Virulence Evolution in Malaria

  • M.J. Mackinnon
Part of the Stadler Genetics Symposia Series book series (SGSS)


One evolutionary theory of why some pathogens kill their host (i.e. are virulent) is that they need to extract host resources in order to transmit to new hosts. We have tested this theory in malaria and find it to be a likely explanation for the maintenance of this parasite’s virulence in nature.


Malaria Vaccine Human Malaria Virulence Evolution Parasite Line Host Mortality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R.M., May, R.M., 1982, Co-evolution of hosts and parasites, Parasitology 85:411–426.PubMedGoogle Scholar
  2. Beale, G.H., Carter, R., Walliker, D., 1978, Genetics, in R. Killick-Kendrick, W. Peters, eds., Rodent Malaria, Academic Press, London, pp. 213–245.Google Scholar
  3. Bekessy, A., Molineaux, L., and Storey, J., 1976, Estimation of incidence and recovery rates of Plasmodium falciparum parasitaemia from longitudinal data, Bull. World Health Organ. 54:685–693.PubMedGoogle Scholar
  4. Bull, P.C., Kortok, M., Kai, O., Ndungu, F., Ross, A., Lowe, B.S., Newbold, C.I., and Marsh, K., 2000, Plasmodium falciparum-infected erythrocytes: agglutination by diverse Kenyan plasma is associated with severe disease and young host age, J. Infect. Dis. 182:252–259.PubMedCrossRefGoogle Scholar
  5. Bull, P.C., Lowe, B.S., Kortok, M., and Marsh, K., 1999, Antibody recognition of Plasmodium falciparum erythrocyte surface antigens in Kenya: evidence for rare and prevalent variants, Infect. Immun. 67:733–739.PubMedGoogle Scholar
  6. Davies, C.M., Webster, J.P., and Woolhouse, M.E.J., 2001, Trade-offs in the evolution of virulence in an indirectly transmitted macroparasite, Proc. R. Soc. Lond. B. 268:251–257.CrossRefGoogle Scholar
  7. De Roode, J.C., Culleton, R., Bell, A.S., and Read, A.F., 2004, Competitive release of drug resistance following drug treatment of mixed Plasmodium chabaudi infections, Malar. J. 3:33.PubMedCrossRefGoogle Scholar
  8. De Roode, J.C., Helsinki, M.E.H., Anwar, M.A., and Read, A.F., 2005a, Dynamics of multiple infection and within-host competition in genetically diverse malaria infections, Am. Nat. 166:531–542.CrossRefGoogle Scholar
  9. De Roode, J.C., Pansini, R., Cheesman, S.J., Helsinki, M.E.H., Huijben, S., Wargo, A.R., Bell, A.S., Chan, B.H.K., Walliker, D., and Read, A.F., 2005b, Virulent clones are competitively superior in genetically diverse malaria infections, Proc. Natl. Acad. Sci. USA 102:7624–7628.CrossRefGoogle Scholar
  10. Dieckmann, U., Metz, J.A.J., Sabelis, M.W., and Sigmund, K., 2002, Virulence Management: the Adaptive Dynamics of Pathogen-Host Interactions, Cambridge University Press, Cambridge.Google Scholar
  11. Dietz, K., Molineaux, L., and Thomas, A., 1980, The mathematical model of transmission, in L. Molineaux, G. Gramiccia, eds., The Garki Project. Research on the Epidemiology and Control of Malaria in the Sudan Savanna of West Africa, World Health Organization, Geneva, pp. 262–289.Google Scholar
  12. Diffley, P., Scott, J.O., Mama, K., and Tsen, T.N.R., 1987, The rate of proliferation among African trypanosomes is a stable trait that is directly related to virulence, Am. J. Trop. Med. Hyg. 36: 533–540.PubMedGoogle Scholar
  13. Ebert, D., 1994, Virulence and local adaptation of a horizontally transmitted parasite. Science 265:1084–1086.PubMedCrossRefGoogle Scholar
  14. Ebert, D., and Bull, J.J., 2003, Challenging the trade-off model for the evolution of virulence: is virulence management feasible? Trends Microbiol. 11:15–20.PubMedCrossRefGoogle Scholar
  15. Ebert, D., and Mangin, K.L., 1997, The influence of host demography on the evolution of virulence of a microsporidian gut parasite, Evolution 51:1828–1837.CrossRefGoogle Scholar
  16. Fenner, F., and Fantini, B., 1999, Biological Control of Vertebrate Pests, CABI Publishing, Wallingford, UK.Google Scholar
  17. Fenner, F., and Ratcliffe, R.N., 1965, Myxomatosis, Cambridge University Press, London.Google Scholar
  18. Ferguson, H.M., Mackinnon, M.J., Chan, B.H.K., and Read, A.F., 2003, Mosquito mortality and the evolution of malaria virulence, Evolution 57:2792–2804.PubMedGoogle Scholar
