Variation in Chicken Gene Structure and Expression Associated with Food-Safety Pathogen Resistance: Integrated Approaches to Salmonella Resistance

  • S.J. Lamont
Part of the Stadler Genetics Symposia Series book series (SGSS)


The use of genetics to enhance immune response and microbial resistance in poultry is an environmentally sound approach to incorporate into comprehensive health programs. Many research strategies can be used to investigate the relationship of host genetics with immune response and disease resistance. Gene discovery to enhance poultry health and food safety should build upon well-defined genetic populations, cell lines, gene identification, genome maps, comparative genomics, and analysis of gene expression. Because each investigative approach has its own shortfalls, the strongest level of confidence comes from the convergence of evidence from an integrated approach of several independent experimental designs, such as whole-genome scans, candidate gene analyses, and functional genomics studies, all supporting the relationship of a specific gene with a resistance or immunity trait. Defining the causal genes, including genomic location and organization, epistatic and pleiotropic effects, and the encoded protein function, opens the door for genetic selection to improve health and also for enhancement of vaccine efficacy and innate immunity. This chapter reviews the rationale and strategies for uncovering genetic resistance to food-safety pathogens in poultry and summarizes successes in elucidating the genetic control of host resistance to Salmonella.


Quantitative Trait Locus Single Nucleotide Polymorphism Quantitative Trait Locus Region Chicken Genome Foodborne Pathogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abasht, B., Dekkers, J.C.M., and Lamont, S.J., 2006, Review of quantitative trait loci identified in the chicken, Poultry Sci. 85:2079–2096.Google Scholar
  2. Beaumont, C., Protais, J., Guillot, J. F., Colin, P., Proux, K., Millet, N., and Pardon, P., 1999, Genetic resistance to mortality of day-old chicks and carrier-state of hens after inoculation with Salmonella enteritidis, Avian Pathol. 28:131–135.CrossRefGoogle Scholar
  3. Beaumont, C., Protais, J., Pitel, F., Leveque, G., Malo, D., Lantier, F., Plisson-Petit, F., Colin, P., Protais, M., Le Roy, P., Elsen, J. M., Milan, D., Lantier, I., Neau, A., Salvat, G., and Vignal, A., 2003, Effect of two candidate genes on the Salmonella carrier state in fowl, Poultry Sci. 82:721–726.Google Scholar
  4. Berthelot, F., Beaumont, C., Mompart, F., Girard-Santosuosso, O., Pardon, P., and Duchet-Suchaux, M., 1998, Estimated heritability of the resistance to cecal carrier state of Salmonella enteritidis in chickens, Poultry Sci. 77:797–801.Google Scholar
  5. Biggs, P.M., 1982, The world of poultry diseases, Avian Path. 11:281–300.CrossRefGoogle Scholar
  6. Burt, D.W., 2005, Chicken genome: Current status and future opportunities, Genome Res. 15:1692–1698.PubMedCrossRefGoogle Scholar
  7. Cheeseman, J.H., Kaiser, M.G., Ciraci, C., Kaiser, P., and Lamont, S.J., 2007, Breed effect on early cytokine mRNA expression in spleen and cecum of chickens with and without Salmonella enteritidis infection, Dev. Comp. Immunol. 31:52–60.PubMedCrossRefGoogle Scholar
  8. Cotter, P.F., Taylor, R.L., Jr., and Abplanalp, H., 1998, B-complex associated immunity to Salmonella enteritidis challenge in congenic chickens, Poultry Sci. 77:1846–1851.Google Scholar
  9. Doyle, M., and Erickson, M.C., 2006, Reducing the carriage of foodborne pathogens in livestock and poultry, Poultry Sci. 85:960–973.Google Scholar
  10. Gast, R.K. and Holt, P.S., 1998, Persistence of Salmonella enteritidis from one day of age until maturity in experimentally infected layer chickens, Poultry Sci. 77:1759–1762.Google Scholar
