Skip to main content

DNA Metallo-Intercalators with Leishmanicidal Activity

  • Chapter
Programmed Cell Death in Protozoa

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

In the present chapter we focus our attention on the use of metal complexes for the treatment of leishmaniasis, especially those that have leishmanicidal activity which could be associated with their interaction with the parasitic DNA. Furthermore, we revise current knowledge of leishmaniasis, including PCD-inducing drugs used clinically and those currently in the experimental and evaluation phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum J, Desjeux P, Schwartz E et al. Treatment of cutaneous leishmaniasis among travellers. J Antimicrob Chemother 2004; 53:158–166.

    PubMed  CAS  Google Scholar 

  2. Alvar J, Canavata C, Gutiérrez-Solar B et al. Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin Microbiol Rev 1997; 10:298–318.

    PubMed  CAS  Google Scholar 

  3. Desjeux P, Alvar J. Leishmania/HIV co-infections: epidemiology in Europe. Ann Trop Med Parasitol 2003; 97(1):3–15.

    PubMed  Google Scholar 

  4. Alexander J, Russell DG. The interaction of Leishmania species with macrophages. Adv parasitol 1992; 31:175–254.

    PubMed  CAS  Google Scholar 

  5. Alexander J, Satoskar AR, Russell DG. Leishmania species: models of intracellular parasitism. J Cell Sci 1999; 112:2993–3002.

    PubMed  CAS  Google Scholar 

  6. Nguewa P, Fuertes M, Valladares B et al. Programmed cell death in trypanosomatids: a way to maximize their biological fitness. Trends Parasitol 2004; 20(8):375–380.

    PubMed  Google Scholar 

  7. Lee N, Bertholet S, Debrabant A et al. Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 2002; 9(1):53–64.

    PubMed  CAS  Google Scholar 

  8. Welburn SC, Barcinski MA, Williams GT. Programmed cell death in trypanosomatids. Parasitol Today 1997; 13:22–26.

    PubMed  CAS  Google Scholar 

  9. Ameisen JC, Idziorek T, Billaut-Mulot O et al. Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death Differ 1995; 2:285–300.

    PubMed  CAS  Google Scholar 

  10. Welburn SC, Maudlin I, Ellis DS. Rate of Trypanosome killing by lectins in midguts of different species and strains of Glossina. Med Vet Entomol 1989; 3:77–82.

    PubMed  CAS  Google Scholar 

  11. Welburn SC, Dale C, Ellis D et al. Apoptosis in procyclic T. B. rhodesiense in vitro. Cell Death Differ 1996; 3:229–236.

    PubMed  CAS  Google Scholar 

  12. Moreira ME, Del Portillo HA, Milder RV et al. Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania (Leishmania) amazonensis. J Cell Physiol 1996; 167:305–313.

    PubMed  CAS  Google Scholar 

  13. Cornillon S, Foa C, Davoust J et al. Programmed cell death in Dictyostelium. J Cell Sci 1994; 107:2691–2704.

    PubMed  CAS  Google Scholar 

  14. Shaha C. Apoptosis in Leishmania species & its relevance to disease Pathogenesis. Indian J Med Res 2006; 123:233–244.

    PubMed  CAS  Google Scholar 

  15. Berman JD. Chemotherapy for leishmaniasis: biochemical mechanisms, clinical efficacy and future strategies. Rev infect Dis 1988; 10:560–586.

    PubMed  CAS  Google Scholar 

  16. Kayser O, Kiderlen AF, Croft SL. In: Atta-ur-Rahman, ed.. Studies in Natural Products Chemistry, Bioactive Natural Products (Part G) vol. 26. Amsterdam: Elsevier, 2002:779–848.

    Google Scholar 

  17. Sereno D, Cavaleyra M, Zemzoumi K et al. Axenically grown amastigotes of Leishmania infantum used as an in vitro model to investigate the pentavalent antimony mode of action. Antimicrob Agents Chemother 1998; 42:3097–102.

    PubMed  CAS  Google Scholar 

  18. Sereno D, Holzmuller P, Mangot I et al. Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrb Agents Chemother 2001; 45:2064–2069.

