DNA Metallo-Intercalators with Leishmanicidal Activity

  • Maribel Navarro
  • Gonzalo Visbal
  • Edgar Marchán
Part of the Molecular Biology Intelligence Unit book series (MBIU)


In the present chapter we focus our attention on the use of metal complexes for the treatment of leishmaniasis, especially those that have leishmanicidal activity which could be associated with their interaction with the parasitic DNA. Furthermore, we revise current knowledge of leishmaniasis, including PCD-inducing drugs used clinically and those currently in the experimental and evaluation phases.


Visceral Leishmaniasis Antimicrob Agent Cutaneous Leishmaniasis Leishmania Species Sterol Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blum J, Desjeux P, Schwartz E et al. Treatment of cutaneous leishmaniasis among travellers. J Antimicrob Chemother 2004; 53:158–166.PubMedGoogle Scholar
  2. 2.
    Alvar J, Canavata C, Gutiérrez-Solar B et al. Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin Microbiol Rev 1997; 10:298–318.PubMedGoogle Scholar
  3. 3.
    Desjeux P, Alvar J. Leishmania/HIV co-infections: epidemiology in Europe. Ann Trop Med Parasitol 2003; 97(1):3–15.PubMedGoogle Scholar
  4. 4.
    Alexander J, Russell DG. The interaction of Leishmania species with macrophages. Adv parasitol 1992; 31:175–254.PubMedGoogle Scholar
  5. 5.
    Alexander J, Satoskar AR, Russell DG. Leishmania species: models of intracellular parasitism. J Cell Sci 1999; 112:2993–3002.PubMedGoogle Scholar
  6. 6.
    Nguewa P, Fuertes M, Valladares B et al. Programmed cell death in trypanosomatids: a way to maximize their biological fitness. Trends Parasitol 2004; 20(8):375–380.PubMedGoogle Scholar
  7. 7.
    Lee N, Bertholet S, Debrabant A et al. Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 2002; 9(1):53–64.PubMedGoogle Scholar
  8. 8.
    Welburn SC, Barcinski MA, Williams GT. Programmed cell death in trypanosomatids. Parasitol Today 1997; 13:22–26.PubMedGoogle Scholar
  9. 9.
    Ameisen JC, Idziorek T, Billaut-Mulot O et al. Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death Differ 1995; 2:285–300.PubMedGoogle Scholar
  10. 10.
    Welburn SC, Maudlin I, Ellis DS. Rate of Trypanosome killing by lectins in midguts of different species and strains of Glossina. Med Vet Entomol 1989; 3:77–82.PubMedGoogle Scholar
  11. 11.
    Welburn SC, Dale C, Ellis D et al. Apoptosis in procyclic T. B. rhodesiense in vitro. Cell Death Differ 1996; 3:229–236.PubMedGoogle Scholar
  12. 12.
    Moreira ME, Del Portillo HA, Milder RV et al. Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania (Leishmania) amazonensis. J Cell Physiol 1996; 167:305–313.PubMedGoogle Scholar
  13. 13.
    Cornillon S, Foa C, Davoust J et al. Programmed cell death in Dictyostelium. J Cell Sci 1994; 107:2691–2704.PubMedGoogle Scholar
  14. 14.
    Shaha C. Apoptosis in Leishmania species & its relevance to disease Pathogenesis. Indian J Med Res 2006; 123:233–244.PubMedGoogle Scholar
  15. 15.
    Berman JD. Chemotherapy for leishmaniasis: biochemical mechanisms, clinical efficacy and future strategies. Rev infect Dis 1988; 10:560–586.PubMedGoogle Scholar
  16. 16.
    Kayser O, Kiderlen AF, Croft SL. In: Atta-ur-Rahman, ed.. Studies in Natural Products Chemistry, Bioactive Natural Products (Part G) vol. 26. Amsterdam: Elsevier, 2002:779–848.Google Scholar
  17. 17.
    Sereno D, Cavaleyra M, Zemzoumi K et al. Axenically grown amastigotes of Leishmania infantum used as an in vitro model to investigate the pentavalent antimony mode of action. Antimicrob Agents Chemother 1998; 42:3097–102.PubMedGoogle Scholar
  18. 18.