  11. Girard-Santosuosso, O., Bumstead, N., Lantier, I., Protais, J., Colin, P., Guillot, J.F., Beaumont, C., Malo, D., and Lantier, F., 1997, Partial conservation of the mammalian NRAMP1 syntenic group on chicken chromosome 7, Mamm. Genome 8:614–616.PubMedCrossRefGoogle Scholar
  12. Girard-Santosuosso, O., Lantier, F., Lantier, I., Bumstead, N., Elsen, J. M., and Beaumont, C., 2002, Heritability of susceptibility to Salmonella enteritidis infection in fowls and test of the role of the chromosome carrying the NRAMP1 gene, Genet. Sel. Evol. 34:211–219.PubMedCrossRefGoogle Scholar
  13. Hasenstein, J.R., Zhang, G., and Lamont, S.J., 2006, Analyses of five gallinacin genes and the Salmonella enterica serovar Enteritidis response in poultry, Infect. Immun. 74:3375–3380.PubMedCrossRefGoogle Scholar
  14. Hillier, L.W., Miller, W., Birney, E., Warren, W., Hardison, R.C., et al., 2004, Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution, Nature 432:695–716.CrossRefGoogle Scholar
  15. Hocking, P.M., 2005, Review on QTL mapping results in chickens, World’s Poult. Sci. J. 61:215–226.CrossRefGoogle Scholar
  16. Hu, J., Bumstead, N., Barrow, P., Sebastiani, G., Olien, L., Morgan, K., and Malo, D., 1997, Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC, Genome Res. 7:693–704.PubMedGoogle Scholar
  17. Kaiser, M.G., Cheeseman, J.H., Kaiser, P., and Lamont, S.J 2006, Cytokine expression in chicken peripheral blood mononuclear cells after in vitro exposure to Salmonella enterica serovar Enteritidis, Poultry Sci. 85:1907–1911.Google Scholar
  18. Kaiser, M.G., Lakshmanan, N., Wing, T., and Lamont, S.J., 2002, Salmonella enterica serovar enteritidis burden in broiler breeder chicks genetically associated with vaccine antibody response, Avian Dis. 46:25–31.PubMedCrossRefGoogle Scholar
  19. Kaiser, M.G., and Lamont, S.J., 2002, Microsatellites linked to Salmonella enterica serovar Enteritidis burden in spleen and cecal content of young F1 broiler-cross chicks, Poultry Sci. 81:657–663.Google Scholar
  20. Klasing, K.C., and Korver, D.R., 1997, Leukocytic cytokines regulate growth rate and composition following activation of the immune system, J. Anim. Sci. 75:58–67.Google Scholar
  21. Kaiser, M.G., Wing, T., Cahaner, A., and Lamont, S.J., 1997, Aviagen, 12th International Symposium on Current Problems in Avian Genetics, Prague, Czech Republic.Google Scholar
  22. Kramer, J., Malek, M., and Lamont, S.J., 2003, Association of twelve candidate gene polymorphisms and response to challenge with Salmonella enteritidis in poultry, Anim. Genet. 34:339–348.PubMedCrossRefGoogle Scholar
  23. Kramer, T.T., Reinke, C.R., and James, M., 1998, Reduction of fecal shedding and egg contamination of Salmonella enteritidis by increasing the number of heterophil adaptations, Avian Dis. 42:585–588.PubMedCrossRefGoogle Scholar
  24. Lamont, S.J., 1998, Impact of genetics on disease resistance, Poult Sci. 77:1111–1118.PubMedGoogle Scholar
  25. Lamont, S.J., Kaiser, M.G., and Liu, W., 2002, Candidate genes for resistance to Salmonella enteritidis colonization in chickens as detected in a novel genetic cross, Vet. Immunol. Immunop. 87:423–428.CrossRefGoogle Scholar
  26. Lamont, S.J., Pinard-van der Laan, M.-H., Cahaner, A., van der Poel, J.J., and Parmentier, H.K., 2003, Selection for disease resistance: direct selection on the immune response, in W.M. Muir and S.E. Aggrey, eds., Poultry Genetics, Breeding and Biotechnology, CAB International, Oxon UK, pp. 399–418.Google Scholar
  27. Leveque, G., Forgetta, V., Morroll, S., Smith, A.L., Bumstead, N., Barrow, P., Loredo-Osti, J.C., Morgan, K., and Malo, D., 2003, Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in chickens, Infect. Immun. 71:1116–1124.PubMedCrossRefGoogle Scholar
