Programmed Cell Death and Trypanosomatids: A Brief Review

  • Maria de Nazaré C. Soeiro
  • Elen M. de Souza
Part of the Molecular Biology Intelligence Unit book series (MBIU)


The phenomenon of apoptosis, one type of programmed cell death, is reviewed in three vector-borne trypanosomatids (Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp) responsible for diseases of great medical and veterinary importance. Although some cytoplasmatic and nuclear apoptotic-like features of multicellular organisms such as phosphatidylserine exposure, cell retraction, nuclear condensation, DNA nicking, disruption of the mitochondrial membrane potential (ΔΨm) and caspase-like activity have been observed in these trypanosomatids, it still remains to be determined whether the type and pathways of apoptosis operating in these microorganisms are identical or not as in metazoans. Then, additional studies are essential to further characterize effector and regulatory molecules involved in trypanosomatid suicide program, which can provide the identification of new targets for future chemotherapeutic drug development and therapeutic interventions.


Programme Cell Death Visceral Leishmaniasis Trypanosoma Cruzi Intracellular Parasite Trypanosoma Brucei 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bras M, Queenan B, Susin SA. Programmed cell death via mitochondria: different modes of dying. Biochemistry 2005; 70:231–9.PubMedGoogle Scholar
  2. 2.
    Holdenrieder S, Stieber P. Apoptotic markers in cancer. Clin Biochem 2004; 37:605–17.PubMedCrossRefGoogle Scholar
  3. 3.
    Häcker G. The morphology of apoptosis. Cell Tissue Res 2000; 301:5–17.PubMedCrossRefGoogle Scholar
  4. 4.
    Mahoney JA, Rosen A. Apoptosis and autoimmunity. Curr Opin Immunol 2005; 17:583–8.PubMedCrossRefGoogle Scholar
  5. 5.
    DosReis GA, Freire-de-Lima CG, Nunes MP et al. The importance of aberrant T-cell responses in Chagas disease. Trends Parasitol 2005; 21:237–43.PubMedCrossRefGoogle Scholar
  6. 6.
    De Souza EM, Araujo-Jorge TC, Bailly C et al. Host and parasite apoptosis following Trypanosoma cruzi infection in in vitro and in vivo models. Cell Tissue Res 2003; 314:223–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee N, Bertholet S, Debrabant A et al. Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 2002; 9:53–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Lüder CG, Gross U, Lopes MF. Intracellular protozoan parasites and apoptosis: diverse strategies to modulate parasite-host interactions. Trends Parasitol 2001; 17:480–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Tan KSW, Nasirudeen AMA. Protozoan programmed cell death—insights from Blastocystis deathstyles. Trends Parasitol 2005; 21:547–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 2000; 97:14376–14381.PubMedCrossRefGoogle Scholar
  11. 11.
    Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 1990; 181:195–213.Google Scholar
  12. 12.
    Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26:239–257.PubMedGoogle Scholar
  13. 13.
    Silva RD, Sotoca R, Johansson B et al. Hyperosmotic stress induces metacaspase-and mitochondria-dependent apoptosis in saccharomyces cerevisiae. Mol Microbiol 2005; 58:824–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Tounekti O, Belehradek Jr J, Mir LM. Relationships between DNA fragmentation, chromatin condensation and changes in flow cytometry profiles detected during apoptosis. Exp Cell Res 1995; 217:506–516.PubMedCrossRefGoogle Scholar
  15. 15.
    Daniel PT, Sturm I, Ritschel S et al. Detection of genomic DNA fragmentation during apoptosis (DNA ladder) and the simultaneous isolation of RNA from low cell numbers. Anal Biochem 1999; 266:110–115.PubMedCrossRefGoogle Scholar
  16. 16.
    Fadok VA, Bratton DL, Rose DM et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000; 405: 85–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Ameisen JC. On the origin, evolution and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 2002; 9:367–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Behnia M, Robertson KA, Martin WJ. Role of apoptosis in host defense and pathogensis of disease. Ches 2000; 117:1771–1777.CrossRefGoogle Scholar
  19. 19.
    Bossy-Wetzel E, Green DR. Apoptosis: checkpoint at the mitochondrial frontier. Mutat Res 1999; 434:243–251.PubMedGoogle Scholar
  20. 20.