    CAS  Google Scholar 

  19. Matsuyama S, Llopis J, Deveraux QL et al. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2000; 2:318–325.

    PubMed  CAS  Google Scholar 

  20. Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of prorammed cell death. Proc Natl Acad Sci USA 2000; 97:14376–81.

    PubMed  CAS  Google Scholar 

  21. Sudhandiran G, Shaha C. Antimonial induced increase in intracellular Ca2+ through nonselective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem 2003; 278:25120–32.

    PubMed  CAS  Google Scholar 

  22. Bryceson ADM. Leishmaniasis. In: Wyngaarden JB, Smith Jr LH, eds. Cecil Textbook of Medicine. Edinburgh: Churchill Living-Stone, 1980:815–818.

    Google Scholar 

  23. Maegrath B, ed. Clinical Tropical disease, 7th ed. Vol 12. London: Blackwell Scientific Publication 1980:184.

    Google Scholar 

  24. Ganor S. The treatment of leishmanissis residual with local injections of amphotericin B. Dermatol Int 1967; 6:141–143.

    PubMed  CAS  Google Scholar 

  25. Yardley V, Croft SL. A comparison of the activities of three amphotericin B lipidformulations against experimental visceral and cutaneous leishmaniasis. Int J Antimicrob Agents. 2000; 13(4):243–248.

    PubMed  CAS  Google Scholar 

  26. Meyerhoff US. Food and Drug Administration approval of AmBisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin infect Dis 1999; 28(1):49–51.

    Google Scholar 

  27. Barrat G, Legrand P. Comparison of the efficacy and pharmacology of formulations of ampotericin B used in the treatment of leishmaniasis. Curr Opin Infect Dis 2005; 18(6):527–530.

    Google Scholar 

  28. Khalil EA, El Hassan AM, Zijlstra E et al. Treatment of visceral leishmaniasis with sodium stibogluconate in Sudan: management of those who do not respond. Ann Trop Med Parasitol 1998; 92: 151–158.

    PubMed  CAS  Google Scholar 

  29. Hentzer B, Kobayasi T. The ultra estructural changes of Leishmania tropica after treatment with pentamidine. Ann Trop Med Parasitol 1977; 71:157–66.

    PubMed  CAS  Google Scholar 

  30. Hellier I, Dereure O, Tournillac I et al. Treatment of old world cutaneous leishmaniasis by pentamidine isethionate: An open study of 11 patients. Dermatol 2000; 200(2):120–123.

    CAS  Google Scholar 

  31. Verma NK, Dey CS. Possible mechanism of miltefosine mediated death of Leishmania donovani. Antimicrob Agents Chemother 2004; 48:3010–3015.

    PubMed  CAS  Google Scholar 

  32. Davies C, Kaye P, Croft S et al. Leishmaniasis: new approaches to disease control. British Med J 2003; 326:377–382.

    Google Scholar 

  33. Singh S, Sivakumar R. Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother 2004; 10(6):307–315.

    PubMed  Google Scholar 

  34. TDR. Tropical Disease Research Progress 2003–2004. Seventeenth Program Report of the UNIFEF/UNDP/WB/WHO Special Program for Research & Training in Tropical Disease, 2005.

    Google Scholar 

  35. Soto J, Toledo J, Gutierrez P et al. Treatment of american cutaneous leishmaniasis with miltefosine, an oral agent. Clin Infect Dis 2001; 33:57–61.

    Google Scholar 

  36. Saenz RE, Paz HM, Jonhson CM et al. Treatment of american cutaneous leishmaniasis with orally administered allopurinol riboside. J Infect Dis 1989; 160:153–158.

    PubMed  CAS  Google Scholar 

  37. Guderian RH, Chico ME, Rogers MD et al. Placebo controlled treatment of Ecuadorian cutaneous leishmaniasis. Am J Trop Med Hyg 1991; 45:92–97.

    PubMed  CAS  Google Scholar 

  38. Esfandiarpour I, Alavi A. Evaluating the efficacy of allopurinol and meglumine antimonmiate (Glucantime) in the treatment of cutaneous leishmaniasis. Int J Dermatol. 2002; 41:521–524.

    PubMed  CAS  Google Scholar 

  39. D’Oliveria JA, Machado PR, Carvalho EM. Evaluating the efficacy of allopurinol for the treatment of cutaneous leishmaniasis. Int J Dermatol 1997; 36:938–940.