  28. Lillehoj, H.S., Ruff, M.D., Bacon, L.D., Lamont, S.J., and Jeffers, T.K., 1989, Genetic control of immunity to Eimeria tenella. Interaction of MHC genes and non-MHC linked genes influences levels of disease susceptibility in chickens, Vet. Immunol. Immunop. 20:135–148.CrossRefGoogle Scholar
  29. Liu, H.C., Cheng, H.H., Tirunagaru, V., Sofer, L., and Burnside, J., 2001, A strategy to identify positional candidate genes conferring Marek’s disease resistance by integrating DNA microarrays and genetic mapping, Anim. Genet. 32:351–359.PubMedCrossRefGoogle Scholar
  30. Liu, W., Kaiser, M.G., and Lamont, S.J., 2003, Natural resistance-associated macrophage protein 1 gene polymorphisms and response to vaccine against or challenge with Salmonella enteritidis in young chicks, Poultry Sci. 82:259–266.Google Scholar
  31. Liu, W., and Lamont, S.J., 2003, Candidate gene approach: potentional association of caspase-1,inhibitor of apoptosis protein-1, and prosaposin gene polymorphisms with response to Salmonella enteritidis challenge or vaccination in young chicks, Anim. Biotechnol. 14:61–76.PubMedCrossRefGoogle Scholar
  32. Liu, W., Miller, M. M., and Lamont, S.J., 2002, Association of MHC class I and class II gene polymorphisms with vaccine or challenge response to Salmonella enteritidis in young chicks, Immunogenetics 54:582–590.PubMedCrossRefGoogle Scholar
  33. Malek, M., Hasenstein, J.R., and Lamont, S.J., 2004, Analysis of chicken TLR4, CD28, MIF,MD-2, and LITAF genes in a Salmonella enteritidis resource population, Poultry Sci. 83:544–549.Google Scholar
  34. Malek, M., and Lamont, S.J., 2003, Association of INOS, TRAIL, TGF-beta2, TGF-beta3, and IgL genes with response to Salmonella enteritidis in poultry, Genet. Sel. Evol. 35 (Suppl 1):S99–S111.PubMedCrossRefGoogle Scholar
  35. Mariani, P., Barrow, P.A., Cheng, H.H., Groenen, M.M., Negrini, R., and Bumstead, N., 2001, Localization to chicken chromosome 5 of a novel locus determining salmonellosis resistance, Immunogenetics 53:786–791.PubMedCrossRefGoogle Scholar
  36. McElroy, J.P., Dekkers, J.C.M., Fulton, J.E., O’Sullivan, N.P., Soller, M., Lipkin, E., Zhang, W., Koehler, K.J., Lamont, S.J., and Cheng, H.H., 2005, Microsatellite markers associated with resistance to Marek’s disease in commercial layer chickens, Poultry Sci. 84:1678–1688.Google Scholar
  37. Morgan, R.W., Sofer, L., Anderson, A.S., Bernberg, E.L., Cui, J., and Burnside, J., 2001, Induction of host gene expression following infection of chicken embryo fibroblasts with oncogenic Marek’s disease virus, J. Virol. 75:533–539.PubMedCrossRefGoogle Scholar
  38. Tilquin, P., Barrow, P.A., Marly, J., Pitel, F., Plisson-Petit, F., Velge, P., Vignal, A., Baret, P.V., Bumstead, N., and Beaumont, C., 2005, A genome scan for quantitative trait loci affecting the Salmonella carrier-state in the chicken, Genet. Sel. Evol. 37:539–561.PubMedCrossRefGoogle Scholar
  39. Wong, G.K., Liu, B., Wang, J., Zhang, Y., Yang, X., et al., 2004, A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms, Nature 432:717–722.PubMedCrossRefGoogle Scholar
  40. Yonash, N., Bacon, L.D., Witter, R.L., and Cheng, H.H., 1999, High resolution mapping and identification of new quantitative trait loci (QTL) affecting susceptibility to Marek’s disease, Anim. Genet. 30:126–135.PubMedCrossRefGoogle Scholar
  41. Zhou, H., and Lamont, S.J., 2007, Global gene expression profile after Salmonella enterica Serovar enteritidis challenge in two F8 advanced intercross chicken lines. Cytogenet, Genome Res. 117:131–138.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S.J. Lamont
    • 1
  1. 1.Department of Animal ScienceIowa State UniversityAmesUSA

Personalised recommendations