpern, A.L., Levy, S., Remington, K., Rusch, D.B., Delcher, A.L., Pop, M., Wang, W., Fraser, C.M., and Venter, J.C., 2003, The dog genome: survey sequencing and comparative analysis, Science 301:1898–1903.PubMedCrossRefGoogle Scholar
  13. Klinkmann, G., Koniszewski, G., and Wegner, W., 1987, Lichtmikroskopische untersuchungen an den corneae von merle-Dachshunden, Dtsch. Tierarztl. Wschr. 94:338–341.Google Scholar
  14. Klinkmann, G., and Wegner, W., 1987, Tonometry in merle dogs, Dtsch. Tierarztl. Wschr. 94:337–338.Google Scholar
  15. Kramerov, D.A., and Vassetzky, N.S., 2005, Short retroposons in eukaryotic genomes, Int. Rev. Cytol. 247:165–221.PubMedCrossRefGoogle Scholar
  16. Kwon, B.S., Halaban, R., Ponnazhagan, S., Kim, K., Chintamaneni, C., Bennett, D., and Pickard, R.T., 1995, Mouse silver mutation is caused by a single base insertion in the putative cytoplasmic domain of Pmel 17, Nucleic Acids Res. 23:154–158.PubMedCrossRefGoogle Scholar
  17. Lander, E.S., and the International Human Genome Sequencing Consortium, 2001, Initial sequencing and analysis of the human genome, Nature 409:860–921.PubMedCrossRefGoogle Scholar
  18. Lin, L., Faraco, J., Li, R., Kadotani, H., Rogers, W., Lin, X., Qiu, X., de Jong, P.J., Nishino, S., and Mignot, E., 1999, The sleep disorder canine narcolepsy is caused by a mutation in the Hypocretin (Orexin) Receptor 2 gene, Cell 98:365–376.PubMedCrossRefGoogle Scholar
  19. Lindblad-Toh, K., Wade, C.M., Mikkelsen, T.S., Karlsson, E.K., Jaffe, D.B., Kamal, M., Clamp, M., Chang, J.L., Kulbokas III, E.J., Zody, M.C. et al., 2005, Genome sequence, comparative analysis and haplotype structure of the domestic dog, Nature 438:803–819.PubMedCrossRefGoogle Scholar
  20. Minnick, M.F., Stillwell, L.C., Heineman, J.M., and Stiegler, G.L., 1992, A highly repetitive DNA sequence possibly unique to canids, Gene 110:235–238.PubMedCrossRefGoogle Scholar
  21. Pele, M., Tiret, L., Kessler, J.L., Blot, S., and Panthier, J.J., 2005, SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dogs, Hum. Mol. Genet. 14:1417–1427.PubMedCrossRefGoogle Scholar
  22. Reetz, I., Stecker, M., and Wegner, W., 1977, Audiometrische befunde in einer merlezucht, Dtsch. Tierarztl. Wschr. 84:253–292.Google Scholar
  23. Roy-Engel, A.M., Salem, A.H., Oyeniran, O.O., Deininger, L., Hedges, D.J., Kilroy, G.E., Batzer, M.A., and Deininger, P.L., 2002, Active Alu element “A-tails”: size does matter, Gen. Res. 12:1333–1344.CrossRefGoogle Scholar
  24. Sorsby, A., and Davey, J.B., 1954, Ocular accociations of dappling (or merling) in the coat color of dogs, J. Genet. 54:425–440.CrossRefGoogle Scholar
  25. Sponenburg, D.P., and Bowling, A.T., 1985, Heritable syndrome of skeletal defects in a family of Australian shepherd dogs, J. Hered. 76:393–394.Google Scholar
  26. Steingrimsson, E., Copeland, N.G., and Jenkins, N.A., 2004, Melanocytes and the microphthalmia transcription factor network, Annu. Rev. Genet. 38:365–411.PubMedCrossRefGoogle Scholar
  27. Strain, G.M., 1999, Congenital deafness and its recognition, Vet. Clin. North Am. Small Anim. Pract. 29:895–907.PubMedGoogle Scholar
  28. Theos, A.C., Truschel, S.T., Raposo, G., and Marks, M.S., 2005, The Silver locus product Pmel17/gp100/Silv/ME20: controversial in name and function, Pigm. Cell Res. 18:322–336.CrossRefGoogle Scholar
  29. Tighe, P.J., Stevens, S.E., Dempsey, S., Le Deist, F., Rieux-Laucat, F., and Edgar, J.D.M., 2002, Inactivation of the Fas gene by Alu insertion: retrotransposition in an intron causing splicing variation and autoimmune lymphoproliferative syndrome, Genes Immun. 3:S66–S70.Google Scholar
  30. Treu, H., Reetz, I., Wegner, W., Krause, D., 1976, Andrological findings in merled Dachshunds, Zuchthygiene 11:49–61.PubMedGoogle Scholar
  31. Ullu, E., and Tschudi, C., 1984, Alu sequences are processes 7SL RNA genes, Nature 312:171–172.PubMedCrossRefGoogle Scholar
  32. Wang, W., and Kirkness, E.F., 2005, Short interspersed elements (SINEs) are a major source of canine genomic diversity, Gen. Res. 15:1798–1808.CrossRefGoogle Scholar
  33. Wilson, W.J., and Mills, P.C., 2005, Brainstem auditory-evoked response in dogs, Am. J. Vet. Res. 66:2177–2187.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Leigh Anne Clark
    • 1
  • Jacquelyn M. Wahl
  • Christine A. Rees
  • George M. Strain
  • Edward J. Cargill
  • Sharon L. Vanderlip
  • Keith E. Murphy
  1. 1.Canine Genetics Laboratory, Department of PathobiologyCollege of Veterinary Medicine, Texas A&M UniversityCollege Station

Personalised recommendations