    Lopes MF, DosReis GA. The macrophage haunted by cell ghosts: a pathogen grows. Immunol Today 2000; 21:489–494.PubMedCrossRefGoogle Scholar
  21. 21.
    Chwieralski CE, Welte T, Buhling F. Cathepsin-regulated apoptosis. Apoptosis 2006; 11:143–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Cosulich SC, Savory PJ, Clarke PR. Bcl-2 regulates amplification of caspase activation by cytochrome c. Curr Biol 1999; 9:147–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Sen N, Das BB, Ganguly A et al. Camptothecin induced mitochondrial dysfunction leading to programmed cell death in unicellular hemoflagellate Leishmania donovani. Cell Death Differ 2004; 11:924–36.PubMedCrossRefGoogle Scholar
  24. 24.
    Rachek LI, Grishko VI, Ledoux SP et al. Role of nitric oxide-induced mtDNA damage in mitochondrial dysfunction and apoptosis. Free Radic Biol Med 2006; 40:754–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu H, Baliga R. Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol 2005; 16:1985–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Nakano T, Watanabe H, Ozeki M et al. Endoplasmic reticulum Ca2+ depletion induces endothelial cell apoptosis independently of caspase-12. Cardiovasc Res 2006; 69:908–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Gourlay CW, Ayscough KR. The actin cytoskeleton in ageing and apoptosis. FEMS Yeast Res 2005; 5:1193–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Vardi A, Berman-Frank I, Rozenberg T et al. Programmed cell death of the dinoflagellate Peridinium gatunese is mediated by CO2 limitation and oxidative stress. Curr Biol 1999; 9:1061–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Lewis K. Programmed cell death in bacteria. Microbiol Mol Biol Rev 2000; 64:503–514.PubMedCrossRefGoogle Scholar
  30. 30.
    Sat B, Hazan R, Fisher T et al. Programmed cell death in Escherichia coli: some antibiotics can trigger mazEF lethality. J Bacteriol 2001; 183:2041–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Tsuda A, Witola WH, Ohashi K et al. Expression of alternative oxidase inhibits programmed cell death-like phenomenon in bloodstream form of Trypanosoma brucei rhodesiense. Parasitol Int 2005; 54:243–51.PubMedCrossRefGoogle Scholar
  32. 32.
    Wanderley JLM, Benjamin A, Real F et al. Apoptotic mimicry: an altruistic behavior in host/Leishmania interplay. Braz J Med Biol Res 2005; 38:807–812.PubMedCrossRefGoogle Scholar
  33. 33.
    Cornillon S, Foa C, Davoust J et al. Programmed cell death in Dictyostelium. J Cell Sci 1994; 107:2691–704.PubMedGoogle Scholar
  34. 34.
    Nguewa PA, Fuertes MA, Valladares B et al. Programmed cell death in trypanosomatids: a way to maximize their biological fitness? Trends Parasitol 2004; 20:375–80.PubMedCrossRefGoogle Scholar
  35. 35.
    Zangger H, Mottram JC, Fasel N. Cell death in Leishmania induced by stress and differentiation: programmed cell death or necrosis? Cell Death Differ 2002; 9:1126–39.PubMedCrossRefGoogle Scholar
  36. 36.
    DosReis GA, Barcinski MA. Apoptosis and parasitism: from the parasite to the host immune response. Adv Parasitol 2001; 49:133–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Debrabant A, Nakhasi. Programmed cell death in trypanosomatids: is it an altruistic mechanism for survival of the fittest? Kinetoplastid Biol Dis 2003; 2:7.PubMedCrossRefGoogle Scholar
  38. 38.
    Welburn SC, Barcinski M, Williams G. Programmed cell death in trypanosomatids. Parasitol Today 1997; 13:22–26.PubMedCrossRefGoogle Scholar
  39. 39.
    Barcinski MA, DosReis GA. Apoptosis in parasites and parasite-induced apoptosis in the host immune system: a new approach to parasitic diseases. Braz J Med Biol Res 1999; 32:395–401.PubMedCrossRefGoogle Scholar
  40. 40.
    Ouaissi A. Apoptosis-like death in trypanosomatids: search for putative pathways and genes involved. Kinetoplastid Biol Dis 2003; 2:5.PubMedCrossRefGoogle Scholar
  41. 41.