    Google Scholar 

  40. Martinez S, Marr JJ. Allopurinol in the treatment of american cutaneous leishmaniasis. New Ingl J Med 1992; 326:741–744.

    CAS  Google Scholar 

  41. Martinez S, Gonzalez M, Vernaza ME. Treatment of cutaneous leishmaniasis with allopurinol and stibogluconate. Clin Infect Dis 1997; 24:165–169.

    PubMed  CAS  Google Scholar 

  42. Kochar DK, Aseri S, Sharma BV et al. The role of rifampicin in the management of cutaneous leishmanaisis. Quart J Med 2000; 93:733–737.

    CAS  Google Scholar 

  43. Dogra J. A double-blind study on the efficacy of oral dapsone in cutaneous leishmaniasis. Trans Royal Soc Trop Med Hyg 1991; 85:212–213.

    CAS  Google Scholar 

  44. Sharquie KE, Najim RA, Farjou IB et al. Oral zinc sulphate in the treatment of acute cutaneous lesihmaniasis. Clin Exp Dermatol 2001; 26:21–26.

    PubMed  CAS  Google Scholar 

  45. Chen M, Christensen SD, Theander TG et al. Antileishmanial activity of licochalcone A in mice infected with Leishmania major and in hamsters infected with Lesihmania donovani. Antimicrob Agents Chemother 1994; 38:1339–1344.

    PubMed  CAS  Google Scholar 

  46. Piñero J, Temporal RM, Silva-Goncalves AJ et al. New administration model of transchalcone biodegradable polymers for the treatment of experimental leishmaniasis. Acta Tropica 2006; 98:59–65.

    PubMed  Google Scholar 

  47. Akedengue B, Ngou-Milama E, Laurens A et al. Recent advances in the fight against leishmaniasis with natural products. Parasite 1999; 6:3–8.

    Google Scholar 

  48. Corona MC, Croft SL, Phillipson JD. Natural products as sources of antiprotozoal drugs. Curr Opin Anti-infect Invest Drugs 2000; 2:47–62.

    CAS  Google Scholar 

  49. Chan-Bacab MJ, Pena-Rodriguez LM. Plant natural products withleishmanicidal activity. Nat Prod Rep 2001; 18: 674–688.

    PubMed  CAS  Google Scholar 

  50. Rocha LG, Almeida JRGS, Mačedo RO et al. A review of natural products with antileishmanial activity. Phytomed: inter j phytother phytophar 2005; 12(6–7):514–535.

    CAS  Google Scholar 

  51. Iwu MM, Jackson JE, Schuster BG. Medicinal plants in the figth against leishmaniasis. Parasitol Today 1994; 10(2):65–68.

    PubMed  CAS  Google Scholar 

  52. Borris RP, Schaeffer JM. In: Nigg HN, Seigler D, eds. Phytochemical Resources for Medicine and Agriculture. New York: Plenum Press, 1992:117–158.

    Google Scholar 

  53. Fournet A, Gantier JC, Gautheret A et al. The activity of 2-substituted quinoline alkaloids in BALB/c mice infected with Leishmania donovani. J Antimicrob Chemother 1994; 33(3):537–544.

    PubMed  CAS  Google Scholar 

  54. Fournet A, Hocquemiller R, Gantier J. Control of leishmaniasis. An ethno-pharmacological investigation in Bolivia. La Recherche 1995; 26(275):424–429.

    CAS  Google Scholar 

  55. Mercer EI. Inhibitors of sterols biosynthesis and their applications. Prog Lipid Res 1993; 4:357–416.

    Google Scholar 

  56. Goad LJ, Holz GG, Beach DH. Effect of the allilamine antifungal drug SF86-327 on the growth and sterol synthesis of Leishmania mexicana mexicana promastigotes. Biochem Pharmacol 1985; 34:3785–3786.

    PubMed  CAS  Google Scholar 

  57. Beach DH, Goad LJ, Berman JD. Effects of a squalene-2,3-epoxidase inhibitor on propagation and sterol biosynthesis of Leishmania promastigotes and amastigotes. In: Hart DT, ed. Leishmaniasis. New York: Plenum, 1989.

