Skip to main content

Xanthomonas oryzae pv. oryzae AvrXA21 Activity Is Dependent on a Type One Secretion System, Is Regulated by a Two-Component Regulatory System that Responds to Cell Population Density, and Is Conserved in Other Xanthomonas spp.

  • Chapter
Genomics of Disease

Part of the book series: Stadler Genetics Symposia Series ((SGSS))

  • 1334 Accesses

Abstract

The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae (Xoo) strains expressing the pathogen-associated molecule, AvrXA21. XA21 codes for a receptor-like kinase consisting of an extracellular leucine rich repeat (LRR) domain, a transmembrane domain, and a cytoplasmic kinase domain (Ronald et al., 1992; Song et al., 1995). We show that AvrXA21 activity requires the presence of rax (required for AvrXA21) A, raxB, and raxC genes that encode components of a type one secretion system (TOSS). In contrast, an hrpC- strain deficient in type three secretion maintains AvrXA21 activity. Xanthomonas campestris pv. campestris (Xcc) can express AvrXA21 activity if raxST, encoding a putative sulfotransferase, and raxA are provided in trans. Expression of rax genes is dependent on population density and other functioning rax genes, suggesting that AvrXA21 is involved in quorum sensing and that the AvrXA21 pathogen-associated molecule represents an entirely new class of Gramnegative bacterial signaling molecules. We discuss the implications of these results for models of plant innate immunity.

Here, we provide a brief overview of some of the major concepts and molecular features of plant and animal innate immune system perception. We then describe new results from our studies of the XA21–AvrXA21 interaction and discuss how these results call for some modifications in the way we think about plant innate immunity strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ausubel, F.M., 2005, Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6:973–979.

    Article  PubMed  CAS  Google Scholar 

  • Barton, G.M., and Medzhitov, R., 2003, Toll-like receptor signaling pathways, Science 300: 1524–1525.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, K.G., and Bertozzi, C.R., 1999, Carbohydrate sulfotransferases: mediators of extracellular communication, Chem. Biol. 6:R9.

    Article  PubMed  CAS  Google Scholar 

  • Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B., and Kleinhofs, A., 2002, The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases, Proc. Nat. Acad. Sci. USA 99:9328–9333.

    Article  PubMed  CAS  Google Scholar 

  • Brunner, F., Rosahl, S., Lee, J., Rudd, J. J., Geiler, C., Kauppinen, S., Rasmussen, G., Scheel, D., and Nuernberger, T., 2002, Pep-13, a plant defence-inducing pathogen-associated pattern from Phytophthora transglutaminases, EMBO 21:6681–6688.

    Article  CAS  Google Scholar 

  • Burdman, S., Shen, Y., Lee, S.-W., Xue, Q., and Ronald, P., 2004, RaxH/RaxR: A Two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity, MPMI 17:602–612.

    PubMed  CAS  Google Scholar 

  • Charles, T.C., Jin, S., and Nester, E.W., 1992, Two-component sensory transduction systems in phytobacteria, Ann. Rev. Phytopath. 30:463–484.

    Article  CAS  Google Scholar 

  • Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., Liu, G., Xu, J., Ling, Z., Cao, G., Ma, B., Wang, Y., Zhao, X., Li, S., and Zhu, L., 2006, A B-lectin receptor kinase gene conferring rice blast resistance, Plant J. 46:794–804.

    Article  PubMed  CAS  Google Scholar 

  • Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G., 2006, The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception, Plant Cell 18:465–476.

    Article  PubMed  CAS  Google Scholar 

  • Chisholm, S. T., Coaker, G., Day, B., and Staskawicz, B.J., 2006, Host-microbe interactions: shaping the evolution of the plant immune response, Cell 124:803–814.

    Article  PubMed  CAS  Google Scholar 

  • Dangl, J.L., and Jones, J.D.G., 2001, Plant pathogens and integrated defence responses to infection, Nature 411:826.

