Skip to main content

Programmed Cell Death and the Enteric Protozoan Parasite Blastocystis hominis: Perspectives and Prospects

  • Chapter
Programmed Cell Death in Protozoa

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 504 Accesses

Abstract

The propensity for unicellular eukaryotes to undergo programmed cell death (PCD) has been well documented in recent years. This fascinating yet somewhat counterintuitive phenomenon has been reported to occur for many species of the parasitic Protozoa. Among the luminal Protozoa, PCD in Blastocystis has been the best characterized. This intestinal protozoan parasite has been shown to exhibit a number of PCD features that are apoptotic or non-apoptotic. Caspase-like activity and mitochondria are involved in Blastocystis PCD and have been linked to DNA fragmentation in the parasite. PCD, however, can also occur in the absence of mitochondrial and caspase involvement and DNA fragmentation. This indicates that multiple cell death pathways exist in Blastocystis, highlighting the cellular complexity of the seemingly simple Protozoa. Despite advances in our understanding of Blastocystis PCD, specific genes and proteins associated with this process have yet to be identified. Recent work has shown that Blastocystis can induce apoptosis in intestinal epithelial cells in vitro. Interplay of cell death between host and parasite should provide interesting and novel insights into host-pathogen interactions in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ameisen JC. On the origin, evolution and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 2002; 9:367–393.

    Article  PubMed  CAS  Google Scholar 

  2. Tan KSW, Nasirudeen AMA. Protozoan programmed cell death: insights from Blastocystis deathstyles. Trends Parasitol 2005; 21:547–550.

    Article  PubMed  CAS  Google Scholar 

  3. DosReis GA, Barcinski MA. Apoptosis and parasitism: from the parasite to the host immune response. Adv Parasitol 2001; 49:133–161.

    Article  PubMed  CAS  Google Scholar 

  4. Welburn SC, Maudlin I. Tsetse-trypanosome interactions: rites of passage. Parasitol Today 1999; 15:399–403.

    Article  PubMed  CAS  Google Scholar 

  5. Wanderley JL, Moreira ME, Benjamin A et al. Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts. J Immunol 2006; 176:1834–1839.

    PubMed  CAS  Google Scholar 

  6. Tan KSW. Blastocystis in humans and animals: new insights using modern methodologies. Vet Parasitol 2004; 26:121–144.

    Article  Google Scholar 

  7. Puthia MK, Sio SWS, Jia L et al. Blastocystis induces contact-independent apoptosis, F-actin rearrangement and barrier function disruption in IEC-6 cells. Infect Immun 2006; 74:4114–4123.

    Article  PubMed  CAS  Google Scholar 

  8. Guimarães CA, Linden R. Programmed cell death: apoptosis and alternative deathstyles. Eur J Biochem 2004; 271:1638–1650.

    Article  CAS  Google Scholar 

  9. Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 2004; 16:663–669.

    Article  PubMed  CAS  Google Scholar 

  10. Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 2000; 97:14376–14381.

    Article  PubMed  CAS  Google Scholar 

  11. Nasirudeen AMA, Tan KSW, Singh M et al. Programmed cell death in a human intestinal parasite, Blastocystis hominis. Parasitology 2001; 123:235–246.

    Article  PubMed  CAS  Google Scholar 

  12. Nasirudeen AMA, Yap EH, Singh M et al. Metronidazole induces programmed cell death in the protozoan parasite Blastocystis hominis. Microbiology 2004; 150:33–43.

    Article  PubMed  CAS  Google Scholar 

  13. Vesey G, Hutton P, Champion A et al. Application of flow cytometric methods for the routine detection of Cryptosporidium and Giardia in water. Cytometry 1994; 16:1–6.

    Article  PubMed  CAS  Google Scholar 

  14. Bortner CD, Cidlowski JA. Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ 2002; 9:1307–1310.

    Article  PubMed  CAS  Google Scholar 

  15. Adayev T, Estephan R, Meserole S et al. Externalization of phosphatidylserine may not be an early signal of apoptosis in neuronal cells, but only the phosphatidylserine-displaying apoptotic cells are phagocytosed by microglia. J Neurochem 1998; 71:1854–1864.

    Article  PubMed  CAS  Google Scholar 

  16. Tan KSW, Howe J, Yap EH et al. Do Blastocystis colony forms undergo programmed cell death? Parasitol Res 2001; 87:362–367.

