Programmed Cell Death in Protozoa: An Evolutionary Point of View. The Example of Kinetoplastid Parasites

  • Miguel A. Fuertes
  • Paul A. Nguewa
  • Josefina Castilla
  • Carlos Alonso
  • José Manuel Pérez Martín
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Programmed cell death (PCD) is a molecular event which plays an essential role in the development of multicellular organisms. However, recent studies indicate that PCD is a mechanism also present in protozoa and unicellular eukaryotes. For instance, it has been recently proposed that some Trypanosomatid parasites have a PCD mechanism descendant from an ancient life form that has actually evolved. Thus, two hypotheses may explain the existence of PCD in protozoa such as Trypanosomatids. First, PCD could simply be a process without a defined function inherited through cell evolution, which is triggered in response to diverse stimuli and stress conditions. Alternatively, PCD might be used by Trypanosomatids as a control mechanism to maximize their biological fitness.


Programme Cell Death Multicellular Organism Trypanosoma Cruzi Trypanosoma Brucei Cell Death Differ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ameisen JC. The origin of programmed cell death. Science 1996; 272:1278–1279.PubMedCrossRefGoogle Scholar
  2. 2.
    World Health Organization The World Health report: life in the 21st century. A vision for all. Report of the Director-General, WHO, Geneva, 1998:44–51.Google Scholar
  3. 3.
    Kroemer G. Mitochondrial implication apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ 1997; 4:443–456.PubMedCrossRefGoogle Scholar
  4. 4.
    Zangger H, Mottram JC, Fasel N et al. Cell death in Leishmania by stress and differentiation: programmed cell death or necrosis? Cell Death Differ 2002; 9:1126–1139.PubMedCrossRefGoogle Scholar
  5. 5.
    Fraser A, James C. Fermenting debate: do yeast undergo apoptosis? Trends Cell Biol 1998; 8:219–221.PubMedCrossRefGoogle Scholar
  6. 6.
    Sogin ML. Early evolution and the origin of eukaryotes. Curr Op Gen Dev 1991; 1:457–463.CrossRefGoogle Scholar
  7. 7.
    Doolittle RF, Feng DF, Tsang S et al. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 1996; 271:470–477.PubMedCrossRefGoogle Scholar
  8. 8.
    Arnoult D, Akarid K, Grodet A et al. On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinases activation and mitochondrion permeabilization. Cell Death Diff 2002; 9:65–81.CrossRefGoogle Scholar
  9. 9.
    Ameisen JC, Idziorek T, Billaut-Mulot O et al. Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death Differ 1995; 2:285–300.PubMedGoogle Scholar
  10. 10.
    Welburn SC, Dale C, Ellis D et al. Apoptosis in procyclic T. brucei. rhodesiense in vitro. Cell Death Differ 1996; 3:229–236.PubMedGoogle Scholar
  11. 11.
    Welburn SC, Barcinski MA, Williams GT. Programmed cell death in Trypanosomatids. Parasitol Today 1997; 13:22–26.PubMedCrossRefGoogle Scholar
  12. 12.
    Margulis L. Symbiotic theory of the origin of eukaryotic organelles. Jenning DH, Leed DL, eds. Symbiosis. Symposium 29: Society for Experimental Biology. Cambridge: Cambridge University Press, 1975:21–38.Google Scholar
  13. 13.
    Gray MW. Origin and evolution of mitochondrial DNA. Annu Rev Biochem 1989; 5:25–50.Google Scholar
  14. 14.
    Punj V, Chakrabarty AM. Redox proteins in mammalian cell death: an evolutionarily conserved function in mitochondria and prokaryotes. Cell Microbiol 2003; 5:225–231.PubMedCrossRefGoogle Scholar
  15. 15.
    Blackstone NW. A units-of-evolution perspective on the endosymbiont theory of the origin of the mitochondrion. Evolution 1995; 49:785–796.CrossRefGoogle Scholar
  16. 16.
    Margulis L. Archacal-cubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc Natl Acad Sci USA 1996; 93:1071–1076.PubMedCrossRefGoogle Scholar
