Skip to main content

Bayesian Model Uncertainty in Mixed Effects Models

  • Chapter
Book cover Random Effect and Latent Variable Model Selection

Part of the book series: Lecture Notes in Statistics ((LNS,volume 192))

Abstract

Random effects models are widely used in analyzing dependent data, which are collected routinely in a broad variety of application areas. For example, longitudinal studies collect repeated observations for each study subject, while multi-center studies collect data for patients nested within study centers. In such settings, it is natural to suppose that dependence arises due to the impact of important unmeasured predictors that may interact with measured predictors. This viewpoint naturally leads to random effects models in which the regression coefficients vary across the different subjects. In this chapter, we use the term “subject” broadly to refer to the independent experimental units. For example, in longitudinal studies, the subjects are the individuals under study, while in multi-center studies the subjects correspond to the study centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agresti, A. (1990). Categorical Data Analysis. New York: Wiley

    MATH  Google Scholar 

  • Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association 88, 669–679

    Article  MathSciNet  MATH  Google Scholar 

  • Albert, J. H. and Chib, S. (2001). Sequential ordinal modeling with applications to survival data. Biometrics 57, 829–836

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, J. O., Ghosh, J. K. and Mukhopadhyay, N. (2003). Approximations and consistency of Bayes factors as model dimension grows. Journal of Statistical Planning and Inference 112, 241–258

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: Introduction and comparison. In Lahiri, P., editor, Model Selection, volume 38 of IMS Lecture Notes – Monograph Series, pages 135–193. Institute of Mathematical Statistics

    Google Scholar 

  • Breslow, N. (2003). Whither PQL? UW Biostatistics Working Paper Series Working Paper 192

    Google Scholar 

  • Breslow, N. and Clayton, D. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 88, 9–25

    MATH  Google Scholar 

  • Cai, B. and Dunson, D. B. (2006). Bayesian covariance selection in generalized linear mixed models. Biometrics 62, 446–457

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Z. and Dunson, D. B. (2003). Random effects selection in linear mixed models. Biometrics 59, 762–769

    Article  MathSciNet  MATH  Google Scholar 

  • Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American Statistical Association 90, 1313–1321

    Article  MathSciNet  MATH  Google Scholar 

  • Chib, S. and Greenberg, E. (1998). Bayesian analysis of multivariate probit models. Biometrika 85, 347–361

    Article  MATH  Google Scholar 

  • Chung, Y. and Dey, D. (2002). Model determination for the variance component model using reference priors. Journal of Statistical Planning and Inference 100, 49–65

    Article  MathSciNet  MATH  Google Scholar 

  • Clyde, M. and George, E. I. (2004). Model uncertainty. Statistical Science 19, 81–94

    Article  MathSciNet  MATH  Google Scholar 

  • Fernandez, C., Ley, E. and Steel, M. F. (2001). Benchmark priors for Bayesian model averaging. Journal of Econometrics 100, 381–427

    Article  MathSciNet  MATH  Google Scholar 

  • Foster, D. P. and George, E. I. (1994). The risk inflation criterion for multiple regression. Annals of Statistics 22, 1947–1975

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand, A. E. and Smith, A. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85, 398–409

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand, A. E., Sahu, S. K. and Carlin, B. P. (1996). Efficient parameterizations for generalized linear mixed models. Bayesian Statistics 5,

    Google Scholar 

  • Gelman, A. (2005). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1, 1–19

    Google Scholar 

  • George, E. I. and McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association 88, 881–889

    Article  Google Scholar 

  • George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian variable selection. Statistica Sinica 7, 339–374

    MATH  Google Scholar 

  • Gerlach, R., Bird, R. and Hall, A. (2002). Bayesian variable selection in logistic regression: Predicting company earnings direction. Australian and New Zealand Journal of Statistics 42, 155–168

    MathSciNet  Google Scholar 

  • Geweke, J. (1996). Variable selection and model comparison in regression. In Bayesian Statistics 5 – Proceedings of the Fifth Valencia International Meeting, pages 609–620

    Google Scholar 

  • Gilks, W., Wang, C., Yvonnet, B. and Coursaget, P. (1993). Random-effects models for longitudinal data using Gibbs sampling. Biometrics 49, 441–453

    Article  MATH  Google Scholar 

  • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732

    Article  MathSciNet  MATH  Google Scholar 

  • Green, P. J. (1997). Discussion of ”The EM algorithm – an old folk song sung to a fast new tune,” by Meng and van Dyk. Journal of the Royal Statistical Society, Series B 59, 554–555

    Google Scholar 

  • Hall, D. and Praestgaard, J. (2001). Order-restricted score tests for homogeneity in generalised linear and nonlinear mixed models. Biometrika 88, 739–751

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109

    Article  MATH  Google Scholar 

  • Hobert, J. P. and Casella, G. (1996). The effect of improper priors on Gibbs sampling in hierarchical linear mixed models. Journal of the American Statistical Association 91, 1461–1473

    Article  MathSciNet  MATH  Google Scholar 

  • Holmes, C. and Knorr-Held, L. (2003). Efficient simulation of Bayesian logistic regression models. Technical report, Ludwig Maximilians University Munich

    Google Scholar 

  • Jang, W. and Lim, J. (2005). Estimation bias in generalized linear mixed models. Technical report, Institute for Statistics and Decision Sciences, Duke University

