The Ins and Outs of Host Recognition of Magnaporthe oryzae

  • Sally A. Leong
Part of the Stadler Genetics Symposia Series book series (SGSS)


Rice Blast Disease Resistance Gene Plant Microbe Interact Avirulence Gene Grey Leaf Spot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, B., Zambryski, P., Staskawicz, B., and Dinesh-Kumar, S.P., 1997, Signaling in plant-microbe interactions, Science 276:26–733.CrossRefGoogle Scholar
  2. Ballance, J., 1991, Transformation systems for filamentous fungi and an overview of fungal gene structure, in S. A. Leong and R. Berka, eds., Molecular Industrial Mycology: Systems and Applications for Filamentous Fungi, Marcel Dekker, New York, pp. 1–29.Google Scholar
  3. Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L., Studholme, D.J., Yeats, C., and Eddy, S.R., 2004, The Pfam protein families database, Nucleic Acids Res. 32(Database issue):D138–D141.PubMedCrossRefGoogle Scholar
  4. Becraft, P.W., 1998, Receptor kinases in plant development, Trends Plant Sci. 3:384–388.CrossRefGoogle Scholar
  5. Bennetzen, J.L., and Freeling, M., 1993, Grasses as a single genetic system: genome composition, collinearity and compatibility, Trends Genet 9:259–260.PubMedCrossRefGoogle Scholar
  6. Bisgrove, S.R., Simonich, M.T., Smith, N.M., Sattler, A., and Innes, R.W., 1994, A disease resistance gene in Arabadopsis with specificity for two different pathogen avirulence genes, Plant Cell 6:927–933.PubMedCrossRefGoogle Scholar
  7. Böhnert, H.U., Fudal, I. Dioh, W., Tharreau, D., Notteghem, J.L., and Lebrun, M.H., 2004, A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice, Plant Cell 16:2499–2513.PubMedCrossRefGoogle Scholar
  8. Bonman, M., 1998, Rice disease management: industry approaches and perspectives. Abstract 3.6.7S of the International Congress on Plant Pathology, Edinburgh.Google Scholar
  9. Bonman, M., Khush, G.S., and Nelson, R.J., 1992, Breeding rice for resistance to pests, Annu. Rev. Phytopathol. 30:507–528.CrossRefGoogle Scholar
  10. Boyes, D.C., Nam, J., and Dangl, J.L., 1998, The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response, Proc. Natl. Acad. Sci. USA 95:15849–15854.PubMedCrossRefGoogle Scholar
  11. Bryan, G.T., Wu, K.S., Farrall, L., Jia, Y.L., Hershey, H.P., McAdams, S.A., Faulk, K.N., Donaldson, G.K., Tarchini, R., and Valent, B., 2000, A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta, Plant Cell 12:2033–2045.PubMedCrossRefGoogle Scholar
  12. Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson, B., and Kleinhofs, A., 2002, The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases, Proc. Natl. Acad. Sci. USA 299:9328–9333.CrossRefGoogle Scholar
  13. Caput, D., Beutler, B., Hartog, K., Thayer, R., Brown-Shimer, S., and Cerami, A., 1986, Identification of a common nucleotide sequence in the 3’-untranslated region of mRNA molecules specifying inflammatory mediators, Proc. Natl. Acad. Sci. USA 83:1670–1674.PubMedCrossRefGoogle Scholar
  14. Chauhan, R.S., Farman, M.L., Zhang, H.-B., and Leong, S.A., 2002, Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), Corresponding to AVR1-CO39 of Magnaporthe grisea, Mol. Genet. Genomics 267:603–612.PubMedCrossRefGoogle Scholar
  15. Chen, H., Wang, S., Xing, Y., Xu, C., Hayes, P.M., and Zhang, Q., 2003, Comparative analyses of genomic location of specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley, Proc. Natl. Acad. Sci. USA 100:2544–2549.PubMedCrossRefGoogle Scholar
  16. Coaker, G., Falick, A., and Staskawicz, B., 2005, Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin, Science 308:548–550.PubMedCrossRefGoogle Scholar
  17. Couch, B.C., Fudal, I., Lebrun, M-H., Tharreau, D., Valent, B., van Kim, P., Notteghem, J.-L., and Kohn, L. M., 2005., Origins of host-specific populations of the blast pathogen, Magnaporthe oryzae, in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice, Genetics 170:613–630.Google Scholar