    Article  PubMed  CAS  Google Scholar 

  17. Nagata S, Nagase H, Kawane K et al. Degradation of chromosomal DNA during apoptosis. Cell Death Differ 2003; 10:108–116.

    Article  PubMed  CAS  Google Scholar 

  18. Walker PR, Sikorska M. New aspects of the mechanism of DNA fragmentation in apoptosis. Biochem Cell Biol 1997; 75:287–299.

    Article  PubMed  CAS  Google Scholar 

  19. Philchenkov A. Caspases: potential targets for regulating cell death. J Cell Mol Med 2004; 8:432–444.

    Article  PubMed  CAS  Google Scholar 

  20. Nasirudeen AMA, Singh M, Yap EH et al. Blastocystis hominis: evidence for caspase-3-like activity in cells undergoing programmed cell death. Parasitol Res 2001; 87:559–565.

    Article  PubMed  CAS  Google Scholar 

  21. Del Bello B, Valentini MA, Mangiavacchi P et al. Role of caspases-3 and-7 in Apaf-1 proteolytic cleavage and degradation events during cisplatin-induced apoptosis in melanoma cells. Exp Cell Res 2004; 293:302–310.

    Article  PubMed  CAS  Google Scholar 

  22. Janicke RU, Sprengart ML, Wati MR et al. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998; 273:9357–9360.

    Article  PubMed  CAS  Google Scholar 

  23. Nasirudeen AMA, Tan KSW. Caspase-3-like protease influences but is not essential for DNA fragmentation in Blastocystis undergoing apoptosis. Eur J Cell Biol 2004; 83:477–482.

    Article  PubMed  CAS  Google Scholar 

  24. Nasirudeen AMA, Tan KSW. Programmed cell death in Blastocystis hominis occurs independently of caspase and mitochondrial pathways. Biochimie 2005; 87:489–497.

    Article  PubMed  CAS  Google Scholar 

  25. Nakamura Y, Hashimoto T, Yoshikawa H et al. Phylogenetic position of Blastocystis hominis that contains cytochrome-free mitochondria, inferred from the protein phylogeny of elongation factor 1 alpha. Mol Biochem Parasitol 1996; 77:241–245.

    Article  PubMed  CAS  Google Scholar 

  26. Nasirudeen AMA, Tan KSW. Isolation and characterization of the mitochondrion-like organelle from Blastocystis hominis. J Microbiol Methods 2004; 58:101–109.

    Article  PubMed  CAS  Google Scholar 

  27. Godefroy N, Lemaire C, Renaud F et al. p53 can promote mitochondria-and caspase-independent apoptosis. Cell Death Diff 2004; 11:785–787.

    Article  CAS  Google Scholar 

  28. Bortner CD, Cidlowski JA. Uncoupling cell shrinkage from apoptosis reveals that Na+ influx is required for volume loss during programmed cell death. J Biol Chem 2003; 278:39176–39184.

    Article  PubMed  CAS  Google Scholar 

  29. Vu CC, Bortner CD, Cidlowski JA. Differential involvement of initiator caspases in apoptotic volume decrease and potassium efflux during Fas-and UV-induced cell death. J Biol Chem 2001; 276:37602–37611.

    Article  PubMed  CAS  Google Scholar 

  30. Scoltock AB, Cidlowski JA. Activation of intrinsic and extrinsic pathways in apoptotic signaling during UV-C-induced death of Jurkat cells: the role of caspase inhibition. Exp Cell Res 2004; 297:212–223.

    Article  PubMed  CAS  Google Scholar 

  31. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000; 290:1717–1721.

    Article  PubMed  CAS  Google Scholar 

  32. Bera A, Singh S, Nagaraj R et al. Induction of autophagic cell death in Leishmania donovani by antimicrobial peptides. Mol Biochem Parasitol 2003; 127:23–35.

    Article  PubMed  CAS  Google Scholar 

  33. von Bultzingslowen I, Jontell M, Hurst P et al. 5-Fluorouracil induces autophagic degeneration in rat oral keratinocytes. Oral Oncol 2001; 37:537–544.

    Article  Google Scholar 

  34. Schneider D, Gerhardt E, Bock J et al. Intracellular acidification by inhibition of the Na+/H+-exchanger leads to caspase-independent death of cerebellar granule neurons resembling paraptosis. Cell Death Differ 2004; 11:760–770.

    Article  PubMed  CAS  Google Scholar 

  35. Chin AC, Teoh DA, Scott KGE et al. Strain dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect Immun 2002; 70:3673–3680.