    Google Scholar 

  • Jiang, J., Rao, J., Gu, Z. and Nguyen, T. (2008). Fence methods for mixed model selection. Annals of Statistics, to appear

    Google Scholar 

  • Johnson, V. E. and Albert, J. H. (1999). Ordinal Data Modeling. Berlin Heidelberg New York: Springer

    MATH  Google Scholar 

  • Kass, R. E. and Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the schwarz criterion. Journal of the American Statistical Association 90, 928–934

    Article  MathSciNet  MATH  Google Scholar 

  • Kinney, S. K. and Dunson, D. B. (2007). Fixed and random effects selection in linear and logistic models. Biometrics 63, 690–698

    Article  MathSciNet  MATH  Google Scholar 

  • Laird, N. and Ware, J. (1982). Random-effects models for longitudinal data. Biometrics 38, 963–974

    Article  MATH  Google Scholar 

  • Liang, F., Paulo, R., Molina, G., Clyde, M. A. and Berger, J. O. (2005). Mixtures of g-priors for Bayesian variable selection. Technical Report 05-12, ISDS, Duke University

    Google Scholar 

  • Lin, X. (1997). Variance component testing in generalised linear models with random effects. Biometrika 84, 309–326

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J. S. and Wu, Y. N. (1999). Parameter expansion for data augmentation. Journal of the American Statistical Association 94, 1264–1274

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, C., Rubin, D. B. and Wu, Y. N. (1998). Parameter expansion to accelerate EM: the PX-EM algorithm. Biometrika 85, 755–770

    Article  MathSciNet  MATH  Google Scholar 

  • Meng, X. L. and Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: a theoretical exploration. Statistica Sinica 6, 831–860

    MathSciNet  MATH  Google Scholar 

  • Mira, A. and Tierney, L. (2002). Efficiency and convergence properties of slice samplers. Scandinavian Journal of Statistics 29, 1–12

    Article  MathSciNet  MATH  Google Scholar 

  • Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian variable selection in linear regression (with discussion). Journal of the American Statistical Association 83, 1023–1036

    Article  MathSciNet  MATH  Google Scholar 

  • Neal, R. M. (2000). Slice sampling. Technical report, Department of Statistics, University of Toronto

    Google Scholar 

  • Newton, M. and Raftery, A. E. (1994). Approximate Bayesian inference by the weighted likelihood bootstrap (with discussion). Journal of the Royal Statistical Society, Series B 56, 3–48

    MathSciNet  MATH  Google Scholar 

  • O'Brien, S. M. and Dunson, D. B. (2004). Bayesian multivariate logistic regression. Biometrics 60, 739–746

    Article  MathSciNet  MATH  Google Scholar 

  • Pauler, D. K., Wakefield, J. C. and Kass, R. E. (1999). Bayes factors and approximations for variance component models. Journal of the Americal Statistical Association 94,1242–1253

    Article  MathSciNet  MATH  Google Scholar 

  • Raftery, A. E. (1995). Bayesian model selection in social resarch. Sociological Methodology 25, 111–163

    Article  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Sinharay, S. and Stern, H. S. (2001). Bayes factors for variance component testing in generalized linear mixed models. In Bayesian Methods with Applications to Science, Policy, and Official Statistics, pages 507–516

    Google Scholar 

  • Smith, M. and Kohn, R. (1996). Nonparametric regression using Bayesian variable selection. Journal of Econometrics 75, 317–343

    Article  MATH  Google Scholar 

  • Stiratelli, R., Laird, N. M. and Ware, J. H. (1984). Random-effects model for several observations with binary response. Biometrics 40, 961–971

    Article  Google Scholar 

  • Verbeke, G. and Molenberghs, G. (2003). The use of score tests for inference on variance components. Biometrics 59, 254–262

    Article  MathSciNet  MATH  Google Scholar 

  • Vines, S., Gilks, W. and Wild, P. (1994). Fitting Bayesian multiple random effects models. Technical report, Biostatistics Unit, Medical Research Council, Cambridge

    Google Scholar 

  • West, M. (1987). On scale mixtures of normal distributions. Biometrika 74, 646–648

    Article  MathSciNet  MATH  Google Scholar 

  • Zellner, A. and Siow, A. (1980). Posterior odds ratios for selected regression hypotheses. In Bayesian Statistics: Proceedings of the First International Meeting held in Valencia (Spain)

    Google Scholar 

  • Zhao, Y., Staudenmayer, J., Coull, B. and Wand, M. (2006). General design Bayesian generalized linear mixed models. Statistical Science 21, 35–51

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences, and by the National Science Foundation under Agreement No. DMS-0112069 with the Statistical and Mathematical Sciences Institute (SAMSI). The authors are grateful to Merlise Clyde and Abel Rodriguez at Duke University and to the participants of the Model Uncertainty working group of the SAMSI Program on Latent Variable Modeling in the Social Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satkartar K. Kinney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kinney, S.K., Dunson, D.B. (2008). Bayesian Model Uncertainty in Mixed Effects Models. In: Dunson, D.B. (eds) Random Effect and Latent Variable Model Selection. Lecture Notes in Statistics, vol 192. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76721-5_3

Download citation

Publish with us

Policies and ethics