  18. Couch, B.C., and Kohn, L.M., 2002, A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea, Mycologia, 94:683–693.CrossRefGoogle Scholar
  19. Dangl, J.L., Ritter, C., Gibbon, M.J., Mur, L.A.J., Wood, J.R., Goss, S., Mansfield, J., Taylor, J.D., and Vivian, A., 1992, Functional homologs of the Arabadopsis RPM1 disease resistance gene in bean and pea, Plant Cell 4:1359–1369.PubMedCrossRefGoogle Scholar
  20. Devos, K.M., 2005, Updating the ‘crop circle,’ Curr. Opin. Plant Biol. 8:155–162.PubMedCrossRefGoogle Scholar
  21. Dobinson, K., Harris, R., and Hamer, J.E., 1993, Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea, Mol. Plant Microbe Interact. 6:114–126.PubMedGoogle Scholar
  22. Ellingboe, A., 1992, Segregation of avirulence/virulence on three rice cultivars in 16 crosses of Magnaporthe grisea, Phytopathology 82:597–601.CrossRefGoogle Scholar
  23. Farman, M.L., Eto, Y., Nakao, Y., Tosa, Y., Nakayashiki, H., Mayama, S., and Leong, S.A., 2002, Analysis of the structure of the Avr1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea, Mol. Plant Microbe Interact. 15:6–16.Google Scholar
  24. Farman, M.L., and Leong, S.A., 1995, Physical and genetic mapping of telomeres of Magnaporthe grisea, Genetics 140:479–492.PubMedGoogle Scholar
  25. Farman, M.L., and Leong, S.A., 1998, Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps, Genetics 150:1049–1058.PubMedGoogle Scholar
  26. Farman, M.L., Tosa, Y., Nitta, N., and Leong, S.A., 1996, MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea, Mol. Gen. Genet. 251:665–674.PubMedGoogle Scholar
  27. Flor, H.H., 1955. Host-parasite interaction in flax rust: Its genetics and other implications, Phytopathology 45:680–685.Google Scholar
  28. Fritz-Laylin, L.K., Krishnamurthy, N., Tor, M., Sjolander, K.V., and Jones, J.D.G., 2005, Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis, Plant Physiol. 138:611–623.PubMedCrossRefGoogle Scholar
  29. Godiard, L., Sauviac, L., Torri, K.U., Grenon, O., Mangin, B., Griimsley, N.H., and Marco, Y., 2003, ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt, Plant J. 36:353–365.PubMedCrossRefGoogle Scholar
  30. Grant, M.R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., Innes, R.W., and Dangl, J.L., 1995, Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance, Science 269:843–846.PubMedCrossRefGoogle Scholar
  31. Hammond-Kosack, K.E., Staskawicz, B.J., Jones, J.D.G., and Baulcombe, D.C., 1994, Functional expression of a fungal avirulence gene from a modified potato virus X genome, Mol. Plant Microbe Interact. 8:181–185.Google Scholar
  32. Holt, B.F., Belkahdir, Y., and Dangl, J.L., 2005, Antagonistic control of disease resistance protein stability in the plant immune system, Science 309:929–932.PubMedCrossRefGoogle Scholar
  33. Huntington, J.A., 2006, Shape-shifting serpins – advantages of a mobile mechanism, Trends Biochem. Sci. 31:427–435.PubMedCrossRefGoogle Scholar
  34. Innes, R.W., Bisgrove, S.R., Smith, N.M., Bent, A.F., Staskawicz, B.J., and Liu,Y-C., 1993, Identification of a disease resistance locus in Arabidopsis that is functionally homologous to the RPG1 locus of soybean, Plant J 4:813–820.PubMedCrossRefGoogle Scholar
  35. International Rice Genome Sequencing Project, 2005, The map-based sequence of the rice genome, Nature 436:793–800.CrossRefGoogle Scholar
  36. Ishikawa, M., Janda, M., Krol, M.A., and Ahlquist, P., 1997, In vivo DNA expression of functional brome mosaic virus RNA replicons in Saccharomyces cerevisiae, J. Virology. 71:7781–7790.PubMedGoogle Scholar
  37. Jia, Y., 2007, Plants and pathogens engage in trench warfare-knowledge learned from natural variation of rice blast resistance gene Pi-ta. Abstract PAGXV, San Diego, CA, January 2007.Google Scholar