    Sereno D, Holzmuller P, Mangot I et al. Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrb Agents Chemother 2001; 45:2064–2069.Google Scholar
  19. 19.
    Matsuyama S, Llopis J, Deveraux QL et al. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2000; 2:318–325.PubMedGoogle Scholar
  20. 20.
    Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of prorammed cell death. Proc Natl Acad Sci USA 2000; 97:14376–81.PubMedGoogle Scholar
  21. 21.
    Sudhandiran G, Shaha C. Antimonial induced increase in intracellular Ca2+ through nonselective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem 2003; 278:25120–32.PubMedGoogle Scholar
  22. 22.
    Bryceson ADM. Leishmaniasis. In: Wyngaarden JB, Smith Jr LH, eds. Cecil Textbook of Medicine. Edinburgh: Churchill Living-Stone, 1980:815–818.Google Scholar
  23. 23.
    Maegrath B, ed. Clinical Tropical disease, 7th ed. Vol 12. London: Blackwell Scientific Publication 1980:184.Google Scholar
  24. 24.
    Ganor S. The treatment of leishmanissis residual with local injections of amphotericin B. Dermatol Int 1967; 6:141–143.PubMedGoogle Scholar
  25. 25.
    Yardley V, Croft SL. A comparison of the activities of three amphotericin B lipidformulations against experimental visceral and cutaneous leishmaniasis. Int J Antimicrob Agents. 2000; 13(4):243–248.PubMedGoogle Scholar
  26. 26.
    Meyerhoff US. Food and Drug Administration approval of AmBisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin infect Dis 1999; 28(1):49–51.Google Scholar
  27. 27.
    Barrat G, Legrand P. Comparison of the efficacy and pharmacology of formulations of ampotericin B used in the treatment of leishmaniasis. Curr Opin Infect Dis 2005; 18(6):527–530.Google Scholar
  28. 28.
    Khalil EA, El Hassan AM, Zijlstra E et al. Treatment of visceral leishmaniasis with sodium stibogluconate in Sudan: management of those who do not respond. Ann Trop Med Parasitol 1998; 92: 151–158.PubMedGoogle Scholar
  29. 29.
    Hentzer B, Kobayasi T. The ultra estructural changes of Leishmania tropica after treatment with pentamidine. Ann Trop Med Parasitol 1977; 71:157–66.PubMedGoogle Scholar
  30. 30.
    Hellier I, Dereure O, Tournillac I et al. Treatment of old world cutaneous leishmaniasis by pentamidine isethionate: An open study of 11 patients. Dermatol 2000; 200(2):120–123.Google Scholar
  31. 31.
    Verma NK, Dey CS. Possible mechanism of miltefosine mediated death of Leishmania donovani. Antimicrob Agents Chemother 2004; 48:3010–3015.PubMedGoogle Scholar
  32. 32.
    Davies C, Kaye P, Croft S et al. Leishmaniasis: new approaches to disease control. British Med J 2003; 326:377–382.Google Scholar
  33. 33.
    Singh S, Sivakumar R. Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother 2004; 10(6):307–315.PubMedGoogle Scholar
  34. 34.
    TDR. Tropical Disease Research Progress 2003–2004. Seventeenth Program Report of the UNIFEF/UNDP/WB/WHO Special Program for Research & Training in Tropical Disease, 2005.Google Scholar
  35. 35.
    Soto J, Toledo J, Gutierrez P et al. Treatment of american cutaneous leishmaniasis with miltefosine, an oral agent. Clin Infect Dis 2001; 33:57–61.Google Scholar
  36. 36.
    Saenz RE, Paz HM, Jonhson CM et al. Treatment of american cutaneous leishmaniasis with orally administered allopurinol riboside. J Infect Dis 1989; 160:153–158.PubMedGoogle Scholar
  37. 37.
    Guderian RH, Chico ME, Rogers MD et al. Placebo controlled treatment of Ecuadorian cutaneous leishmaniasis. Am J Trop Med Hyg 1991; 45:92–97.PubMedGoogle Scholar
  38. 38.
    Esfandiarpour I, Alavi A. Evaluating the efficacy of allopurinol and meglumine antimonmiate (Glucantime) in the treatment of cutaneous leishmaniasis. Int J Dermatol. 2002; 41:521–524.PubMedGoogle Scholar
  39. 39.