    Google Scholar 

  58. Vannier-Santos MA, Urbina JA, Martiny A et al. Alterations induced by the antifungal compounds ketoconazole and terbinafine in Leishmania. J Eukaryot Microbiol 1995; 42:337–346.

    PubMed  CAS  Google Scholar 

  59. Rangel H, Dagger F, Hernandez A et al. Naturally azole-resistant Leishmania brasiliensis promastigotes are rendered susceptible in the presence of terbinafine: compartive study with azole-susceptible Leishmania mexicana promastigotes. Antimicrob Agents Chemother 1996; 40:2785–2791.

    PubMed  CAS  Google Scholar 

  60. Berman JD, Holz GG, Beach DH. Effects of ketoconazole on the growth and sterol biosynthesis of Leishmania promastigotes in culture. Mol Biochem Parasitol 1984; 12:1–13.

    PubMed  CAS  Google Scholar 

  61. Goad LJ, Holz GG, Beach DH. Sterols of ketoconazole inhibited Leishmania mexicana mexicana promastigotes. Mol Biochem Parasitol 1985; 15:257–279.

    PubMed  CAS  Google Scholar 

  62. Berman JD, Goad LJ, Beach DH et al. Effects of ketoconazole on sterol biosynthesis by Leishmania mexicana mexicana amastigotes in murine macrophage tumor cells. Mol Biochem Parasitol 1986; 20:85–92.

    PubMed  CAS  Google Scholar 

  63. Beach DH, Goad LJ, Berman JD. Effects of lanosterol 14α-demethylation inhibitors on propagation and sterol biosynthesis of Leishmania promastigotes and amastigotes. In: Hart DT, ed. Leishmaniasis. New York: Plenum, 1989:765–771.

    Google Scholar 

  64. Beach DH, Goad LJ, Holz GG. Effects of antimicotic azoles on growth and sterols biosynthesis of Leishmania promastigotes. Mol Biochem Parasitol 1988; 31:141–162.

    Google Scholar 

  65. Kubba R, Al-Gindan Y, El-Hassan AM et al. Ketoconazole in cutaneous leishmaniasis: results of a pilot study. Saudi Med J 1986; 7:596–604.

    Google Scholar 

  66. Berman JD. Human leishmaniasis: clinical, diagnostic and chemotherapeutic developments in the last years. Clin Infect Dis 1997; 24:684–703.

    PubMed  CAS  Google Scholar 

  67. Visbal G, San-Blas G, Murgich J et al. Paracoccidioides braziliensis, paracoccidioidomycosis and antifungal antibiotics. Curr Drug Targets: Infect Disord 2005; 5:211–226.

    CAS  Google Scholar 

  68. Haughan PA, Chance ML, Goad LJ. Effects of the azasterol inhibitor of sterol 24-transmethylation on sterol biosynthesis and growth of Leishmania donovani promastigotes. Biochem 1995; 308:31–38.

    CAS  Google Scholar 

  69. Magaraci F, Jimenez Jimenez C, Rodrigues C et al. Azasterols as inhibitors of sterol 24-methyltransferase in Leishmania species and Trypanosoma cruzi. J Med Chem 2003; 46:4714–4727.

    PubMed  CAS  Google Scholar 

  70. Lorente SO, Jimenez Jimenez C, Gros L et al. Preparation of transition-state analogues of sterol 24-methyl transferase as potential anti-parasitics. Bioorg Med Chem 2005; 13:5435–5453.

    PubMed  CAS  Google Scholar 

  71. Farrell N. Transition metal complexes as drugs and chemotherapeuric agents. In: James BR, Ugo R, eds. Catalysis by Metal Complexes Series. Vol. 11. Dordrecht: Kluwer Academic Publishers, 1989.

    Google Scholar 

  72. Farrell N. Uses of Inorganic Chemistry in Medicine. Cornwall: Publishers Royal Society of Chemistry, 1999.

    Google Scholar 

  73. Lippert B. Platinum nucleobase chemistry. Prog Inorg Chem 1989; 37:1–97.

    CAS  Google Scholar 

  74. Bruhn SL, Toney JH, Lippard SJ. Biological Processing of DNA modified by platinum compounds. Prog Inorg Chem 1990; 38:477–516.