  19. Ferguson, H.M., and Read, A.F., 2002, Genetic and environmental determinants of malaria parasite virulence in mosquitoes, Proc. R. Soc. Lond. B. 269:1217–1224.CrossRefGoogle Scholar
  20. Gandon, S., Mackinnon, M.J., Nee, S., and Read, A.F., 2001, Imperfect vaccines and the evolution of parasite virulence, Nature 414:751–755.PubMedCrossRefGoogle Scholar
  21. Genton, B., Betuela, I., Felger, I., Al-Yaman, F., Anders, R.F., Saul, A., Rare, L., Baisor, M., Lorry, K., Brown, G.V., Pye, D., Irving, D.O., Smith, T.A., Beck, H.-P., and Alpers, M.P., 2002, A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1–2b trial in Papua New Guinea, J. Infect. Dis. 185:820–827.PubMedCrossRefGoogle Scholar
  22. Greenwood, M., Bradford Hill, A., Topley, W. W. C., and Wilson, J., 1936, Experimental Epidemiology. Medical Research Council. 209. London, HMSO. Special Report Series.Google Scholar
  23. Gupta, S., Ferguson, N.M., and Anderson, R.M., 1997, Vaccination and the population structure of antigenically diverse pathogens that exchange genetic material, Proc. R. Soc. Lond. B. 264:1435–1443.CrossRefGoogle Scholar
  24. Idro, R., Aloyo, J., Mayende, L., Bitarakwate, E., John, C.C., and Kivumbi, G.W., 2006, Severe malaria in children in areas with low, moderate and high transmission intensity in Uganda, Trop. Med. Int. Health 11:115–124.PubMedCrossRefGoogle Scholar
  25. JŠkel, T., Khoprasert, Y., and Mackenstedt, U., 2001, Immunoglobulin subclass responses of wild brown rats to Sarcocystis singaporensis, Int. J. Parasitol. 31:273–283.CrossRefGoogle Scholar
  26. Jensen, K.H., Little, T.J., Skorping, A., and Ebert, D., 2006, Empirical support for optimal virulence in a castrating parasite. PLoS Biol. 4:e197PubMedCrossRefGoogle Scholar
  27. Kaplan, S.K., Mason, E.O., Wald, E.R., Schutze, G.E., Bradley, J.S., Tan, T.Q., Hoffman, J.A., Givner, L.B., Yogev, R., and Barson, W.J., 2004, Decrease in invasisve pneumococcal infections in children among 8 children’s hospitals in the United States after the introduction of the7-valent pneumococcal conjugate vaccine, Paediatrics 113:443–449.CrossRefGoogle Scholar
  28. Kew, O.M., Sutter, R.W., De Gourville, E.M., Dowdle, W.R., and Pallansch, M.A., 2002, Vaccine-derived polioviruses and the endgame strategy for global polio eradication, Annu. Rev. Microbiol. 59:587–635.CrossRefGoogle Scholar
  29. Levin, B.R., and Bull, J.J., 1994, Short-sighted evolution and the virulence of pathogenic micro-organisms, Trends Microbiol. 2:76–81.PubMedCrossRefGoogle Scholar
  30. Levin, S.A., and Pimentel, D., 1981, Selection of intermediate rates of increase in parasite-host systems, Am. Nat. 117:308–315.CrossRefGoogle Scholar
  31. Lipsitch, M., and Moxon, E.R., 1997, Virulence and transmissibility of pathogens: what is the relationship? Trends Microbiol. 5:31–36.PubMedCrossRefGoogle Scholar
  32. Mackinnon, M.J., Bell, A.S., and Read, A.F., 2005, The effects of mosquito transmission and population bottlenecking on virulence, multiplication rate and rosetting in rodent malaria, Int. J. Parasitol. 35:145–153.PubMedCrossRefGoogle Scholar
  33. Mackinnon, M.J., Gaffney, D.J., and Read, A.F., 2002, Virulence in malaria parasites: host genotype by parasite genotype interactions, Infect. Genet. Evol. 1:287–296.PubMedCrossRefGoogle Scholar
  34. Mackinnon, M.J., and Read, A.F., 1999a, Genetic relationships between parasite virulence and transmission in the rodent malaria Plasmodium chabaudi, Evolution 53:689–703.CrossRefGoogle Scholar
  35. Mackinnon, M.J., and Read, A.F., 1999b, Selection for high and low virulence in the malaria parasite Plasmodium chabaudi. Proc. R. Soc. Lond. B. 266:741–748.CrossRefGoogle Scholar
  36. Mackinnon, M.J., and Read, A.F., 2003, Effects of immunity on relationships between growth rate, virulence and transmission in semi-immune hosts, Parasitology 126:103–112.PubMedCrossRefGoogle Scholar
  37. Mackinnon, M.J., and Read, A.F., 2004a, Immunity promotes virulence in a malaria model, PLoS Biol. 2:1286–1292.CrossRefGoogle Scholar
  38. Mackinnon, M.J., and Read, A.F., 2004b, Virulence in malaria: an evolutionary viewpoint. Phil. Trans. R. Soc. Lond. B. 359:965–986.CrossRefGoogle Scholar
  39. Massad, E., 1987, Transmission Rates and the evolution of pathogenicity, Evolution 41:1127–1130.CrossRefGoogle Scholar