    Article  PubMed  CAS  Google Scholar 

  • Dardick, C., and Ronald, P., 2006, Plant and animal pathogen recognition receptors signal through non-RD kinases, PLoS Pathog 2:e2.

    Article  PubMed  Google Scholar 

  • Dodds, P.N., Lawrence, G.J., Catanzariti, A.M., Teh, T., Wang, C.I., Ayliffe, M.A., Kobe, B., and Ellis, J.G., 2006, Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes, Proc. Nat. Acad. Sci. USA 103:8888–8893.

    Article  PubMed  CAS  Google Scholar 

  • Erbs, G., and Newman, M.-A., 2003, The role of lipololysaccharides in induction of plant defence responses, Mol. Plant Path. 4:421–425.

    Article  CAS  Google Scholar 

  • Fuqua, W.C., Winans, S.C., and Greenberg, E.P., 1994, Quorum sensing in bacteria: the LuxR-Lux1 family of cell density-responsive transcriptional regulators, J. Bacteriol. 176:269–275.

    PubMed  CAS  Google Scholar 

  • Felix, G., Duran, J.D., Volko, S., and Boller, T., 1999, Plants have a sensitive perception system for the most conserved domain of bacterial flagellin, Plant J. 18:265–279.

    Article  PubMed  CAS  Google Scholar 

  • Flor, H.H., 1971, Current status of the gene for gene concept. Ann. Rev. Phytopath. 9:275–296.

    Article  Google Scholar 

  • Girardin, S.E., Sansonetti, P.J., and Philpott, D.J., 2002, Intracellular vs. extracellular recognition of pathogens—common concepts in mammals and flies, Trends Microbiol. 10:193–199.

    Article  PubMed  CAS  Google Scholar 

  • Goes da Silva, F., Shen, Y., Dardick, C., Burdman, S., Yadav, R., Sharma, P., and Ronald, P., 2004, Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response, MPMI 17:593–601.

    Google Scholar 

  • Gomez-Gomez, L., Felix, G., and Boller, T. (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana, Plant J. 18:277–284.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J.T., and Yao, N., 2004, The role and regulation of programmed cell death in plant–pathogen interactions, Cell. Microbiol. 6:201–211.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, I.R., Navarro-Garcia, F., Desvaux, M., Fernandez, R.C., and Ala’Aldeen, D., 2004, Type V protein secretion pathway: the autotransporter Story. Microbiol. Mol. Biol. Rev. 68:692–744.

    Article  PubMed  CAS  Google Scholar 

  • Inohara, N., and Nunez, G., 2003, NODs: intracellular proteins involved in inflammation and apoptosis, Nat. Rev. Immunol. 3:371–382.

    Article  PubMed  CAS  Google Scholar 

  • Janeway, C.A., Jr., and Medzhitov, R., 2002, Innate immune recognition, Annu. Rev. Immunol. 20:197–216.

    Article  PubMed  CAS  Google Scholar 

  • Jha, G., Rajeshwari, R., and Sonti, R.V., 2005, Bacterial type two secretion system secreted proteins: double edged swords for plant pathogens, Mol. Plant In. 18:891–898.

    CAS  Google Scholar 

  • Jurk, M., Heil, F., Vollmer, J., Schetter, C., Krieg, A. M., Wagner, H., Lipford, G., and Bauer, S., 2002, Human TLR7 and TLR8 independently confer responsiveness to the antiviral compound R-848, Nat. Immunol. 3:499.

    Article  PubMed  CAS  Google Scholar 

  • Kauffman, H.E., Reddy, A.P.K., Hsieh, S.P.Y., and Merca, S.D., 1973. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae, Plant Dis. Rep. 57:537–541.

    Google Scholar 

  • Kleerebezem, M., Quadri, L.E., Kuipers, O.P., and de Vos, W.M., 1997, Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol. Microbiol. 24:895–904.