    CAS  Google Scholar 

  75. Jamieson ER, Lippard SJ. Structure recognition and processing of cis-platin-DNA adducts. Chem Rev 1999; 99:2467–2498.

    PubMed  CAS  Google Scholar 

  76. Clarke MJ, Zhu F, Frasca DR. Non platinum chemotherapeutic metallopharmaceuticals. Chem Rev 1999; 99:2511–2533.

    PubMed  CAS  Google Scholar 

  77. Guo Z, Sadler PJ. Metals in medicine. Angew Chem Int Ed 1999; 38:1512–1531.

    CAS  Google Scholar 

  78. Guo Z, Sadler PJ. Medicinal inorganic chemistry. Adv Inorg Chem 2000; 49:183–306.

    CAS  Google Scholar 

  79. Clarke MJ. Ruthenium metallophamaceuticals. Coord Chem Rev 2002; 232:69–93.

    CAS  Google Scholar 

  80. Farrell NP, Williamson J, McLaren DJ. Trypanocidal and antitumour activity of platinum-metal and platinum-metal-drug dual-function complexes. Biochem pharmacol 1984; 33(7):961–971.

    PubMed  CAS  Google Scholar 

  81. Mesa-Valle CM, Moraleda-Lindez V. Antileishmanial action of organometallic complexes of Pt (II) and Rh(I). Men Inst Oswaldo Cruz, 1996; 9:625–633.

    Google Scholar 

  82. Mbongo N, Loiseau PM, Lawrence F et al. In vitro sensitivity of Leishmania donovani to organometallic derivatives of pentamidine. Parasitol Res 1997; 83:515–517.

    PubMed  CAS  Google Scholar 

  83. Loiseau PM, Mbongo N, Bories C et al. In vivo antileishmanial action of Ir-(COT)-pentamidine tetraphenylborate on Leishmania donovani and Leishmania major mouse models. Parasite 2000; 7:103–108.

    PubMed  CAS  Google Scholar 

  84. Mbongo N, Loiseau PM, Craciunescu DG et al. Synergistic effect of Ir-(COT)-pentamidine alizarin red and pentamidine, amphotericin B and paromomycin on Leishmania donovani. Acta Tropica 1998; 70:239–245.

    PubMed  CAS  Google Scholar 

  85. Croft SL, Neal RA, Craciunescu DG et al. The activity of platinum, iridium and rhodium drug complexes against Leishmania donovani. Trop Med Parasitol 1992; 43:24–28.

    PubMed  CAS  Google Scholar 

  86. Mesa-Valle CM, Moraleda-Lindez V, Craciunescu DG et al. In vitro action of new organometallic compounds against trypanosomatidae protozoa. Arzneim-Forsch 1993; 43:1010–1013.

    CAS  Google Scholar 

  87. Castilla JJ, Mesa-Valle CM, Sanchez-Moreno M et al. In vitro and biochemical effectiveness of new organometallic complexes of osmium (III) against Leishmania donovani and Trypanosoma cruzi. Arzneim-Forsch 1996; 46:990–996.

    CAS  Google Scholar 

  88. Sharquie KE, Najim RA, Farjou IB et al. Oral zinc sulphate in the treatment of acute cutaneous leishmaniasis. Clin Exp Dermatol 2001; 26:21–26

    PubMed  CAS  Google Scholar 

  89. Lowe G, Droz AS, Vilaivan T et al. Cytotoxicity of (2,2′:6,2″-terpyridine) platinum (II) complexes to Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. J Med Chem 1999; 42:999–1006.

    PubMed  CAS  Google Scholar 

  90. Nguewa PA, Fuertes MA, Iborra S et al. Water soluble cationic trans-platinum complexes which induce programmed cell death in the protozoan parasite Leishmania infantum. J Inog Biochem 2005; 99:727–736

    CAS  Google Scholar 

  91. Lerman LS. Structural considerations in the interaction of DNA and acridines. J Mol Biol 1961; 3:18–30.

    PubMed  CAS  Google Scholar 

  92. Jannette KW, Lippard SJ, Vassiliades GA et al. Metallointercalation reagents. 2-hydroxyethanethiolato (2,2′,2″-terpyridine)-platinum (II) monocation binds strongly to DNA by intercalation. Proc Natl Acad Sci USA 1974; 71:3839–3843.