  17. 17.
    Doolittle W. Eukaryote origins: a paradigm gets shifty. Nature 1998; 392:15–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Raff M. Social control of cell survival and cell death. Nature 1994; 365:397–400.Google Scholar
  19. 19.
    Fuertesa MA, Castillab J, Alonsoa C, Pérez JM. Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr Med Chem 2003; 10:257–266.PubMedGoogle Scholar
  20. 20.
    Moreira ME, Del Portillo HA, Milder RV et al. Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania amazonensis. J Cell Physiol 1996; 167:305–313.PubMedCrossRefGoogle Scholar
  21. 21.
    Das M, Mukherjee SB, Shaha C. Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Sci 2001; 114:2461–2469.PubMedGoogle Scholar
  22. 22.
    Lee N, Bertholet S, Debrabant A et al. Programmed Cell Death in the unicelular protozoan parasite Leishmania. Cell Death Differ 2002; 9:53–64.PubMedCrossRefGoogle Scholar
  23. 23.
    Lymbery AJ, Hobbs RP, Thompson RC et al. Building bridges and controlling parasites. Int J Parasitol 1997; 27:1119–1120PubMedCrossRefGoogle Scholar
  24. 24.
    Anderson RM. Complex dynamic behaviours in the interaction between parasite population and the host’s immune system. Int J Parasitol 1998; 28:551–66.PubMedCrossRefGoogle Scholar
  25. 25.
    Barcinski MA, DosReis GA. Apoptosis in parasites and parasite-indced apoptosis in the host immune system: a new approach to parasitic diseases. Braz J Med Biol Res 1999; 32:395–401.PubMedCrossRefGoogle Scholar
  26. 26.
    Vickerman K. Developmental cycles and biology of pathogenic trypanosomes. Br Med Bull 1985; 41:105–114.PubMedGoogle Scholar
  27. 27.
    Welburn SC, Maudlin I, Ellis DS. Rate of trypanosome killing by lectins in midguts of different species and strains of Glossina. Med Vet Entomol 1989; 3:77–82.PubMedCrossRefGoogle Scholar
  28. 28.
    DosReis GA, Barcinski MA. Apoptosis and parasitism: from the parasite to the host immune response. Adv Parasitol 2001; 49:133–161.PubMedCrossRefGoogle Scholar
  29. 29.
    Welburn SC, Maudlin I. Tsetse-trypanosome interactions: rites of passage. Parasitol Today 1999; 15:399–403.PubMedCrossRefGoogle Scholar
  30. 30.
    Piacenza L, Peluffo G, Radi R. L-Arginine-dependent suppression of apoptosis in Trypanosoma cruzi: Contribution of the nitric oxide and polyamine pathways. Proc Natl Acad Sci USA 2001; 98:7301–7306.PubMedCrossRefGoogle Scholar
  31. 31.
    Maslov DA, Simpson L. Evolution of parasitism in kinetoplastid protozoa. Parasitol Today 1995; 11:30–32.CrossRefGoogle Scholar
  32. 32.
    Ameisen JC. On the origin, evolution and nature of programmed cell death: a timeline of four billion years. Cell Death Diff 2002; 9:367–393.CrossRefGoogle Scholar
  33. 33.
    Freire-de-Lima CG, Nascimento DO, Soares MB et al. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 2000; 403:199–203.PubMedCrossRefGoogle Scholar
  34. 34.
    Koonin EV, Aravind L. Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ 2002; 9:394–404.PubMedCrossRefGoogle Scholar
  35. 35.
    Mottram JC, Helms MJ, Coombs GH, Sajid M. Clan CD cysteine peptidases of parasitic protozoa. Trends Parasitol 2003; 19:182–187.PubMedCrossRefGoogle Scholar
  36. 36.
    Villamil SF, Podestá D, Molina Portela MD, Stoppani A. Characterization of poly(ADP-ribose) polymerase from Crithidia fasciculata: enzyme inhibition by β-lapachone. Mol Biochem Parasitol 2001; 115:249–256.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Miguel A. Fuertes
    • 1
  • Paul A. Nguewa
    • 1
  • Josefina Castilla
    • 2
  • Carlos Alonso
    • 1
  • José Manuel Pérez Martín
    • 1
  1. 1.Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  2. 2.Farmacia “Castilla”Hermanos García NoblejasMadridSpain

Personalised recommendations