    Article  PubMed  CAS  Google Scholar 

  • Leulier, F., Parquet, C., Pili-Floury, S., Ryu, J.H., Caroff, M., Lee, W. J., Mengin-Lecreulx, D., and Lemaitre, B., 2000, The Drosophila immune system detects bacteria through specific peptidoglycan recognition, Nat. Immunol. 4:478–484.

    Article  Google Scholar 

  • Matsubayashi, Y., Ogawa, M., Morita, A., and Sakagami, Y., 2002, An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine, Science 296:1470–1472.

    Article  PubMed  CAS  Google Scholar 

  • McDowell, J.M., and Woffenden, B.J., 2003, Plant defense, one post, multiple guards? Trends Biotechnol. 21:178–183.

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov, R., and Janeway, C.A., Jr., 1997, Innate immunity: the virtues of a nonclonal system of recognition, Cell 91:295–298.

    Article  PubMed  CAS  Google Scholar 

  • Miller, M.B., Skorupski, K., Lenz, D.H., Taylor, R.K., and Bassler, B.L., 2002, Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae, Cell 110:303–314.

    Article  PubMed  CAS  Google Scholar 

  • Mudgett, M.B., 2005, New insights into the function of phytopathogenic bacterial type III effectors in plants, Ann. Rev. Plant Biol. 56:509–531.

    Article  CAS  Google Scholar 

  • Novick, R.P., and Muir, T.W., 1999, Virulence gene regulation by peptides in staphylococci and other Gram-positive bacteria, Curr. Opin. Microbiol. 2:40–45.

    Article  PubMed  CAS  Google Scholar 

  • Nurnberger, T., Brunner, F., Kemmerling, B., and Piater, L., 2004, Innate immunity in plants and animals: striking similarities and obvious differences, Immunol. Rev. 198:249–266.

    Article  PubMed  Google Scholar 

  • Ramos, H.C., Rumbo, M., and Sirard, J.C., 2004 Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa, Trends Microbiol. 12:509–517.

    Google Scholar 

  • Risoen, P.A., Brurberg, M.B., Eijsink, V.G., and Nes, I.F., 2000, Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus, Mol. Microbiol. 37:619–628.

    Article  PubMed  CAS  Google Scholar 

  • Roche, P., Debelle, F., Maillet, F., Lerouge, P., Faucher, C., Truchet, G., Denarie, J., and Prome, J.-C., 1991, Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lip-oligosaccharide signals, Cell 67:1131

    Article  PubMed  CAS  Google Scholar 

  • Ronald, P.C., Albano, B., Tabien, R., Abenes, L., Wu, K.S., McCouch, S., and Tanksley, S.D., 1992, Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa-21, Mol. Gen. Genet. 236:113–120.

    PubMed  CAS  Google Scholar 

  • Rooney, H.C., Van’t Klooster, J.W., van der Hoorn, R.A., Joosten, M.H., Jones, J.D., and de Wit, P.J., 2005, Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance, Science 308:1783–1786.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Y., Sharma, P., da Silva, F.G., and Ronald, P., 2002, The Xanthomonas oryzae pv. oryzae RaxP and RaxQ genes encode an ATP sulphurylase and adenosine-5’-phosphosulphate kinase that are required for AvrXa21 avirulence activity, Mol. Microbiol. 44:37–48.

    Article  PubMed  CAS  Google Scholar 

  • Shiu, S.H., and Bleecker, A.B., 2003, Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis, Plant Physiol. 132:530–543.

    Article  PubMed  CAS  Google Scholar 

  • Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., et al., 1995, A receptor kinase-like protein encoded by the rice disease resistance gence, Xa-21, Science 270:1804–1806.

    Article  PubMed  CAS  Google Scholar 

  • Staskawicz, B.J., Mudgett, M.B., Dangl, J.L., and Galan, J.E., 2001, Common and contrasting themes of plant and animal diseases, Science 292:2285–2289.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X., Cao, Y., Yang, Z., Xu, C., Li, X., Wang, S., and Zhang, Q., 2004, Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein, Plant J. 37:517–527.