    Google Scholar 

  93. Baginski M, Fogolari F, Briggs JM. Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA. J Mol Biol 1997; 274:253–267.

    PubMed  CAS  Google Scholar 

  94. Shui X, Peek ME, Lipscomb LA et al. Effects of cationic charge on three-dimension structures of intercalative complexes: structure of a bis-intercalated DNA complexes solved by MAD phasing. Curr Med Chem 2000; 7:59–71.

    PubMed  CAS  Google Scholar 

  95. Suh D, Chaires JB. Criteria for the mode of binding of DNA binding agents. Bioorg Med Chem 1995; 3:723–728.

    PubMed  CAS  Google Scholar 

  96. LePec JB, Paoletti C. A fluorescent complex between Ethidium bromide and nucleic acids. J Mol Biol 1967; 27:87–106.

    Google Scholar 

  97. Hogan M, Dattagupta N, Crothers DM. Transient electric dichroism studies of the structure of the DNA complexes with intercalated drugs. Biochemistry 1979; 18:280–288.

    PubMed  CAS  Google Scholar 

  98. Wettig SH, Wood DO, Aich P et al. M-DNA: a novel metal ion complex of DNA studied by fluorescence techniques. J Inog Biochem 2005; 99:2093–2101.

    CAS  Google Scholar 

  99. MacArthur MW, Drisco PC, Thornton JM. NMR and crystallography complementary approaches to structure determination. Trends Biotechnol 1994; 12:149–153.

    PubMed  CAS  Google Scholar 

  100. Holmes RJ, McKeage MJ, Murray V et al. Cis-dichloroplatinum (II) complexes tethered to 9-aminoacridine-4-carboxamides: synthesis and actino in resistant cell lines in vitro. J Inorg Biochem 2001; 85:209–217.

    PubMed  CAS  Google Scholar 

  101. Kinnamon KE, Steck EA, Rane DS. Activity of antitumor drugs against African trypanosomes. Antimicrob Agents Chemother 1979; 15:157–160.

    PubMed  CAS  Google Scholar 

  102. Navarro M, Cisneros-Fajardo EJ, Sierraalta A et al. Design of copper DNA intercalators with leishmanicidal activity. J Biol Inorg Chem 2003; 8:401–408.

    PubMed  CAS  Google Scholar 

  103. Navarro M, Cisneros-Fajardo EJ, Fernández-Mestre M et al. Synthesis, characterization, DNA binding study and biological activity against Leishmania mexicana of [Cu(dppz)2]BF. J Inorg Biochem 2003; 97:364–369.

    PubMed  CAS  Google Scholar 

  104. Navarro M, Cisneros-Fajardo EJ, Marchán E. New silver polypyridyl complexes: synthesis, characterization and biological activity on Leishmania (L) mexicana. Arzneim-Forsch 2006; 56:600–604.

    CAS  Google Scholar 

  105. Navarro M, Hernández C, Colmenares I et al. Synthesis and characterization of [Au(dppz)2]Cl3. DNA interaction studies and biological activity against Leishmania (L) mexicana. J Inorg Biochem 2007; 101:111–116.

    PubMed  CAS  Google Scholar 

  106. Long EC, Barton KJ. On demonstrating DNA intercalation. Acc Chem Res 1990; 23:273–279.

    Google Scholar 

  107. Haq I, Lincoln P, Suh D, et al. Interaction of δ-and λ-[Ru(phen)2DPPZ]2+ with DNA: A calorimetric and equilibrium binding study. J Am Chem Soc 1995; 117:4788–4796.

    CAS  Google Scholar 

  108. Xiong Y, Ji LN. Synthesis, DNA binding and DNA-mediated luminescence quenching of Ru(II) polypyridine complexes. Coord Chem Rev 1999;185–186: 711–733

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maribel Navarro .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Navarro, M., Visbal, G., Marchán, E. (2008). DNA Metallo-Intercalators with Leishmanicidal Activity. In: Programmed Cell Death in Protozoa. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76717-8_6

Download citation

Publish with us

Policies and ethics