    D’Oliveria JA, Machado PR, Carvalho EM. Evaluating the efficacy of allopurinol for the treatment of cutaneous leishmaniasis. Int J Dermatol 1997; 36:938–940.Google Scholar
  40. 40.
    Martinez S, Marr JJ. Allopurinol in the treatment of american cutaneous leishmaniasis. New Ingl J Med 1992; 326:741–744.Google Scholar
  41. 41.
    Martinez S, Gonzalez M, Vernaza ME. Treatment of cutaneous leishmaniasis with allopurinol and stibogluconate. Clin Infect Dis 1997; 24:165–169.PubMedGoogle Scholar
  42. 42.
    Kochar DK, Aseri S, Sharma BV et al. The role of rifampicin in the management of cutaneous leishmanaisis. Quart J Med 2000; 93:733–737.Google Scholar
  43. 43.
    Dogra J. A double-blind study on the efficacy of oral dapsone in cutaneous leishmaniasis. Trans Royal Soc Trop Med Hyg 1991; 85:212–213.Google Scholar
  44. 44.
    Sharquie KE, Najim RA, Farjou IB et al. Oral zinc sulphate in the treatment of acute cutaneous lesihmaniasis. Clin Exp Dermatol 2001; 26:21–26.PubMedGoogle Scholar
  45. 45.
    Chen M, Christensen SD, Theander TG et al. Antileishmanial activity of licochalcone A in mice infected with Leishmania major and in hamsters infected with Lesihmania donovani. Antimicrob Agents Chemother 1994; 38:1339–1344.PubMedGoogle Scholar
  46. 46.
    Piñero J, Temporal RM, Silva-Goncalves AJ et al. New administration model of transchalcone biodegradable polymers for the treatment of experimental leishmaniasis. Acta Tropica 2006; 98:59–65.PubMedGoogle Scholar
  47. 47.
    Akedengue B, Ngou-Milama E, Laurens A et al. Recent advances in the fight against leishmaniasis with natural products. Parasite 1999; 6:3–8.Google Scholar
  48. 48.
    Corona MC, Croft SL, Phillipson JD. Natural products as sources of antiprotozoal drugs. Curr Opin Anti-infect Invest Drugs 2000; 2:47–62.Google Scholar
  49. 49.
    Chan-Bacab MJ, Pena-Rodriguez LM. Plant natural products withleishmanicidal activity. Nat Prod Rep 2001; 18: 674–688.PubMedGoogle Scholar
  50. 50.
    Rocha LG, Almeida JRGS, Mačedo RO et al. A review of natural products with antileishmanial activity. Phytomed: inter j phytother phytophar 2005; 12(6–7):514–535.Google Scholar
  51. 51.
    Iwu MM, Jackson JE, Schuster BG. Medicinal plants in the figth against leishmaniasis. Parasitol Today 1994; 10(2):65–68.PubMedGoogle Scholar
  52. 52.
    Borris RP, Schaeffer JM. In: Nigg HN, Seigler D, eds. Phytochemical Resources for Medicine and Agriculture. New York: Plenum Press, 1992:117–158.Google Scholar
  53. 53.
    Fournet A, Gantier JC, Gautheret A et al. The activity of 2-substituted quinoline alkaloids in BALB/c mice infected with Leishmania donovani. J Antimicrob Chemother 1994; 33(3):537–544.PubMedGoogle Scholar
  54. 54.
    Fournet A, Hocquemiller R, Gantier J. Control of leishmaniasis. An ethno-pharmacological investigation in Bolivia. La Recherche 1995; 26(275):424–429.Google Scholar
  55. 55.
    Mercer EI. Inhibitors of sterols biosynthesis and their applications. Prog Lipid Res 1993; 4:357–416.Google Scholar
  56. 56.
    Goad LJ, Holz GG, Beach DH. Effect of the allilamine antifungal drug SF86-327 on the growth and sterol synthesis of Leishmania mexicana mexicana promastigotes. Biochem Pharmacol 1985; 34:3785–3786.PubMedGoogle Scholar
  57. 57.
    Beach DH, Goad LJ, Berman JD. Effects of a squalene-2,3-epoxidase inhibitor on propagation and sterol biosynthesis of Leishmania promastigotes and amastigotes. In: Hart DT, ed. Leishmaniasis. New York: Plenum, 1989.Google Scholar
  58. 58.