    Article  PubMed  CAS  Google Scholar 

  • Sun, W., Dunning, F.M., Pfund, C., Weingarten, R., and Bent, A.F., 2006, Within-species flagellin polymorphism in Xanthomonas campestris pv. campestris and its impact on elicitation of ArabidopsisFLAGELLIN SENSING2-dependent defense, Plant Cell 18:764–779.

    Article  PubMed  CAS  Google Scholar 

  • Szurek, B., Marois, E., Bonas, U., and Van den Ackerveken, G., 2001, Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper, Plant J. 26:523–534.

    Article  PubMed  CAS  Google Scholar 

  • Taguchi, F., Shimizu, R., Inagaki, Y., Toyoda, K., Shiraishi, T., and Ichinose, Y., 2003, Post-translational modification of flagellin determines the specificity of HR production, Plant Cell Physiol. 44:342–349.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, K., Taguchi, F., Inagaki, Y., Toyoda, K., Shiraishi, T., and Ichinose, Y., 2003, Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity, J. Bacteriol. 185:6658–6665.

    Article  PubMed  CAS  Google Scholar 

  • Thomma, B.P., Penninckx, I.A., Broekaert, W.F., and Cammue, B.P., 2001, The complexity of disease signaling in Arabidopsis, Curr. Opin. Immunol. 13:63–68.

    Article  PubMed  CAS  Google Scholar 

  • Teplitski, M., Chen, H., Rajamani, S., Gao, M., Merighi, M., Sayre, R.T., Robinson, J.B., Rolfe, B.G., and Bauer, W.D., 2004, Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria, Plant Physiol. 134:137–146.

    Article  PubMed  CAS  Google Scholar 

  • Tortosa, P., and Dubnau, D., 1999, Competence for transformation: a matter of taste, Curr. Opin. Microbiol. 2:588–592.

    Article  PubMed  CAS  Google Scholar 

  • van’t Slot, K., and Knogge, W,K., 2002, A dual role for microbial pathogen-derived effector proteins in plant disease and resistance, Crit. Rev. Plant Sci. 21:229–271.

    Article  CAS  Google Scholar 

  • Wagner, V.E., Bushnell, D., Passador, L., Brooks, A.I., and Iglewski, B.H., 2003, Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment, J. Bacteriol. 185:2080–2095.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.L., Ruan, D.L., Song, W.Y., Sideris, S., Chen, L., Pi, L.Y., Zhang, S., Zhang, Z., Fauquet, C., Gaut, B.S., Whalen, M.C., and Ronald, P.C., 1998, Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution, Plant Cell 10:765–779.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.L., Song, W.Y., Ruan, D.L., Sideris, S., and Ronald, P.C., 1996, The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants, Mol. Plant Microbe Interact. 9:850–855.

    PubMed  CAS  Google Scholar 

  • Waters, C.M., and Bassler, B.L., 2005, Quorum sensing: Cell-to cell communication in bacteria, Ann. Rev. Cell Develop. Biol. 21:319–346.

    Article  CAS  Google Scholar 

  • Werling, D., and Jungi, T.W., 2003, TOLL-like receptors linking innate and adaptive immune response, Vet. Immunol. Immunop. 91:1–12.

    Article  CAS  Google Scholar 

  • Zhu, W., MaGbanua, M.M., and White, F.F., 2000, Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. Oryzae, J. Bacteriol. 182:1844–1853.

    Article  PubMed  CAS  Google Scholar 

  • Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T., 2004, Bacterial disease resistance in Arabidopsis through flagellin perception, Nature 428:764–767.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, SW., Han, SW., Bartley, L.E., Ronald, P.C. (2008). Xanthomonas oryzae pv. oryzae AvrXA21 Activity Is Dependent on a Type One Secretion System, Is Regulated by a Two-Component Regulatory System that Responds to Cell Population Density, and Is Conserved in Other Xanthomonas spp.. In: Gustafson, J., Taylor, J., Stacey, G. (eds) Genomics of Disease. Stadler Genetics Symposia Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76723-9_3

Download citation

Publish with us

Policies and ethics