    De Souza EM, Menna-Barreto R, Araújo-Jorge TC et al. Antiparasitic Activity of Aromatic diamidines is related to apoptosis-like death in Trypanosoma cruzi. Parasitology 2006; 27:1–5.Google Scholar
  42. 42.
    Mehta A, Shaha C. Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: complex II inhibition results in increased pentamidine cytotoxicity. J Biol Chem 2004; 279:11798–11813.PubMedCrossRefGoogle Scholar
  43. 43.
    Vannier-Santos MA, Martiny A, de Souza W. Cell biology of Leishmania spp. invading and evading. Curr Pharm 2002; 8:297–318.CrossRefGoogle Scholar
  44. 44.
    De Souza W. From the cell biology to the development of new chemotherapeutic approaches against trypanosomatids: dreams and reality. Kinetoplastid Biol Dis 2002; 1:3.PubMedCrossRefGoogle Scholar
  45. 45.
    WHO. The world health report. 1999; Genova. World Health Organization.Google Scholar
  46. 46.
    WHO. The world health report. 2002; Genova. World Health Organization.Google Scholar
  47. 47.
  48. 48.
    Sacks D, Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol 2001; 55:453–83.PubMedCrossRefGoogle Scholar
  49. 49.
    Peters C, Aebischer T, Stierhof YD et al. The role of macrophages receptors in adhesion and uptake of Leishmania mexicana amastigotes. J Cell Scien 1995; 108:3715–3724.Google Scholar
  50. 50.
    Mignotte B, Vayssiere JL. Mitochondria and apoptosis. Eur J Biochem 1998; 252:1–15.PubMedCrossRefGoogle Scholar
  51. 51.
    Das M, Mukherjee SB, Shaha C. Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Science 2001; 114:2461–2469.PubMedGoogle Scholar
  52. 52.
    Moreira ME, Del Portillo HA, Milder RV et al. Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania (Leishmania) amazonensis. J Cell Physiol 1996; 167:305–13.PubMedCrossRefGoogle Scholar
  53. 53.
    Lindoso JA, Cotrim PC, Goto H. Apoptosis of Leishmania (Leishmania) chagasi amastigotes in hamsters infected with visceral leishmaniasis. Int J Parasitol 2004; 34:1–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Arnoult D, Akarid K, Grodet A et al. On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Cell Death Differ 2002; 9:65–81.PubMedCrossRefGoogle Scholar
  55. 55.
    Holzmuller P, Sereno D, Cavaleyra M et al. Nitric oxide-mediated proteasome-dependent oligonucleosomal DNA fragmentation in Leishmania amazonensis amastigotes. Infect Immun 2002; 70:3727–35.PubMedCrossRefGoogle Scholar
  56. 56.
    Verma NK, Dey CS. Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 2004; 48:3010–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Paris C, Loiseau PM, Bories C et al. Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother 2004; 48:852–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Sereno D, Holzmuller P, Mangot I et al. Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrob Agents Chemother 2001; 45:2064–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Langreth SG, Berman JD, Riordan GP et al. Fine-structural alterations in Leishmania tropica within human macrophages exposed to antileishmanial drugs in vitro. J Protozool 1983; 30:555–61.PubMedGoogle Scholar
  60. 60.
    Chulay JD, Fawcett DW, Chunge CN. Electron microscopy of Leishmania donovani in splenic aspirates from patients with visceral leishmaniasis during treatment with sodium stibogluconate. Ann Trop Med Parasitol 1985; 79:417–429.PubMedGoogle Scholar
  61. 61.
    Sudhandiran G, Shaha C. Antimonial-induced increase in intracellular Ca2+ through nonselective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem 2003; 278:25120–25132.PubMedCrossRefGoogle Scholar
  62. 62.
    Holzmuller P, Cavaleyra M, Moreaux J et al. Lymphocytes of dogs immunised with purified excreted-secreted antigens of Leishmania infantum co-incubated with Leishmania infected macrophages produce IFN gamma resulting in nitric oxide-mediated amastigote apoptosis. Vet Immunol Immunopathol 2005; 106:247–57.PubMedCrossRefGoogle Scholar
  63. 63.
    Chowdhury AR, Mandal S, Goswami A et al. Dihydrobetulinic acid induces apoptosis in Leishmania donovani by targeting DNA topoisomerase I and II: implications in antileishmanial therapy. Mol Med 2003; 9:26–36.PubMedGoogle Scholar
  64. 64.