    Vannier-Santos MA, Urbina JA, Martiny A et al. Alterations induced by the antifungal compounds ketoconazole and terbinafine in Leishmania. J Eukaryot Microbiol 1995; 42:337–346.PubMedGoogle Scholar
  59. 59.
    Rangel H, Dagger F, Hernandez A et al. Naturally azole-resistant Leishmania brasiliensis promastigotes are rendered susceptible in the presence of terbinafine: compartive study with azole-susceptible Leishmania mexicana promastigotes. Antimicrob Agents Chemother 1996; 40:2785–2791.PubMedGoogle Scholar
  60. 60.
    Berman JD, Holz GG, Beach DH. Effects of ketoconazole on the growth and sterol biosynthesis of Leishmania promastigotes in culture. Mol Biochem Parasitol 1984; 12:1–13.PubMedGoogle Scholar
  61. 61.
    Goad LJ, Holz GG, Beach DH. Sterols of ketoconazole inhibited Leishmania mexicana mexicana promastigotes. Mol Biochem Parasitol 1985; 15:257–279.PubMedGoogle Scholar
  62. 62.
    Berman JD, Goad LJ, Beach DH et al. Effects of ketoconazole on sterol biosynthesis by Leishmania mexicana mexicana amastigotes in murine macrophage tumor cells. Mol Biochem Parasitol 1986; 20:85–92.PubMedGoogle Scholar
  63. 63.
    Beach DH, Goad LJ, Berman JD. Effects of lanosterol 14α-demethylation inhibitors on propagation and sterol biosynthesis of Leishmania promastigotes and amastigotes. In: Hart DT, ed. Leishmaniasis. New York: Plenum, 1989:765–771.Google Scholar
  64. 64.
    Beach DH, Goad LJ, Holz GG. Effects of antimicotic azoles on growth and sterols biosynthesis of Leishmania promastigotes. Mol Biochem Parasitol 1988; 31:141–162.Google Scholar
  65. 65.
    Kubba R, Al-Gindan Y, El-Hassan AM et al. Ketoconazole in cutaneous leishmaniasis: results of a pilot study. Saudi Med J 1986; 7:596–604.Google Scholar
  66. 66.
    Berman JD. Human leishmaniasis: clinical, diagnostic and chemotherapeutic developments in the last years. Clin Infect Dis 1997; 24:684–703.PubMedGoogle Scholar
  67. 67.
    Visbal G, San-Blas G, Murgich J et al. Paracoccidioides braziliensis, paracoccidioidomycosis and antifungal antibiotics. Curr Drug Targets: Infect Disord 2005; 5:211–226.Google Scholar
  68. 68.
    Haughan PA, Chance ML, Goad LJ. Effects of the azasterol inhibitor of sterol 24-transmethylation on sterol biosynthesis and growth of Leishmania donovani promastigotes. Biochem 1995; 308:31–38.Google Scholar
  69. 69.
    Magaraci F, Jimenez Jimenez C, Rodrigues C et al. Azasterols as inhibitors of sterol 24-methyltransferase in Leishmania species and Trypanosoma cruzi. J Med Chem 2003; 46:4714–4727.PubMedGoogle Scholar
  70. 70.
    Lorente SO, Jimenez Jimenez C, Gros L et al. Preparation of transition-state analogues of sterol 24-methyl transferase as potential anti-parasitics. Bioorg Med Chem 2005; 13:5435–5453.PubMedGoogle Scholar
  71. 71.
    Farrell N. Transition metal complexes as drugs and chemotherapeuric agents. In: James BR, Ugo R, eds. Catalysis by Metal Complexes Series. Vol. 11. Dordrecht: Kluwer Academic Publishers, 1989.Google Scholar
  72. 72.
    Farrell N. Uses of Inorganic Chemistry in Medicine. Cornwall: Publishers Royal Society of Chemistry, 1999.Google Scholar
  73. 73.
    Lippert B. Platinum nucleobase chemistry. Prog Inorg Chem 1989; 37:1–97.Google Scholar
  74. 74.
    Bruhn SL, Toney JH, Lippard SJ. Biological Processing of DNA modified by platinum compounds. Prog Inorg Chem 1990; 38:477–516.Google Scholar
  75. 75.
    Jamieson ER, Lippard SJ. Structure recognition and processing of cis-platin-DNA adducts. Chem Rev 1999; 99:2467–2498.PubMedGoogle Scholar
  76. 76.
    Clarke MJ, Zhu F, Frasca DR. Non platinum chemotherapeutic metallopharmaceuticals. Chem Rev 1999; 99:2511–2533.PubMedGoogle Scholar
  77. 77.
    Guo Z, Sadler PJ. Metals in medicine. Angew Chem Int Ed 1999; 38:1512–1531.Google Scholar
  78. 78.
    Guo Z, Sadler PJ. Medicinal inorganic chemistry. Adv Inorg Chem 2000; 49:183–306.Google Scholar
  79. 79.
    Clarke MJ. Ruthenium metallophamaceuticals. Coord Chem Rev 2002; 232:69–93.Google Scholar
  80. 80.
    Farrell NP, Williamson J, McLaren DJ. Trypanocidal and antitumour activity of platinum-metal and platinum-metal-drug dual-function complexes. Biochem pharmacol 1984; 33(7):961–971.PubMedGoogle Scholar
  81. 81.
    Mesa-Valle CM, Moraleda-Lindez V. Antileishmanial action of organometallic complexes of Pt (II) and Rh(I). Men Inst Oswaldo Cruz, 1996; 9:625–633.Google Scholar
  82. 82.
    Mbongo N, Loiseau PM, Lawrence F et al. In vitro sensitivity of Leishmania donovani to organometallic derivatives of pentamidine. Parasitol Res 1997; 83:515–517.PubMedGoogle Scholar
  83. 83.
    Loiseau PM, Mbongo N, Bories C et al. In vivo antileishmanial action of Ir-(COT)-pentamidine tetraphenylborate on Leishmania donovani and Leishmania major mouse models. Parasite 2000; 7:103–108.PubMedGoogle Scholar
  84. 84.
    Mbongo N, Loiseau PM, Craciunescu DG et al. Synergistic effect of Ir-(COT)-pentamidine alizarin red and pentamidine, amphotericin B and paromomycin on Leishmania donovani. Acta Tropica 1998; 70:239–245.PubMedGoogle Scholar
  85. 85.
    Croft SL, Neal RA, Craciunescu DG et al. The activity of platinum, iridium and rhodium drug complexes against Leishmania donovani. Trop Med Parasitol 1992; 43:24–28.PubMedGoogle Scholar
  86. 86.
    Mesa-Valle CM, Moraleda-Lindez V, Craciunescu DG et al. In vitro action of new organometallic compounds against trypanosomatidae protozoa. Arzneim-Forsch 1993; 43:1010–1013.Google Scholar
  87. 87.
    Castilla JJ, Mesa-Valle CM, Sanchez-Moreno M et al. In vitro and biochemical effectiveness of new organometallic complexes of osmium (III) against Leishmania donovani and Trypanosoma cruzi. Arzneim-Forsch 1996; 46:990–996.Google Scholar
  88. 88.
    Sharquie KE, Najim RA, Farjou IB et al. Oral zinc sulphate in the treatment of acute cutaneous leishmaniasis. Clin Exp Dermatol 2001; 26:21–26PubMedGoogle Scholar
  89. 89.
    Lowe G, Droz AS, Vilaivan T et al. Cytotoxicity of (2,2′:6,2″-terpyridine) platinum (II) complexes to Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. J Med Chem 1999; 42:999–1006.PubMedGoogle Scholar
  90. 90.
    Nguewa PA, Fuertes MA, Iborra S et al. Water soluble cationic trans-platinum complexes which induce programmed cell death in the protozoan parasite Leishmania infantum. J Inog Biochem 2005; 99:727–736Google Scholar
  91. 91.
    Lerman LS. Structural considerations in the interaction of DNA and acridines. J Mol Biol 1961; 3:18–30.PubMedGoogle Scholar
  92. 92.
    Jannette KW, Lippard SJ, Vassiliades GA et al. Metallointercalation reagents. 2-hydroxyethanethiolato (2,2′,2″-terpyridine)-platinum (II) monocation binds strongly to DNA by intercalation. Proc Natl Acad Sci USA 1974; 71:3839–3843.Google Scholar
  93. 93.
    Baginski M, Fogolari F, Briggs JM. Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA. J Mol Biol 1997; 274:253–267.PubMedGoogle Scholar
  94. 94.
    Shui X, Peek ME, Lipscomb LA et al. Effects of cationic charge on three-dimension structures of intercalative complexes: structure of a bis-intercalated DNA complexes solved by MAD phasing. Curr Med Chem 2000; 7:59–71.PubMedGoogle Scholar
  95. 95.
    Suh D, Chaires JB. Criteria for the mode of binding of DNA binding agents. Bioorg Med Chem 1995; 3:723–728.PubMedGoogle Scholar
  96. 96.
    LePec JB, Paoletti C. A fluorescent complex between Ethidium bromide and nucleic acids. J Mol Biol 1967; 27:87–106.Google Scholar
  97. 97.
    Hogan M, Dattagupta N, Crothers DM. Transient electric dichroism studies of the structure of the DNA complexes with intercalated drugs. Biochemistry 1979; 18:280–288.PubMedGoogle Scholar
  98. 98.
    Wettig SH, Wood DO, Aich P et al. M-DNA: a novel metal ion complex of DNA studied by fluorescence techniques. J Inog Biochem 2005; 99:2093–2101.Google Scholar
  99. 99.
    MacArthur MW, Drisco PC, Thornton JM. NMR and crystallography complementary approaches to structure determination. Trends Biotechnol 1994; 12:149–153.PubMedGoogle Scholar
  100. 100.
    Holmes RJ, McKeage MJ, Murray V et al. Cis-dichloroplatinum (II) complexes tethered to 9-aminoacridine-4-carboxamides: synthesis and actino in resistant cell lines in vitro. J Inorg Biochem 2001; 85:209–217.PubMedGoogle Scholar
  101. 101.
    Kinnamon KE, Steck EA, Rane DS. Activity of antitumor drugs against African trypanosomes. Antimicrob Agents Chemother 1979; 15:157–160.PubMedGoogle Scholar
  102. 102.
    Navarro M, Cisneros-Fajardo EJ, Sierraalta A et al. Design of copper DNA intercalators with leishmanicidal activity. J Biol Inorg Chem 2003; 8:401–408.PubMedGoogle Scholar
  103. 103.
    Navarro M, Cisneros-Fajardo EJ, Fernández-Mestre M et al. Synthesis, characterization, DNA binding study and biological activity against Leishmania mexicana of [Cu(dppz)2]BF. J Inorg Biochem 2003; 97:364–369.PubMedGoogle Scholar
  104. 104.
    Navarro M, Cisneros-Fajardo EJ, Marchán E. New silver polypyridyl complexes: synthesis, characterization and biological activity on Leishmania (L) mexicana. Arzneim-Forsch 2006; 56:600–604.Google Scholar
  105. 105.
    Navarro M, Hernández C, Colmenares I et al. Synthesis and characterization of [Au(dppz)2]Cl3. DNA interaction studies and biological activity against Leishmania (L) mexicana. J Inorg Biochem 2007; 101:111–116.PubMedGoogle Scholar
  106. 106.
    Long EC, Barton KJ. On demonstrating DNA intercalation. Acc Chem Res 1990; 23:273–279.Google Scholar
  107. 107.
    Haq I, Lincoln P, Suh D, et al. Interaction of δ-and λ-[Ru(phen)2DPPZ]2+ with DNA: A calorimetric and equilibrium binding study. J Am Chem Soc 1995; 117:4788–4796.Google Scholar
  108. 108.
    Xiong Y, Ji LN. Synthesis, DNA binding and DNA-mediated luminescence quenching of Ru(II) polypyridine complexes. Coord Chem Rev 1999;185–186: 711–733Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Maribel Navarro
    • 1
  • Gonzalo Visbal
    • 2
  • Edgar Marchán
    • 2
  1. 1.Instituto Venezolano de Investigaciones Científicas (IVIC), Carretera PanamericanaCentro de QuímicaCaracasVenezuela
  2. 2.Laboratorio de Síntesis Orgánica y Productos Naturales Centro de QuímicaInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela

Personalised recommendations