Combining Genomic Tools to Dissect Multifactorial Virulence in Pseudomonas aeruginosa

  • Daniel G. Lee
  • Jonathan M. Urbach
  • Gang Wu
  • Nicole T. Liberati
  • Rhonda L. Feinbaum
  • Frederick M. Ausubel
Part of the Stadler Genetics Symposia Series book series (SGSS)


Pseudomonas Aeruginosa Pathogenicity Island Genomic Tool PA14 PA14 Model Host 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badarinarayana, V., Estep, P.W., 3rd, Shendure, J., Edwards, J., Tavazoie, S., Lam, F., and Church, G.M., 2001, Selection analyses of insertional mutants using subgenic-resolution arrays, Nat. Biotechnol. 19:1060–1065.PubMedCrossRefGoogle Scholar
  2. Bentley, S.D., and Parkhill, J., 2004, Comparative genomic structure of prokaryotes, Annu. Rev. Genet. 38:771–792.PubMedCrossRefGoogle Scholar
  3. Choi, J.Y., Sifri, C.D., Goumnerov, B.C., Rahme, L.G., Ausubel, F.M., and Calderwood, S.B., 2002, Identification of virulence genes in a pathogenic strain of Pseudomonas aeruginosa by representational difference analysis, J. Bacteriol. 184:952–961.PubMedCrossRefGoogle Scholar
  4. Delcher, A.L., Harmon, D., Kasif, S., White, O., and Salzberg, S.L., 1999, Improved microbial gene identification with GLIMMER, Nucleic Acids Res. 27:4636–4641.PubMedCrossRefGoogle Scholar
  5. Doring, D., 1993, Chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients, Pseudomonas aeruginosa as an opportunistic pathogen, Plenum Press, New York, pp. 245–273.Google Scholar
  6. Ernst, R.K., D’Argenio, D.A., Ichikawa, J.K., Bangera, M.G., Selgrade, S., Burns, J.L., Hiatt, P., McCoy, K., Brittnacher, M., Kas, A., et al., 2003, Genome mosaicism is conserved but not unique in Pseudomonas aeruginosa isolates from the airways of young children with cystic fibrosis, Environ. Microbiol. 5:1341–1349.PubMedCrossRefGoogle Scholar
  7. Gravato-Nobre, M.J., Nicholas, H.R., Nijland, R., O’Rourke, D., Whittington, D.E., Yook, K.J., and Hodgkin, J., 2005, Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum, Genetics 171:1033–1045.PubMedCrossRefGoogle Scholar
  8. Hacker, J., Blum-Oehler, G., Muhldorfer, I., and Tschape, H., 1997, Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution, Mol. Microbiol. 23:1089–1097.PubMedCrossRefGoogle Scholar
  9. He, J., Baldini, R.L., Deziel, E., Saucier, M., Zhang, Q., Liberati, N.T., Lee, D., Urbach, J., Goodman, H.M., and Rahme, L.G., 2004, The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes, Proc. Natl. Acad. Sci. USA 101:2530–2535.PubMedCrossRefGoogle Scholar
  10. Hensel, M., Shea, J.E., Gleeson, C., Jones, M.D., Dalton, E., and Holden, D.W., 1995, Simultaneous identification of bacterial virulence genes by negative selection, Science 269: 400–403.PubMedCrossRefGoogle Scholar
  11. Jander, G., Rahme, L.G., and Ausubel, F.M., 2000, Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects, J. Bacteriol. 182:3843–3845.PubMedCrossRefGoogle Scholar
  12. Kim, C.C., Joyce, E.A., Chan, K., and Falkow, S., 2002, Improved analytical methods for microarray-based genome-composition analysis, Genome Biol. 3, RESEARCH0065.1–0065.17.Google Scholar
  13. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., and Salzberg, S.L., 2004, Versatile and open software for comparing large genomes, Genome Biol. 5:R12.PubMedCrossRefGoogle Scholar
  14. Larbig, K.D., Christmann, A., Johann, A., Klockgether, J., Hartsch, T., Merkl, R., Wiehlmann, L., Fritz, H.J., and Tummler, B., 2002, Gene islands integrated into tRNA (Gly) genes confer genome diversity on a Pseudomonas aeruginosa clone, J. Bacteriol. 184:6665–6680.PubMedCrossRefGoogle Scholar
  15. Lau, G.W., Goumnerov, B.C., Walendziewicz, C.L., Hewitson, J., Xiao, W., Mahajan-Miklos, S., Tompkins, R.G., Perkins, L.A., and Rahme, L.G., 2003, The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa, Infect. Immun. 71:4059–4066.PubMedCrossRefGoogle Scholar
  16. Lee, D.G., Urbach, J.M., Wu, G., Liberati, N.T., Feinbaum, R.L., Miyata, S., Diggins, L.T., He, J., Saucier, M., Deziel, E., et al., 2006, Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial, Genome Biol. 7:R90.PubMedCrossRefGoogle Scholar
  17. Liberati, N.T., Urbach, J.M., Miyata, S., Lee, D.G., Drenkard, E., Wu, G., Villanueva, J., Wei, T., and Ausubel, F.M., 2006, An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants, Proc. Natl. Acad. Sci. USA 103:2833–2838.PubMedCrossRefGoogle Scholar
  18. Mahajan-Miklos, S., Tan, M.W., Rahme, L.G., and Ausubel, F.M., 1999, Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model, Cell 96:47–56.PubMedCrossRefGoogle Scholar
