Skip to main content

Programmed Cell Death in Protozoa: An Evolutionary Point of View. The Example of Kinetoplastid Parasites

  • Chapter
Programmed Cell Death in Protozoa

Abstract

Programmed cell death (PCD) is a molecular event which plays an essential role in the development of multicellular organisms. However, recent studies indicate that PCD is a mechanism also present in protozoa and unicellular eukaryotes. For instance, it has been recently proposed that some Trypanosomatid parasites have a PCD mechanism descendant from an ancient life form that has actually evolved. Thus, two hypotheses may explain the existence of PCD in protozoa such as Trypanosomatids. First, PCD could simply be a process without a defined function inherited through cell evolution, which is triggered in response to diverse stimuli and stress conditions. Alternatively, PCD might be used by Trypanosomatids as a control mechanism to maximize their biological fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ameisen JC. The origin of programmed cell death. Science 1996; 272:1278–1279.

    Article  PubMed  CAS  Google Scholar 

  2. World Health Organization The World Health report: life in the 21st century. A vision for all. Report of the Director-General, WHO, Geneva, 1998:44–51.

    Google Scholar 

  3. Kroemer G. Mitochondrial implication apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ 1997; 4:443–456.

    Article  PubMed  CAS  Google Scholar 

  4. Zangger H, Mottram JC, Fasel N et al. Cell death in Leishmania by stress and differentiation: programmed cell death or necrosis? Cell Death Differ 2002; 9:1126–1139.

    Article  PubMed  CAS  Google Scholar 

  5. Fraser A, James C. Fermenting debate: do yeast undergo apoptosis? Trends Cell Biol 1998; 8:219–221.

    Article  PubMed  CAS  Google Scholar 

  6. Sogin ML. Early evolution and the origin of eukaryotes. Curr Op Gen Dev 1991; 1:457–463.

    Article  CAS  Google Scholar 

  7. Doolittle RF, Feng DF, Tsang S et al. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 1996; 271:470–477.

    Article  PubMed  CAS  Google Scholar 

  8. Arnoult D, Akarid K, Grodet A et al. On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinases activation and mitochondrion permeabilization. Cell Death Diff 2002; 9:65–81.

    Article  CAS  Google Scholar 

  9. Ameisen JC, Idziorek T, Billaut-Mulot O et al. Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death Differ 1995; 2:285–300.

    PubMed  CAS  Google Scholar 

  10. Welburn SC, Dale C, Ellis D et al. Apoptosis in procyclic T. brucei. rhodesiense in vitro. Cell Death Differ 1996; 3:229–236.

    PubMed  CAS  Google Scholar 

  11. Welburn SC, Barcinski MA, Williams GT. Programmed cell death in Trypanosomatids. Parasitol Today 1997; 13:22–26.

    Article  PubMed  CAS  Google Scholar 

  12. Margulis L. Symbiotic theory of the origin of eukaryotic organelles. Jenning DH, Leed DL, eds. Symbiosis. Symposium 29: Society for Experimental Biology. Cambridge: Cambridge University Press, 1975:21–38.

    Google Scholar 

  13. Gray MW. Origin and evolution of mitochondrial DNA. Annu Rev Biochem 1989; 5:25–50.

    CAS  Google Scholar 

  14. Punj V, Chakrabarty AM. Redox proteins in mammalian cell death: an evolutionarily conserved function in mitochondria and prokaryotes. Cell Microbiol 2003; 5:225–231.

    Article  PubMed  CAS  Google Scholar 

  15. Blackstone NW. A units-of-evolution perspective on the endosymbiont theory of the origin of the mitochondrion. Evolution 1995; 49:785–796.

    Article  CAS  Google Scholar 

  16. Margulis L. Archacal-cubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc Natl Acad Sci USA 1996; 93:1071–1076.

    Article  PubMed  CAS  Google Scholar 

  17. Doolittle W. Eukaryote origins: a paradigm gets shifty. Nature 1998; 392:15–16.

    Article  PubMed  CAS  Google Scholar 

  18. Raff M. Social control of cell survival and cell death. Nature 1994; 365:397–400.

    Google Scholar 

  19. Fuertesa MA, Castillab J, Alonsoa C, Pérez JM. Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr Med Chem 2003; 10:257–266.