  40. Masumu, J., Marcotty, T., Geysen, D., Geerts, S., Vercruysse, J., Dorny, P., and Van den Bossche, P., 2006a, Comparison of the virulence of Trypanosoma congolense strains isolated from cattle in a trypanosomiasis endemic area of eastern Zambia, Int. J. Parasitol. 36:497–501.CrossRefGoogle Scholar
  41. Masumu, J., Marcotty, T., Ndeledje, N., Kubi, C., Geerts, S., Veycruysse, J., Dorny, P., and Van den Bossche, P., 2006b, Comparison of transmissibility of Trypanosoma congolense strains, isolated in trypanosomiasis endemic area of eastern Zambia, by Glossina morsitans morsitans, Parasitology 133:331–334.CrossRefGoogle Scholar
  42. McLean, A.R., 1995, Vaccination, evolution and changes in the efficacy of vaccines: a theoretical framework, Proc. R. Soc. Lond. B. 261:389–393.CrossRefGoogle Scholar
  43. Messenger, S.L., Molineux, I.J., and Bull, J.J., 1999, Virulence evolution in a virus obeys a trade-off, Proc. R. Soc. Lond. B. 266:397–404.CrossRefGoogle Scholar
  44. Molineaux, L., and Gramiccia, G., 1980, The Garki Project: Research on the Epidemiology and Control of Malaria in the Sudan Savanna of West Africa, World Health Organization, Geneva.Google Scholar
  45. Mooi, F.R., Van Loo, I.H.M., and King, A.J., 2001, Adaptation of Bordetella pertussis to vaccination: a cause for its reemergence, Emerg. Infect. Dis. 7:S526–S528.CrossRefGoogle Scholar
  46. Murphy, S.C., and Breman, J.G., 2001, Gaps in the childhood malaria burden in Africa: cerebral malaria, neurological sequelae, anemia, respiratory distress, hypoglycaemia, and complications of pregnancy, Am. J. Trop. Med. Hyg. 64:57–67.PubMedGoogle Scholar
  47. Nielsen, M.A., Staalsoe, T., Kurtzhals, J.A.L., Goka, B.Q., Dodoo, D., Alifrangis, M., Theander, T.G., Akanmori, B.D., and Hviid, L., 2002, Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity, J. Immunol. 168:3444–3450.PubMedGoogle Scholar
  48. Nielsen, M.A., Vestergaard, L.S., Lusingu, J.P., Kurtzhals, J.A.L., Giha, H.A., Grevstad, B., Goka, B.Q., Lemnge, M.M., Akanmori, B.D., Theander, T.G., and Hviid, L., 2004, Geographical and temporal conservation of antibody recognition of Plasmodium falciparum to variant surface antigens, Infect. Immun. 72:3531–3535.PubMedCrossRefGoogle Scholar
  49. Pappenheimer, A.M., 1984, Diphtheria, in R. Germanier, ed., Bacterial Vaccines, Academic Press, US, pp. 1–36.Google Scholar
  50. Raberg, L., De Roode, J.C., Bell, A.S., Stamou, P., Gray, D., and Read, A.F., 2006, The role of immune-mediated apparent competition in genetically diverse malaria infections, Am. Nat. 168:41–53.PubMedCrossRefGoogle Scholar
  51. Read, A.F., Gandon, S., Nee, S., and Mackinnon, M.J., 2004, The evolution of parasite virulence in response to animal and public health interventions, in D. Dronamraj, ed., Evolutionary Aspects of Infectious Diseases, Cambridge University Press, Cambridge.Google Scholar
  52. Read, A.F., and Taylor, L.H., 2001, The ecology of genetically diverse infections, Science 292:1099–1102.PubMedCrossRefGoogle Scholar
  53. Reyburn, H., Mbatia, R., Drakeley, C.J., Bruce, J., Carneiro, I., Olomi, R., Cox, J., Nkya, W.M.M.M., Lemnge, M.M., Greenwood, B.M., and Riley, E.M., 2005, Association of transmission intensity and age with clinical manifestations and case fatality of severe Plasmodium falciparum malaria, JAMA 293:1461–1470.PubMedCrossRefGoogle Scholar
  54. Snow, R.W., Craig, M., Deichmann, U., and Marsh, K., 1999, Estimating mortality, morbidity, and disability due to malaria among Africa’s non-pregnant population, B. World Health Organ. 77:624–640.Google Scholar
  55. Topley, W.W.C., 1919, The spread of bacterial infection, Lancet 194:1–5.CrossRefGoogle Scholar
  56. Turner, C.M.R., Aslam, N., and Dye, C., 1995, Replication, differentiation, growth and the virulence of Trypanosoma brucei infections, Parasitology 111:289–300.PubMedCrossRefGoogle Scholar
  57. Williams, G.C., and Nesse, R.M., 1991, The dawn of Darwinian medicine, Q. Rev. Biol. 66:1–22.PubMedCrossRefGoogle Scholar
  58. Witter, R.L., 1998, The changing landscape of Marek’s disease, Avian Pathol. 27:S47–S63.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M.J. Mackinnon
    • 1
  1. 1.Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP and KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine ResearchKenya

Personalised recommendations