Genetic Dissection of the Interaction Between the Plant Pathogen Xanthomonas campestris pv. vesicatoria and Its Host Plants

  • Ulla Bonas
  • Doreen Gürlebeck
  • Daniela Büttner
  • Monique Egler
  • Simone Hahn
  • Sabine Kay
  • Antje Krüger
  • Christian Lorenz
  • Robert Szczesny
  • Frank Thieme
Part of the Stadler Genetics Symposia Series book series (SGSS)


The interaction between the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv)∈dexXanthomonas campestris pv. vesicatoria (Xcv) and its host plants pepper and tomato depends on a type III protein secretion system (T3SS)∈dextype III protein secretion system (T3SS) which translocates effector proteins into the plant cell. Recent studies revealed that HpaB and HpaC are two key players in the control of protein export from Xcv. First identified by their avirulence activity in resistant plants, genome sequencing projects allow now the identification of more effector proteins. However, their virulence functions in the host remain elusive. The effector AvrBs3 from Xcv induces a hypertrophy in susceptible plants. The virulence as well as the avirulence activity of AvrBs3 depends on its eukaryotic features, i.e., nuclear localization signals and an activation domain suggesting that the effector mimics a plant transcriptional regulator. Here, we present recent progress on the identification of potential virulence targets of AvrBs3 in the plant cell.