  38. Jia, Y., Bryan, G.T., Farrall, L., and Valent, B., 2003, Natural variation at the Pi-ta rice blast resistance locus, Phytopathology 93:1452–1459.CrossRefPubMedGoogle Scholar
  39. Jia, Y., McAdams, S.A., Bryan, G.T., Hershey, H.P., and Valent, B., 2000, Direct interaction of resistance gene and avirulence gene products confers rice blast resistance, EMBO J. 19:4004–4014.PubMedCrossRefGoogle Scholar
  40. Kachroo, P., Leong, S.A., and Chattoo, B.B., 1994, Pot2, an inverted repeat transposon from the rice blast fungus Magnaporthe grisea, Mol. Gen. Genet. 245:339–348.PubMedCrossRefGoogle Scholar
  41. Kang, S., Sweigard, J., and Valent, B., 1995, The PWL host-species specificity gene family in the blast fungus Magnaporthe grisea, Mol. Plant Microbe Interact. 8:939–948.PubMedGoogle Scholar
  42. Kato, H., 1983, Responses of Italian millet, oat, timothy, Italian ryegrass and perennial ryegrass to Pyricularia species isolated form cereals and grasses, Proc. Kanto-Tosan Plant Protect. Soc. 30:22–23.Google Scholar
  43. Kato, H., Yamamoto, M., Yamaguchi-ozaki, T., Kadouchi, H., Iwamoto, Y., Nakayashiki, H., Tosa, Y., Mayama, S., and Mori, N., 2000, Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants, J. Gen. Plant Pathol. 66:30–47.CrossRefGoogle Scholar
  44. Keller, H., Pamboukdjian, N., Ponchet, M., Poupet, A., Delon, R., Verrier, J.L., Roby, D., and Ricci, P., 1999, Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance, Plant Cell 11:223–235.Google Scholar
  45. Koga, H., 1994, Hypersensitive death, autofluorescence, and ultrastructural changes in cells of leaf sheaths of susceptible and resistant near isogenic lines of rice (Pi-z t) in relation to penetration and growth of Pyricularia grisea, Can. J. Bot. 72:1463–1477.CrossRefGoogle Scholar
  46. Koizumi, S. 1998, New fungicide use on rice in Japan. Abstract 5.6.3S of the International Congress on Plant Pathology, Edinburgh.Google Scholar
  47. Kruger, J., Thomas, C.M., Golstein, C., Dixon, M.S., Smoker, M., Tang, S., Mulder, L., and Jones, J.D., 2002, A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of auto-necrosis, Science 296:744–747.PubMedCrossRefGoogle Scholar
  48. Lavashina, E.A., Langley, E., Green, C., Gubb, D., Ashburner, M., and Hoffmann, J.A., 1999, Constitutive activation of Toll-mediated antifungal defense in serpin-deficient Drosophila, Science 285:1917–1919.CrossRefGoogle Scholar
  49. Lazarro, D., 2003, Characterization of the AVR1-CO39 Locus of Magnaporthe grisea. Master’s Thesis, University of Wisconsin, Madison.Google Scholar
  50. Leister, D., Kurth, J., Laurie, D.A., Yano, M., Sasaki, T., Devos, K., Graner, A., and Schulze- Lefert, P., 1998, Rapid reorganization of resistance gene homologues in cereal genomes, Proc. Natl. Acad. Sci. USA 95:370–375.Google Scholar
  51. Leister, R.T., Ausubel, F.M., and Katagiri, F., 1996, Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1, Proc. Natl. Acad. Sci. USA 93:15497–15502.PubMedCrossRefGoogle Scholar
  52. Leung, H., Borromeo, E.S., Bernardo, M.A., and Notteghem, J.L., 1988, Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea, Phytopathology 78:1227–1233.CrossRefGoogle Scholar
  53. Mackill, D., and Bonman, J.M., 1986, New hosts of Pyricularia grisea, Plant Dis. 70:125–127.CrossRefGoogle Scholar
  54. McDowell, J.M., and Dangl, J.L., 2000, Signal transduction in the plant immune response, Trends Plant Sci. 25:79–82.Google Scholar
  55. Meyers, B.C., Dickerman, A.W., Michelmore, R.W., Sivaramakrishnan, S., Sobral, B.W., and Young, N.D., 1999, Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily, Plant J. 20:317–332.PubMedCrossRefGoogle Scholar
  56. Miki, D., Itoh, R., and Shimamoto, K., 2005, RNA silencing of single and multiple members in a gene family of rice, Plant Physiol. 138:1903–1913.PubMedCrossRefGoogle Scholar