    PubMed  CAS  Google Scholar 

  20. Moreira ME, Del Portillo HA, Milder RV et al. Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania amazonensis. J Cell Physiol 1996; 167:305–313.

    Article  PubMed  CAS  Google Scholar 

  21. Das M, Mukherjee SB, Shaha C. Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Sci 2001; 114:2461–2469.

    PubMed  CAS  Google Scholar 

  22. Lee N, Bertholet S, Debrabant A et al. Programmed Cell Death in the unicelular protozoan parasite Leishmania. Cell Death Differ 2002; 9:53–64.

    Article  PubMed  CAS  Google Scholar 

  23. Lymbery AJ, Hobbs RP, Thompson RC et al. Building bridges and controlling parasites. Int J Parasitol 1997; 27:1119–1120

    Article  PubMed  CAS  Google Scholar 

  24. Anderson RM. Complex dynamic behaviours in the interaction between parasite population and the host’s immune system. Int J Parasitol 1998; 28:551–66.

    Article  PubMed  CAS  Google Scholar 

  25. Barcinski MA, DosReis GA. Apoptosis in parasites and parasite-indced apoptosis in the host immune system: a new approach to parasitic diseases. Braz J Med Biol Res 1999; 32:395–401.

    Article  PubMed  CAS  Google Scholar 

  26. Vickerman K. Developmental cycles and biology of pathogenic trypanosomes. Br Med Bull 1985; 41:105–114.

    PubMed  CAS  Google Scholar 

  27. Welburn SC, Maudlin I, Ellis DS. Rate of trypanosome killing by lectins in midguts of different species and strains of Glossina. Med Vet Entomol 1989; 3:77–82.

    Article  PubMed  CAS  Google Scholar 

  28. DosReis GA, Barcinski MA. Apoptosis and parasitism: from the parasite to the host immune response. Adv Parasitol 2001; 49:133–161.

    Article  PubMed  CAS  Google Scholar 

  29. Welburn SC, Maudlin I. Tsetse-trypanosome interactions: rites of passage. Parasitol Today 1999; 15:399–403.

    Article  PubMed  CAS  Google Scholar 

  30. Piacenza L, Peluffo G, Radi R. L-Arginine-dependent suppression of apoptosis in Trypanosoma cruzi: Contribution of the nitric oxide and polyamine pathways. Proc Natl Acad Sci USA 2001; 98:7301–7306.

    Article  PubMed  CAS  Google Scholar 

  31. Maslov DA, Simpson L. Evolution of parasitism in kinetoplastid protozoa. Parasitol Today 1995; 11:30–32.

    Article  Google Scholar 

  32. Ameisen JC. On the origin, evolution and nature of programmed cell death: a timeline of four billion years. Cell Death Diff 2002; 9:367–393.

    Article  CAS  Google Scholar 

  33. Freire-de-Lima CG, Nascimento DO, Soares MB et al. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 2000; 403:199–203.

    Article  PubMed  CAS  Google Scholar 

  34. Koonin EV, Aravind L. Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ 2002; 9:394–404.

    Article  PubMed  CAS  Google Scholar 

  35. Mottram JC, Helms MJ, Coombs GH, Sajid M. Clan CD cysteine peptidases of parasitic protozoa. Trends Parasitol 2003; 19:182–187.

    Article  PubMed  CAS  Google Scholar 

  36. Villamil SF, Podestá D, Molina Portela MD, Stoppani A. Characterization of poly(ADP-ribose) polymerase from Crithidia fasciculata: enzyme inhibition by β-lapachone. Mol Biochem Parasitol 2001; 115:249–256.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Pérez Martín .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Fuertes, M.A., Nguewa, P.A., Castilla, J., Alonso, C., Pérez Martín, J.M. (2008). Programmed Cell Death in Protozoa: An Evolutionary Point of View. The Example of Kinetoplastid Parasites. In: Programmed Cell Death in Protozoa. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76717-8_1

Download citation

Publish with us

Policies and ethics