Effector Protein Pathogenicity Island Genomic Tool Xanthomonas Campestris PA14 PA14 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, I.P., Kim, S., and Lee, Y.H., 2005, Vitamin B1 functions as an activator of plant disease resistance, Plant Physiol. 138:1505–1515.PubMedCrossRefGoogle Scholar
  2. Bonas, U., Stall, R.E., and Staskawicz, B., 1989, Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria, Mol. Gen. Genet. 218:127–136.CrossRefGoogle Scholar
  3. Bonas, U., Conrads-Strauch, J., and Balbo, I., 1993, Resistance in tomato to Xanthomonas campestris pv. vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3, Mol. Gen. Genet. 238:261–269.Google Scholar
  4. Bretz, J.R., Mock, N.M., Charity, J.C., Zeyad, S., Baker, C.J., and Hutcheson, S.W., 2003, A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection, Mol. Microbiol. 49:389–400.PubMedCrossRefGoogle Scholar
  5. Büttner, D., and Bonas, U., 2002, Getting across—bacterial type III effector proteins on their way to the plant cell, EMBO J. 21:5313–5322.PubMedCrossRefGoogle Scholar
  6. Büttner, D., and Bonas, U., 2006, Who comes first? How plant pathogenic bacteria orchestrate type III secretion, Curr. Opin. Microbiol. 9:193–200.PubMedCrossRefGoogle Scholar
  7. Büttner, D., Nennstiel, D., Klüsener, B., and Bonas, U., 2002, Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria, J. Bacteriol. 184:2389–2398.CrossRefGoogle Scholar
  8. Büttner, D., Gürlebeck, D., Noël, L.D., and Bonas, U., 2004, HpaB from Xanthomonas campestris pv. vesicatoria acts as an exit control protein in type III-dependent protein secretion, Mol. Microbiol. 54:755–768.Google Scholar
  9. Büttner, D., Lorenz, C., Weber, E., and Bonas, U., 2006, Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex from Xanthomonas campestris pv. vesicatoria, Mol. Microbiol. 59:513–527.CrossRefGoogle Scholar
  10. Casper-Lindley, C., Dahlbeck, D., Clark, E.T., and Staskawicz, B.J., 2002, Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells, Proc. Natl. Acad. Sci. USA 99:8336–8341.PubMedCrossRefGoogle Scholar
  11. Cornelis, G.R., and Van Gijsegem, F., 2000, Assembly and function of type III secretory systems, Annu. Rev. Microbiol. 54:35–774.CrossRefGoogle Scholar
  12. Espinosa, A., Guo, M., Tam, V.C., Fu, Z.Q., and Alfano, J.R., 2003, The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants, Mol. Microbiol. 49:377–387.PubMedCrossRefGoogle Scholar
  13. Flor, H.H., 1971, Current status of the gene-for-gene concept, Annu. Rev. Phytopathol. 9:275–296.CrossRefGoogle Scholar
  14. Gabriel, D.W., 1999, The Xanthomonas avr/pth gene family, in G. Stacey and N.T. Keen, eds, Plant–Microbe Interactions, St. Paul, Minnesota, APS Press, pp. 39–55.Google Scholar
  15. Gürlebeck, D., Szurek, B., and Bonas, U., 2005, Dimerization of the bacterial effector protein AvrBs3 in the plant cell cytoplasm prior to nuclear import, Plant J. 42:175–187.PubMedCrossRefGoogle Scholar
  16. Gürlebeck, D., Thieme, F., and Bonas, U., 2006, Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant, J. Plant Physiol. 163:233–255.PubMedCrossRefGoogle Scholar
  17. Herbers, K., Conrads-Strauch, J., and Bonas, U., 1992, Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein, Nature 356:172–174.CrossRefGoogle Scholar
  18. Hotson, A., Chosed, R., Shu, H., Orth, K., and Mudgett, M.B., 2003, Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta, Mol. Microbiol. 50:377–389.PubMedCrossRefGoogle Scholar
  19. Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., and Parcy, F., 2002, bZIP transcription factors in Arabidopsis, Trends Plant Sci. 7:106–111.PubMedCrossRefGoogle Scholar
  20. Kay, S., Hahn, S., Marois, E., Hause, G., and Bonas, U., 2007, A bacterial effector as a plant transcription factor and induces a cell size regulator, Science 318:648–351.PubMedCrossRefGoogle Scholar
  21. Keen, N.T., 1990, Gene-for-gene complementarity in plant–pathogen interactions, Annu. Rev. Genet. 24:447–463.PubMedCrossRefGoogle Scholar
  22. Klement, Z., 1982, Hypersensitivity, in M.S. Mount and G.H. Lacy, eds, Phytopathogenic Prokaryotes, New York, Academic Press, pp. 149–177.Google Scholar
  23. Koebnik, R., Krüger, A., Thieme, F., Urban, A., and Bonas, U., 2006, Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes, J. Bacteriol. 188:7652–7660.Google Scholar
  24. Marie, C., Broughton, W.J., and Deakin, W.J., 2001, Rhizobium type III secretion systems: legume charmers or alarmers? Curr. Opin. Plant Biol. 4:336–342.PubMedCrossRefGoogle Scholar
  25. Marois, E., Van den Ackerveken, G., and Bonas, U., 2002, The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host, Mol. Plant Microbe Interact. 15:637–646.PubMedCrossRefGoogle Scholar
  26. Noël, L., Thieme, F., Nennstiel, D., and Bonas, U., 2001, cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria, Mol. Microbiol. 41:1271–1281.CrossRefGoogle Scholar
  27. Noël, L., Thieme, F., Nennstiel, D., and Bonas, U., 2002, Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island, J. Bacteriol. 184:1340–1348.Google Scholar
  28. Noël, L., Thieme, F., Göbler, J., Büttner, D., and Bonas, U., 2003, XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria, J. Bacteriol. 185:7092–7102.CrossRefGoogle Scholar
  29. Schornack, S., Meyer, A., Romer, P., Jordan, T., and Lahaye, T., 2006, Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins, J. Plant Physiol. 163:256–272.PubMedCrossRefGoogle Scholar
  30. Stall, R.E., 1995, Xanthomonas campestris pv. vesicatoria, in R.P.S. U.S. Singh, and K. Kohmoto, eds, Pathogenesis and Host-Parasite Specificity in Plant Diseases, Tarrytown, NY, Pergamon, Elsevier Science Inc., pp. 167–184.Google Scholar
  31. Szurek, B., Marois, E., Bonas, U., and Van den Ackerveken, G., 2001, Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper, Plant J. 26:523–534.PubMedCrossRefGoogle Scholar
  32. Szurek, B., Rossier, O., Hause, G., and Bonas, U., 2002, Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell, Mol. Microbiol. 46:13–23.PubMedCrossRefGoogle Scholar
  33. Tampakaki, A.P., Fadouloglou, V.E., Gazi, A.D., Panopoulos, N.J., and Kokkinidis, M., 2004, Conserved features of type III secretion, Cell. Microbiol. 6:805–816.PubMedCrossRefGoogle Scholar
  34. Thieme, F., Koebnik, R., Bekel, T., Berger, C., Boch, J., Büttner, D., Caldana, C., Gaigalat, L., Goesmann, A., Kay, S., Kirchner, O., Lanz, C., Linke, B., McHardy, A.C., Meyer, F., Mittenhuber, G., Nies, D.H., Niesbach-Klösgen, U., Patschkowski, T., Rückert, C., Rupp, O., Schneiker, S., Schuster, S.C., Vorhölter, F.J., Weber, E., Pühler, A., Bonas, U., Bartels, D., and Kaiser, O., 2005, Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence, J. Bacteriol. 187:7254–7266.Google Scholar
  35. Van den Ackerveken, G., Marois, E., and Bonas, U., 1996, Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell, Cell 87:1307–1316.PubMedCrossRefGoogle Scholar
  36. Vauterin, L., Rademaker, J., and Swings, J., 2000, Synopsis on the taxonomy of the genus Xanthomonas, Phytopathology 90:677–682.CrossRefGoogle Scholar
  37. Wang, G., Ding, X., Yuan, M., Qiu, D., Li, X., Xu, C., and Wang, S., 2006, Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation, Plant Mol. Biol. 60:437–449.PubMedCrossRefGoogle Scholar
  38. Weber, E., Ojanen-Reuhs, T., Huguet, E., Hause, G., Romantschuk, M., Korhonen, T.K., Bonas, U., and Koebnik, R., 2005, The type III-dependent Hrp pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants, J. Bacteriol. 187:2458–2468.Google Scholar
  39. Xiao, Y., and Hutcheson, S.W., 1994, A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae [published erratum appears in J. Bacteriol. 176:6158], J. Bacteriol. 176:3089–3091.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ulla Bonas
    • 1
  • Doreen Gürlebeck
  • Daniela Büttner
  • Monique Egler
  • Simone Hahn
  • Sabine Kay
  • Antje Krüger
  • Christian Lorenz
  • Robert Szczesny
  • Frank Thieme
  1. 1.Department of GeneticsNMartin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations