Advertisement

Programmed Cell Death in African Trypanosomes

  • Katherine Figarella
  • Néstor L. Uzcátegui
  • Viola Denninger
  • Susan Welburn
  • Michael Duszenko
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Since the discovery of programmed cell death in multicellular organisms and due to its definition as a mechanism to maintain the individual haemostasis of cellular and organ integrity, it was not plausible to think that such a phenomenon could also occur in unicellular organisms. However, during the last decade considerable experimental evidence has accumulated that confirm the existence of programmed (i.e., genetically encoded) mechanisms of cell death in a wide variety of single-cell organisms, including bacteria as well as free living and parasitic protozoa. Moreover, the discovery of biofilm formation and quorum sensing in bacteria1 and similar observations especially in protozoan parasites2 has changed our perception not to view unicellular organisms as selfish, self-contained and autonomous entities but as well organized cell populations expressing established communication patterns, thus resembling their multicellular counterparts. In this chapter we will summarize the most obvious findings regarding programmed cell death in African trypanosomes.

Keywords

Unicellular Organism Human African Trypanosomiasis Trypanosoma Brucei Cell Death Differ Xanthurenic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heurlier K, Denervaud V, Haas D. Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int J Med Microbiol 2006; 296:93–102.PubMedCrossRefGoogle Scholar
  2. 2.
    Duszenko M, Figarella K, Macleod ET et al. Death of a trypanosome: a selfish altruism. Trends in Parasitol 2006; 22:536–542.CrossRefGoogle Scholar
  3. 3.
    Clayton CE and Michels P. Metabolic compartmentation in African trypanosomes. Parasitol Today 1996; 12:465–471.PubMedCrossRefGoogle Scholar
  4. 4.
    Barry JD, McCulloch R. Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol 2001; 49:1–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Turner CM, Aslam N, Dye C. Replication, differentiation, growth and the virulence of Trypanosoma brucei infections. Parasitology 1995; 111:289–300.PubMedCrossRefGoogle Scholar
  6. 6.
    Tyler KM. Maintenance of parasitaemia—is it to die for? Kinetoplastid Biol Dis 2003; 2:2.PubMedCrossRefGoogle Scholar
  7. 7.
    Borst P, Rudenko G, Taylor MC et al. Antigenic variation in trypanosomes. Arch Med Res 1996; 27:379–388.PubMedGoogle Scholar
  8. 8.
    Hesse F, Selzer PM, Muhlstadt K et al. A novel cultivation technique for long-term maintenance of bloodstream form trypanosomes in vitro. Mol Biochem Parasitol 1995; 70:157–166.PubMedCrossRefGoogle Scholar
  9. 9.
    Vassella E, Reuner B, Yutzy B et al. Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J Cell Sci 1997; 110:2661–2671.PubMedGoogle Scholar
  10. 10.
    Van Houdt R, Moons P, Hueso Buj M et al. N-acyl-L-homoserine lactone quorum sensing controls butanediol fermentation in Serratia plymuthica RVH1 and Serratia marcescens MG1. J Bacteriol 2006; 188:4570–4572.PubMedCrossRefGoogle Scholar
  11. 11.
    Saito T, Taylor GW, Yang JC et al. Identification of new differentiation inducing factors from Dictyostelium discoideum. Biochim Biophys Acta 2006; 1760:754–761.PubMedGoogle Scholar
  12. 12.
    Billker O, Lindo V, Panico M et al. Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 1998; 392:289–292.PubMedCrossRefGoogle Scholar
  13. 13.
    Raff MC. Social controls on cell survival and cell death. Nature 1992; 356:397–400.PubMedCrossRefGoogle Scholar
  14. 14.
    Debrabant A, Lee N, Bertholet S et al. Programmed cell death in trypanosomatids and other unicellular organisms. Int J Parasitol 2003; 33:257–267.PubMedCrossRefGoogle Scholar
  15. 15.
    Lewis K. Programmed death in bacteria. Microbiol Mol Biol Rev 2000; 64:503–514.PubMedCrossRefGoogle Scholar
  16. 16.
    Tan KS and Nasirudeen AM. Protozoan programmed cell death—insights from Blastocystis deathstyles. Trends Parasitol 2005; 21:547–550.PubMedCrossRefGoogle Scholar
  17. 17.
    Szallies A, Merkel P, Mielenz H et al. A role for yeat metacaspase 1 in ubiquitination: Genetic interactions with RSP5 and other genes require a conserved tyrosine residue. 2007; submittedGoogle Scholar
  18. 18.
    Welburn SC, Dale C, Ellis D et al. Apoptosis in procyclic Trypanosoma brucei rhodesiense in vitro. Cell Death Differ 1996; 3:229–236.PubMedGoogle Scholar
  19. 19.
    Nguewa PA, Fuertes MA, Valladares B et al. Programmed cell death in trypanosomatids: a way to maximize their biological fitness? Trends Parasitol 2004; 20:375–380.PubMedCrossRefGoogle Scholar
  20. 20.
    Mamani-Matsuda M, Rambert J, Malvy D et al. Quercetin induces apoptosis of Trypanosoma brucei gambiense and decreases the proinflammatory response of human macrophages. Antimicrob Agents Chemother 2004; 48:924–929.PubMedCrossRefGoogle Scholar
  21. 21.
    Tsuda A, Witola WH, Ohashi K et al. Expression of alternative oxidase inhibits programmed cell death-like phenomenon in bloodstream form of Trypanosoma brucei rhodesiense. Parasitol Int 2005; 54:243–251.PubMedCrossRefGoogle Scholar
  22. 22.
    Figarella K, Rawer M, Uzcategui NL et al. Prostaglandin D2 induces programmed cell death in Trypanosoma brucei bloodstream form. Cell Death Differ 2005; 12:335–346.PubMedCrossRefGoogle Scholar
  23. 23.
    Figarella K, Uzcategui NL, Beck A et al. Prostaglandin-induced programmed cell death in Trypanosoma brucei involves oxidative stress. Cell Death Differ 2006; 13:1802–1814.PubMedCrossRefGoogle Scholar
  24. 24.
    Szallies A, Kubata BK and Duszenko M. A metacaspase of Trypanosoma brucei causes loss of respiration competence and clonal death in the yeast Saccharomyces cerevisiae. FEBS Lett 2002; 517:144–150.PubMedCrossRefGoogle Scholar
  25. 25.
    Kosec G, Alvarez VE, Aguero F et al. Metacaspases of Trypanosoma cruzi: possible candidates for programmed cell death mediators. Mol Biochem Parasitol 2006; 145:18–28.PubMedCrossRefGoogle Scholar
  26. 26.
    Mazzoni C, Herker E, Palermo V et al. Yeast caspase 1 links messenger RNA stability to apoptosis in yeast. EMBO Rep 2005; 6:1076–1081.PubMedCrossRefGoogle Scholar
  27. 27.
    Vercammen D Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 2004; 279:45329–45336.PubMedCrossRefGoogle Scholar
  28. 28.
    Watanabe N, Lam E. Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 2005; 280:14691–14699PubMedCrossRefGoogle Scholar
  29. 29.
    Szallies A. [PhD Thesis]. Germany: University of Tubingen; 2004.Google Scholar
  30. 30.
    Helms MJ, Ambit A, Appleton P et al. Bloodstream form Trypanosoma brucei depend upon multiple metacaspases associated with RAB11-positive endosomes. J Cell Sci 2006; 119:1105–1117.PubMedCrossRefGoogle Scholar
  31. 31.
    Jaattela M, Tschopp J. Caspase-independent cell death in T-lymphocytes. Cell 2003; 114:181–190.CrossRefGoogle Scholar
  32. 32.
    Maudlin I, Welburn SC. Maturation of trypanosome infections in tsetse. Exp Parasitol 1994; 79:202–205.PubMedCrossRefGoogle Scholar
  33. 33.
    Murphy NB, Welburn SC. Programmed cell death in procyclic Trypanosoma brucei rhodesiense is associated with differential expression of mRNAs. Cell Death Differ 1997; 4:365–470.PubMedCrossRefGoogle Scholar
  34. 34.
    Pearson T, Beecroft R, Welburn SC et al. The major cell surface glycoprotein procyclin is a receptor for induction of a novel form of cell death in African trypanosomes in vitro. Mol Biochem Parasitol 2000; 111:333–349.PubMedCrossRefGoogle Scholar
  35. 35.
    Ridgley EL, Xiong ZH, Ruben L. Reactive oxygen species activate a Ca2+-dependent cell death pathway in the unicellular organism Trypanosoma brucei brucei. Biochem J 1999; 340:33–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Kubata BK, Duszenko M, Kabututu Z et al. Identification of a novel prostaglandin f(2alpha) synthase in Trypanosoma brucei. J Exp Med 2000; 192:1327–1338.PubMedCrossRefGoogle Scholar
  37. 37.
    Chaudhuri M, Ajayi W, Hill GC. Biochemical and molecular properties of the Trypanosoma brucei alternative oxidase. Mol Biochem Parasitol 1998; 95:53–68.PubMedCrossRefGoogle Scholar
  38. 38.
    Fang J, Beattie DS. Alternative oxidase present in procyclic Trypanosoma brucei may act to lower the mitochondrial production of superoxide. Arch Biochem Biophys 2003; 414:294–302.PubMedCrossRefGoogle Scholar
  39. 39.
    Tsuda A, Witola WH, Konnai S et al. The effect of TAO expression on PCD-like phenomenon development and drug resistance in Trypanosoma brucei. Parasitol Int 2006; 55:135–142.PubMedCrossRefGoogle Scholar
  40. 40.
    Figarella K 2005 [PhD Thesis] Germany: University of Tubingen.Google Scholar
  41. 41.
    Macleod ET. 2005 [PhD Thesis]: University of Edinburgh, Scotland.Google Scholar
  42. 42.
    Ogier-Denis E, Codogno P. Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 2003; 1603:113–128.PubMedGoogle Scholar
  43. 43.
    Wang CW, Klionsky DJ. The molecular mechanism of autophagy. Mol Med 2003; 9:65–76.PubMedGoogle Scholar
  44. 44.
    Rigden DJ, Herman M, Gillies S et al. Implications of a genomic search for autophagy-related genes in trypanosomatids. Biochem Soc Trans 2005; 33:972–974.PubMedCrossRefGoogle Scholar
  45. 45.
    Fairlamb AH, Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 1992; 46:695–729.PubMedCrossRefGoogle Scholar
  46. 46.
    Krauth-Siegel RL, Coombs GH. Enzymes of parasite thiol metabolism as drug targets. Parasitol Today 1999; 15:404–409.PubMedCrossRefGoogle Scholar
  47. 47.
    Krauth-Siegel RL, Schmidt H. Trypanothione and tryparedoxin in ribonucleotide reduction. Methods Enzymol 2002; 347:259–266.PubMedCrossRefGoogle Scholar
  48. 48.
    Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol 1998; 10:248–253.PubMedCrossRefGoogle Scholar
  49. 49.
    Rhee SG. Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 1999; 31:53–59.PubMedGoogle Scholar
  50. 50.
    Droege W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82:47–95.Google Scholar
  51. 51.
    Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000; 279:1005–1028.Google Scholar
  52. 52.
    Russo T, Zambrano N, Esposito F et al. A p53-independent pathway for activation of WAF1/CIP1 expression following oxidative stress. J Biol Chem 1995; 270:29386–29391.PubMedCrossRefGoogle Scholar
  53. 53.
    Esposito F, Cuccovillo F, Vanoni M et al. Redox-mediated regulation of p21waf/cip1 expression involves a posttranscriptional mechanism and activation of the mitogen-activated protein kinase pathway. Eur J Biochem 1997; 245:730–737.PubMedCrossRefGoogle Scholar
  54. 54.
    Chen YC, Shen SC, Tsai SH. Prostaglandin D2 and J2 induce apoptosis in human leukemia cells via activation of caspase 2 cascade and production of reactive oxygen species. Biochim Biophys Acta 2005; 1743:291–304.PubMedCrossRefGoogle Scholar
  55. 55.
    Dormeyer M, Reckenfelderbaumer N, Ludemann H et al. Trypanothione-dependent synthesis f deoxyribonucleotides by Trypanosoma brucei ribonucleotide reductase. J Biol Chem 2001; 276:10602–10606.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Katherine Figarella
    • 1
  • Néstor L. Uzcátegui
    • 1
  • Viola Denninger
    • 1
  • Susan Welburn
    • 1
  • Michael Duszenko
    • 1
  1. 1.Department of BiochemistryUniversity of TuebingenTuebingenGermany

Personalised recommendations