    Article  PubMed  CAS  Google Scholar 

  36. Fiorentini C, Fabbri A, Falzano L et al. Clostridium difficile toxin B induces apoptosis in intestinal cultured cells. Infect Immun 1998; 66:2660–2665.

    PubMed  CAS  Google Scholar 

  37. Huston CD, Houpt ER, Mann BJ et al. Caspase 3-dependent killing of host cells by the parasite Entamoeba histolytica. Cell Microbiol 2000; 2:617–625.

    Article  PubMed  CAS  Google Scholar 

  38. Zychlinsky A, Sansonetti P. Perspectives series: host/pathogen interactions. Apoptosis in bacterial pathogenesis. J Clin Invest 1997; 100:493–495.

    Article  PubMed  CAS  Google Scholar 

  39. Groos S, Busche R, von Engelhardt W et al. Excessive apoptosis of guinea pig colonocytes may lead to an imbalance between phagocytosis and degradation in vivo. Cell Tissue Res 2004; 316:77–86.

    Article  PubMed  Google Scholar 

  40. Hall PA, Coates PJ, Ansari B et al. Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci 1994; 107:3569–3577.

    PubMed  CAS  Google Scholar 

  41. Fadok VA, Bratton DL, Konowal A et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2 and PAF. J Clin Invest 1998; 101:890–898.

    Article  PubMed  CAS  Google Scholar 

  42. Hoffmann PR, Kench JA, Vondracek A et al. Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J Immunol 2005; 174:1393–1404.

    PubMed  CAS  Google Scholar 

  43. Cliffe LJ, Humphreys NE, Lane TE et al. Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion. Science 2005; 308:1463–1465.

    Article  PubMed  CAS  Google Scholar 

  44. Govind SK, Khairul AA, Smith HV. Multiple reproductive processes in Blastocystis. Trends Parasitol 2002; 18:528.

    Article  PubMed  Google Scholar 

  45. Singh M, Suresh K, Ho LC et al. Elucidation of the life cycle of the intestinal protozoan Blastocystis hominis. Parasitol Res 1995; 81:446–450.

    Article  PubMed  CAS  Google Scholar 

  46. Tan KSW, Stenzel DJ. Multiple reproductive processes in Blastocystis: proceed with caution. Trends Parasitol 2003; 19:290–291.

    Article  PubMed  Google Scholar 

  47. Zierdt CH. Blastocystis hominis—past and future. Clin Microbiol Rev 1991; 4:61–79.

    PubMed  CAS  Google Scholar 

  48. Vdovenko AA. Blastocystis hominis: origin and significance of vacuolar and granular forms. Parasitol Res 2000; 86:8–10.

    Article  PubMed  CAS  Google Scholar 

  49. Deponte M, Becker K. Plasmodium falciparum—do killers commit suicide? Trends Parasitol 2004; 20:165–169.

    Article  PubMed  CAS  Google Scholar 

  50. Kosec G, Alvarez VE, Aguero F et al. Metacaspases of Trypanosoma cruzi: possible candidates for programmed cell death mediators. Mol Biochem Parasitol 2006; 145:18–28.

    Article  PubMed  CAS  Google Scholar 

  51. Uren AG, O’Rourke K, Aravind LA et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 2000; 6:961–967.

    PubMed  CAS  Google Scholar 

  52. Fellenberg J, Dechant MJ, Ewerbeck V et al. Identification of drug-regulated genes in osteosarcoma cells. Int J Cancer 2003; 105:636–643.

    Article  PubMed  CAS  Google Scholar 

  53. Harada H, Grant S. Apoptosis regulators. Rev Clin Exp Hematol 2003; 7:117–138.

    PubMed  CAS  Google Scholar 

  54. Mottram JC, Helms MJ, Coombs GH et al. Clan CD cysteine peptidases of parasitic protozoa. Trends Parasitol 2003; 19:182–187.

    Article  PubMed  CAS  Google Scholar 

  55. Zierdt CH, Donnolley CT, Muller J et al. Biochemical and ultrastructural study of Blastocystis hominis. J Clin Microbiol 1988; 26:965–970.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin S. W. Tan .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Tan, K.S.W. (2008). Programmed Cell Death and the Enteric Protozoan Parasite Blastocystis hominis: Perspectives and Prospects. In: Programmed Cell Death in Protozoa. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76717-8_10

Download citation

Publish with us

Policies and ethics