    Mittra B, Saha A, Chowdhury AR et al. Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol Med 2000; 6:527–541.PubMedCrossRefGoogle Scholar
  65. 65.
    Singh G, Jayanarayan KG, Dey CS. Novobiocin induces apoptosis-like cell death in topoisomerase II over-expressing arsenite resistant Leishmania donovani. Mol Biochem Parasitol 2005; 141:57–69.PubMedCrossRefGoogle Scholar
  66. 66.
    Jayanarayan KG, Dey CS. Altered tubulin dynamics, localization and posttranslational modifications in sodium arsenite resistant Leishmania donovani in response to paclitaxel, trifluralin and a combination of both and induction of apoptosis-like cell death. Parasitology 2005; 131:215–30.PubMedCrossRefGoogle Scholar
  67. 67.
    Soeiro MNC, De Souza EM, Stephens CE et al. Aromatic diamidines as antiparasitic agents. Exp Opinion Investig Drugs 2005; 14:957–72.CrossRefGoogle Scholar
  68. 68.
    Jean-Moreno V, Rojas R, Goyeneche D et al. Leishmania donovani: differential activities of classical topoisomerase inhibitors and antileishmanials against parasite and host cells at the level of DNA topoisomerase I and in cytotoxicity assays. Exp Parasitol 2006; 112:21–30.PubMedCrossRefGoogle Scholar
  69. 69.
    De Freitas Balanco JM, Moreira ME, Bonomo A et al. Apoptotic mimicry by an obligate intracellular parasite downregulates macrophage microbicidal activity. Curr Biol 2001; 27:1870–3.CrossRefGoogle Scholar
  70. 70.
    Wanderley JL, Moreira ME, Benjamin A et al. Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts. J Immunol 2006; 176:1834–9.PubMedGoogle Scholar
  71. 71.
    Sousa-Franco J, Araujo-Mendes E, Silva-Jardim I et al. Infection-induced respiratory burst in BALB/c macrophages kills Leishmania guyanensis amastigotes through apoptosis: possible involvement in resistance to cutaneous leishmaniasis. Microbes Infect 2006; 8:390–400.PubMedCrossRefGoogle Scholar
  72. 72.
    Denise H, Barrett MP. Uptake and mode of action of drugs used against sleeping sickness. Biochem Pharmacol 2001; 61:1–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Docampo R, Moreno SN. Current chemotherapy of human African trypanosomiasis. Parasitol Res 2003; 90:10–3.Google Scholar
  74. 74.
    Welburn SC, Maudlin I, Ellis DS. Rate of trypanosome killing by lectins in midguts of different species and strains of Glossina. Med Vet Entomol 1989; 3:77–82.PubMedCrossRefGoogle Scholar
  75. 75.
    Maudlin I, Welburn SC. Maturation of trypanosome infections in tsetse. Exp Parasitol 1994; 79:202–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Welburn SC, Dale C, Ellis D et al. Apoptosis in procyclic Trypanosoma brucei rhodesiense in vitro. Cell Death Differ 1996; 3:229–236.PubMedGoogle Scholar
  77. 77.
    Welburn SC, Lillico S, Murphy NB. Programmed cell death in procyclic form Trypanosoma brucei rhodesiense identification of differentially expressed genes during conA induced death. Mem Inst Oswaldo Cruz 1999; 94:229–234.PubMedCrossRefGoogle Scholar
  78. 78.
    Pearson TW, Beecroft RP, Welburn SC et al. The major cell surface glycoprotein procyclin is a receptor for induction of a novel form of cell death in African trypanosomes in vitro. Mol Biochem Parasitol 2000; 111:333–349.PubMedCrossRefGoogle Scholar
  79. 79.
    Ridgley EL, Xiong ZH, Ruben L. Reactive oxygen species activate a Ca2+-dependent cell death pathway in the unicellular organism Trypanosoma brucei brucei. Biochem J 1999; 340:33–40.PubMedCrossRefGoogle Scholar
  80. 80.
    Esseiva AC, Chanez A, Bochud-Allemann N et al. Temporal dissection of Bax-induced events leading to fission of the single mitochondrion in Trypanosoma brucei. EMBO Rep 2004; 5:268–73.PubMedCrossRefGoogle Scholar
  81. 81.