  19. Miyata, S., Casey, M., Frank, D.W., Ausubel, F.M., and Drenkard, E., 2003, Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis, Infect. Immun. 71:2404–2413.PubMedCrossRefGoogle Scholar
  20. Moy, T.I., Ball, A.R., Anklesaria, Z., Casadei, G., Lewis, K., and Ausubel, F.M., 2006, Identification of novel antimicrobials using a live-animal infection model, Proc. Natl. Acad. Sci. USA 103:10414–10419.PubMedCrossRefGoogle Scholar
  21. O’Rourke, D., Baban, D., Demidova, M., Mott, R., and Hodgkin, J., 2006, Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum, Genome Res. 16:1005–1016.PubMedCrossRefGoogle Scholar
  22. Oelschlaeger, T.A., and Hacker, J., 2004, Impact of pathogenicity islands in bacterial diagnostics, Apmis 112:930–936.PubMedCrossRefGoogle Scholar
  23. Plotnikova, J.M., Rahme, L.G., and Ausubel, F.M., 2000, Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis, Plant Physiol. 124:1766–1774.PubMedCrossRefGoogle Scholar
  24. Pukatzki, S., Kessin, R.H., and Mekalanos, J.J., 2002, The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum, Proc. Natl. Acad. Sci. USA 99:3159–3164.PubMedCrossRefGoogle Scholar
  25. Rahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., and Ausubel, F.M., 1995, Common virulence factors for bacterial pathogenicity in plants and animals, Science 268:1899–1902.PubMedCrossRefGoogle Scholar
  26. Rahme, L.G., Tan, M.W., Le, L., Wong, S.M., Tompkins, R.G., Calderwood, S.B., and Ausubel, F.M., 1997, Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors, Proc. Natl. Acad. Sci. USA 94:13245–13250.PubMedCrossRefGoogle Scholar
  27. Raskin, D.M., Seshadri, R., Pukatzki, S.U., and Mekalanos, J.J., 2006, Bacterial genomics and pathogen evolution, Cell 124:703–714.PubMedCrossRefGoogle Scholar
  28. Romling, U., Kader, A., Sriramulu, D.D., Simm, R., and Kronvall, G., 2005, Worldwide distribution of Pseudomonas aeruginosa clone C strains in the aquatic environment and cystic fibrosis patients, Environ. Microbiol. 7:1029–1038.PubMedCrossRefGoogle Scholar
  29. Saenz, H.L., and Dehio, C., 2005, Signature-tagged mutagenesis: technical advances in a negative selection method for virulence gene identification, Curr. Opin. Microbiol. 8:612–619.PubMedCrossRefGoogle Scholar
  30. Salzberg, S.L., Delcher, A.L., Kasif, S., and White, O., 1998, Microbial gene identification using interpolated Markov models, Nucleic Acids Res. 26:544–548.PubMedCrossRefGoogle Scholar
  31. Sassetti, C.M., Boyd, D.H., and Rubin, E.J., 2001, Comprehensive identification of conditionally essential genes in mycobacteria, Proc. Natl. Acad. Sci. USA 98:12712–12717.PubMedCrossRefGoogle Scholar
  32. Sato, H., and Frank, D.W., 2004, ExoU is a potent intracellular phospholipase, Mol. Microbiol. 53:1279–1290.PubMedCrossRefGoogle Scholar
  33. Spencer, D.H., Kas, A., Smith, E.E., Raymond, C.K., Sims, E.H., Hastings, M., Burns, J.L., Kaul, R., and Olson, M.V., 2003, Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa, J. Bacteriol. 185:1316–1325.PubMedCrossRefGoogle Scholar
  34. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., et al., 2000, Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen, Nature 406:959–964.PubMedCrossRefGoogle Scholar
  35. Tan, M.W., Mahajan-Miklos, S., and Ausubel, F.M., 1999a, Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis, Proc. Natl. Acad. Sci. USA 96:715–720.CrossRefGoogle Scholar
  36. Tan, M.W., Rahme, L.G., Sternberg, J.A., Tompkins, R.G., and Ausubel, F.M., 1999b, Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors, Proc. Natl. Acad. Sci. USA 96:2408–2413.CrossRefGoogle Scholar
  37. Troemel, E.R., Chu, S.W., Renke, V., Lee, S.S., Ausubel, F.M., and Kim, D.H., 2006, p38 MAPK Regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS, Genetics, 2:e183.Google Scholar
  38. Wolfgang, M.C., Kulasekara, B.R., Liang, X., Boyd, D., Wu, K., Yang, Q., Miyada, C.G., and Lory, S., 2003, Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA 100:8484–8489.PubMedCrossRefGoogle Scholar
  39. Wong, S.M., and Mekalanos, J.J., 2000 Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA 97:10191–10196.Google Scholar
  40. Wood, R.E., 1976, Pseudomonas: the compromised host, Hosp. Pract. 11:91–100.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Daniel G. Lee
    • 1
  • Jonathan M. Urbach
  • Gang Wu
  • Nicole T. Liberati
  • Rhonda L. Feinbaum
  • Frederick M. Ausubel
  1. 1.Department of Molecular Biology, Massachusetts General Hospital and Department of GeneticsHarvard Medical SchoolBostonUSA

Personalised recommendations