  57. Miki, D., and Shimamoto, K., 2004, Simple RNAi vectors for stable and transient suppression of gene function in rice, Plant Cell Physiol. 45:490–495.PubMedCrossRefGoogle Scholar
  58. Nielsen, H., and Krogh, A., 1998, Prediction of signal peptides and signal anchors by a hidden Markov model, Proc.Sixth Int. Conf. Int. Syst.Mol. Biol. (ISMB 6), AAAS Press, Menlo Park, California, pp. 122–130.Google Scholar
  59. Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G., 1997, Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites, Protein Eng. 10:1–6.PubMedCrossRefGoogle Scholar
  60. Nimchuk, Z., Rohmer, L., Chang, J.H., and Dangl, J.L., 2001, Knowing the dancer from the dance: R-gene products and their interactions with other proteins from host and pathogen, Curr. Opin. Plant Biol. 4:288–294.PubMedCrossRefGoogle Scholar
  61. Nitta, N., Farman, M., and Leong, S.A., 1997, Genome organization of Magnaporthe grisea: Integration of genetic maps, clustering of transposable elements, and identification of genome duplications and rearrangements, Theor. Appl. Genet. 95:20–32.CrossRefGoogle Scholar
  62. Orbach, M.J., Farrall, L., Sweigard, J.A., Chumley, F.G., and Valent, B., 2000, A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta, Plant Cell 12:2019–2032.PubMedCrossRefGoogle Scholar
  63. Peyyala, R., and Farman, M.L., 2006, Magnaporthe oryzae isolates causing grey leaf spot of perennial ryegrass possess a functional copy of the AVRI-CO39 avirulence gene, Mol. Plant Pathol. 7:157–165.CrossRefGoogle Scholar
  64. Rice Consortium Consortiums for Sequencing Rice Chromosomes 11 and 12, 2005, The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biology Scholar
  65. Rojo, E., Sharma, V.K., Kovaleva, V.K., Kovaleva, V., Raikhel, N.V., and Flectecher, J.C., 2002, CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway, Plant Cell 14:969–977.PubMedCrossRefGoogle Scholar
  66. Rossi, M., Goggin, F.L., Milligan, S.B., Kaloshian, I., Ullman, D.E., and Williamson, V.M., 1998, The nematode resistance gene Mi of tomato confers resistance against the potato aphid, Proc. Natl. Acad. Sci. USA 95:9750–9754.PubMedCrossRefGoogle Scholar
  67. Rouf Mian, M.A., Zwonitzer, J.C., Hopkins, A.A., Ding, X.S., and Nelson, R.S., 2005, Response of tall fescue genotypes to a new strain of Brome Mosaic Virus, Plant Dis. 89:224–227.CrossRefGoogle Scholar
  68. Sakamoto, K., Tada, Y., Yokozeki, Y., Akagi, H., Hayashi, N., Fujimura, T., and Ichikawa, N., 1999, Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats, Plant Mol. Biol. 40:847–855.PubMedCrossRefGoogle Scholar
  69. Silue, D., Tharreau, D., and Notteghem, J.L., 1992a, Evidence for a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem, Phytopathology 82:577–580.CrossRefGoogle Scholar
  70. Silue, D., Tharreau, D., and Notteghem, J.L., 1992b, Identification of Magnaporthe grsiea avirulence genes to seven rice cultivars, Phytopathology 82:1462–1467.CrossRefGoogle Scholar
  71. Skinner, D.Z., Budde, A., Farman, M., Smith, R., Leung, H., and Leong, S.A., 1993, Genetic map, molecular karyotype and occurrence of repeated DNAs in the rice blast fungus Magnaporthe grisea, Theor. Appl. Genet. 87:545–557.CrossRefGoogle Scholar
  72. Smith, J.R., and Leong, S.A., 1994, Mapping of a Magnaporthe grisea locus affecting rice (Oryza sativa) cultivar specificity, Theor. Appl. Genet. 88:901–908.CrossRefGoogle Scholar
  73. Solomon, M., Belenghia, B., Delledonneb, M., Menachema, E., and Levine, A., 1999, The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants, Plant Cell 11:431–444.PubMedCrossRefGoogle Scholar
  74. Song, W.-Y., Wang, G.-L., Chen, L.-L., Kim, H.-S., Pi, L.-Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.-X., Zhu, L.-H., Fauquet, C., and Ronald, P., 1995, A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21, Science 270:1804–1806.PubMedCrossRefGoogle Scholar
  75. Sweigard, J.A., Carroll, A.M., Kang, S., Farrall, L., Chumley, F.G., and Valent, B., 1995, Identification, cloning and characterization of PWL2, a gene for host species specificity in the rice blast fungus, Plant Cell 7:1221–1233.PubMedCrossRefGoogle Scholar
  76. Tai, T.H., Dahlbeck, D., Clark, E.T., Gajiwala, P., Pasion, R., Whalen, M.C., Stall, R.E., and Staskawicz, B.J., 1999, Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato, Proc. Natl. Acad. Sci. USA 96:14153–14158.PubMedCrossRefGoogle Scholar
  77. Tang, H., Zakaria, K., Lemaitre, B., and Hashimoto, C., 2006, Two proteases defining a melanization cascade in the immune system of Drosophila, J. Biol. Chem. 281:28097–28104.PubMedCrossRefGoogle Scholar
  78. Tang, X., Frederick, R.D., Zhou, J., Halterman, D.A., Jia, Y., and Martin, G.B., 1996, Physical interaction of AvrPto and Pto Kinase, Science 274:2060–2063.PubMedCrossRefGoogle Scholar
  79. Tosa, Y., Osue, J., Eto, Y., Tamba, H., Tanaka, K., Nakayashiki, H., Mayama, S., and Leong, S.A., 2005, Evolution of an avirulence gene AVR1-CO39 concomitant with the evolution and differentiation of Magnaporthe oryzae, Mol. Plant Microbe Interact. 18:1148–1160.PubMedCrossRefGoogle Scholar
  80. Valent, B., and Chumley, F.G., 1994, Avirulence genes and mechanisms of genetic instability in the rice blast fungus, in R. Zeigler, S. A. Leong, and P. Teng, eds., Rice Blast Disease, CABI, London, pp. 111–134.Google Scholar
  81. Valent, B., Crawford, M.S., Weaver, C.G., and Chumley, F.G., 1986, Genetic studies of fertility and pathogenicity in Magnaporthe grisea (Pyricularia grisea), Iowa State J. Res. 60:569–594.Google Scholar
  82. Valent, B., Farrall, L., and Chumley, F., 1991, Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses, Genetics 127:87–101.PubMedGoogle Scholar
  83. Van den Ackerveken, G.F., Van, J.M., Kan, J.A.L., and DeWit, P.G.M., 1992, Molecular analysis of the avirulence gene avr9 of the fungal pathogen Cladesporium fulvum fully supports the gene-for-gene hypothesis, Plant J. 2:359–366.CrossRefGoogle Scholar
  84. Van der Vossen, E.A.G., Rouppe van der Voort, J.N.A.M., Kanyuka, K., Bendahmane, A., Sandbrink, H., Baulcombe, D.C., Bakker, J., Striekema, W.J., and Klein-Lankhorst, R.M., 2000, Homologues of a single resistance gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode, Plant J. 23:567–576.Google Scholar
  85. Wang, Z.X., Yano, M., Yamanouchi, U., Iwamoto, M., Monna, L., Hayasaka, H., Katayose, Y., and Sasaki, T., 1999, The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes, Plant J. 19:55–64.PubMedCrossRefGoogle Scholar
  86. Whitham, S., McCormick, S., and Baker, B., 1996, The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato, Proc. Natl. Acad. Sci. USA 93:8776–8781.PubMedCrossRefGoogle Scholar
  87. Xiao, S., Calis, O., Patrick, E., Zhang, G., Charoenwattana, P., Muskett, P., Parker, J.E., and Turner, J.G., 2005, The atypical resistance gene, RPW8, recruits components of basal defense for powdery mildew resistance in Arabidopsis, Plant J. 42:95–110.PubMedCrossRefGoogle Scholar
  88. Yaegashi, H., 1978, Inheritance of pathogenicity in crosses of Pyricularia isolates from weeping lovegrass and finger millet, Ann. Phytopathol. Soc. Jpn 44:626–632.Google Scholar
  89. Yaegashi, H., and Asaga, K., 1981, Further studies on the inheritance of pathogenicity in crosses of Pyricularia grisea with Pyricularia sp. from finger millet, Ann. Phytopathol. Soc. Jpn 47:677–679.Google Scholar
  90. Yoshimura, S., Yamanouchi, U., Katayose, Y., Toki, S., Wang, Z.X., Kono, I., Kurata, N., Yano, M., Iwata, N., and Sasaki, T., 1998, Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation, Proc. Natl. Acad. Sci. USA 95:1663–1668.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sally A. Leong
    • 1
  1. 1.USDA, ARS CCRU, Department of Plant Pathology, University of Wisconsin1630 Linden Dr., Madison

Personalised recommendations