    Welburn SC, Murphy NB. Prohibiting and RACK homologues are up-regulated in trypanosomes induced to undergo apoptosis and in naturally occurring terminally differentiated forms. Cell Death Differ 1998; 5:615–22.PubMedCrossRefGoogle Scholar
  82. 82.
    Lillico SG, Mottram JC, Murphy NB et al. Characterisation of the QM gene of Trypanosoma brucei. FEMS Microbiol Lett 2002; 211:123–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Szallies A, Kubata BK, Duszenko M. A metacaspase of Trypanosoma brucei causes loss of respiration competence and clonal death in the yeast Saccharomyces cerevisiae. FEBS Lett 2002; 517:144–50.PubMedCrossRefGoogle Scholar
  84. 84.
    Helms MJ, Ambit A, Appleton P et al. Bloodstream form Trypanosoma brucei depend upon multiple metacaspases associated with RAB11-positive endosomes. J Cell Sci 2006; in press Epub ahead of print.Google Scholar
  85. 85.
    Figarella K, Rawer M, Uzcategui NL et al. Prostaglandin D2 induces programmed cell death in Trypanosoma brucei bloodstream form. Cell Death Differ 2005; 12:335–46.PubMedCrossRefGoogle Scholar
  86. 86.
    Mamani-Matsuda M, Rambert J, Malvy D et al. Quercetin induces apoptosis of Trypanosoma brucei gambiense and decreases the proinflammatory response of human macrophages. Antimicrob Agents Chemother 2004; 48:924–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Hirst SI, Stapley LA. Parasitology: the dawn of a new millennium. Parasitol Today 2000; 16:1–3.PubMedCrossRefGoogle Scholar
  88. 88.
    Tarleton RL. Chagas disease: a role for autoimmunity? Trends Parasitol 2003; 19:447–51.PubMedCrossRefGoogle Scholar
  89. 89.
    Ameisen JC, Idziorek T, Billaut-Multo O et al. Apoptosis in a unicellular eukaryote (Trypanosoma cruzi)—implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death Differ 1995; 2:285–300.PubMedGoogle Scholar
  90. 90.
    Zhang J, Andrade ZA, Yu ZX et al. Apoptosis in a canine model of acute chagasic myocarditis. J Mol Cell Cardiol 1999; 31:581–596.PubMedCrossRefGoogle Scholar
  91. 91.
    Freire-de-Lima CG, Nascimento DO, Soares MBP et al. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 2000; 403:199–203.PubMedCrossRefGoogle Scholar
  92. 92.
    Piacenza L, Peluffo G, Radi R. L-Arginine-dependent suppression of apoptosis in Trypanosoma cruzi: contribution of the nitric oxide and polyamine pathways. Proc Natl Acad Sci 2001; 98:7301–7306.PubMedCrossRefGoogle Scholar
  93. 93.
    Billaut-Mulot O, Fernandez-Gomez R, Loyens M et al. Trypanosoma cruzi elongation factor 1-alpha: nuclear localization in parasites undergoing apoptosis. Gene 1996; 174:19–26.PubMedCrossRefGoogle Scholar
  94. 94.
    Deolindo P, Teixeira-Ferreira AS, Melo EJ et al. Programmed cell death in Trypanosoma cruzi induced by Bothrops jararaca venom. Mem Inst Oswaldo Cruz 2005; 100:33–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Kosec G, Alvarez VE, Aguero F. et al. Metacaspases of Trypanosoma cruzi: Possible candidates for programmed cell death mediators. Mol Biochem Parasitol 2006; 145:18–28.PubMedCrossRefGoogle Scholar
  96. 96.
    Al-Olayan EM, Williams GT, Hurd H. Apoptosis in the malaria protozoan, Plasmodium berghei: a possible mechanism for limiting intensity of infection in the mosquito. J Parasitol 2002; 32:1133–1143.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Maria de Nazaré C. Soeiro
    • 1
  • Elen M. de Souza
    • 1
  1. 1.Laboratorio de Biologia Celular, Dept. deUltra-estrutura e Biologia CelularInstituto Oswaldo Cruz, FIOCRUZRio de JaneiroBrazil

Personalised recommendations