Skip to main content

The Role of Cell Adhesion Molecules in Axon Growth and Guidance

  • Chapter
Axon Growth and Guidance

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 621))

Abstract

During development, axons elongate along the correct path toward their final targets. Growing axons maintain adhesive interactions with specific environmental cues via cell adhesion molecules (CAMs). The axon-environment adhesion must be dynamically controlled, both temporally and spatially, to enable the axons to navigate and migrate correctly. In this way, CAMs play a central role in mediating contact-dependent regulation of motile behavior of the axons. This chapter examines the mechanisms underlying how CAMs control axon growth and guidance, with a particular focus on intracellular signaling, trafficking, and interactions with the actin cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rutishauser U, Gall WE, Edelman GM. Adhesion among neural cells of the chick embryo. IV. Role of the cell surface molecule CAM in the formation of neurite bundles in cultures of spinal ganglia. J Cell Biol 1978; 79(2 Pt 1):382–393.

    Article  PubMed  CAS  Google Scholar 

  2. Harrelson AL, Goodman CS. Growth cone guidance in insects: Fasciclin II is a member of the immunoglobulin superfamily. Science 1988; 242(4879):700–708.

    Article  PubMed  CAS  Google Scholar 

  3. Fischer G, Kunemund V, Schachner M. Neurite outgrowth patterns in cerebellar microexplant cultures are affected by antibodies to the cell surface glycoprotein L1. J Neurosci 1986; 6(2):605–612.

    PubMed  CAS  Google Scholar 

  4. Grumet M, Edelman GM. Neuron-glia cell adhesion molecule interacts with neurons and astroglia via different binding mechanisms. J Cell Biol 1988; 106(2):487–503.

    Article  PubMed  CAS  Google Scholar 

  5. Lemmon V, Farr KL, Lagenaur C. L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron 1989; 2(6):1597–1603.

    Article  PubMed  CAS  Google Scholar 

  6. Bozyczko D, Horwitz AF. The participation of a putative cell surface receptor for laminin and fibronectin in peripheral neurite extension. J Neurosci 1986; 6(5):1241–1251.

    PubMed  CAS  Google Scholar 

  7. Tomaselli KJ, Reichardt LF, Bixby JL. Distinct molecular interactions mediate neuronal process outgrowth on nonneuronal cell surfaces and extracellular matrices. J Cell Biol 1986; 103(6 Pt 2):2659–2672.

    Article  PubMed  CAS  Google Scholar 

  8. Matsunaga M, Hatta K, Nagafuchi A et al. Guidance of optic nerve fibres by N-cadherin adhesion molecules. Nature 1988; 334(6177):62–64.

    Article  PubMed  CAS  Google Scholar 

  9. Bixby JL, Zhang R. Purified N-cadherin is a potent substrate for the rapid induction of neurite outgrowth. J Cell Biol 1990; 110(4):1253–1260.

    Article  PubMed  CAS  Google Scholar 

  10. Dodd J, Jessell TM. Axon guidance and the patterning of neuronal projections in vertebrates. Science 1988; 242(4879):692–699.

    Article  PubMed  CAS  Google Scholar 

  11. Kamiguchi H, Lemmon V. IgCAMs: Bidirectional signals underlying neurite growth. Curr Opin Cell Biol 2000; 12(5):598–605.

    Article  PubMed  CAS  Google Scholar 

  12. Cunningham BA, Hemperly JJ, Murray BA et al. Neural cell adhesion molecule: Structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 1987; 236(4803):799–806.

    Article  PubMed  CAS  Google Scholar 

  13. Rutishauser U. Polysialic acid and the regulation of cell interactions. Curr Opin Cell Biol 1996; 8(5):679–684.

    Article  PubMed  CAS  Google Scholar 

  14. Tang J, Rutishauser U, Landmesser L. Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron 1994; 13(2):405–414.

    Article  PubMed  CAS  Google Scholar 

  15. Moos M, Tacke R, Scherer H et al. Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 1988; 334(6184):701–703.

    Article  PubMed  CAS  Google Scholar 

  16. Takeda Y, Asou H, Murakami Y et al. A nonneuronal isoform of cell adhesion molecule L1: Tissue-specific expression and functional analysis. J Neurochem 1996; 66(6):2338–2349.

    Article  PubMed  CAS  Google Scholar 

  17. Brummendorf T, Wolff JM, Frank R et al. Neural cell recognition molecule F11: Homology with fibronectin type III and immunoglobulin type C domains. Neuron 1989; 2(4):1351–1361.

    Article  PubMed  CAS  Google Scholar 

  18. Furley AJ, Morton SB, Manalo D et al. The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell 1990; 61(1):157–170.

    Article  PubMed  CAS  Google Scholar 

  19. Volkmer H, Leuschner R, Zacharias U et al. Neurofascin induces neurites by heterophilic interactions with axonal NrCAM while NrCAM requires F11 on the axonal surface to extend neurites. J Cell Biol 1996; 135(4):1059–1069.

    Article  PubMed  CAS  Google Scholar 

  20. Kunz S, Spirig M, Ginsburg C et al. Neurite fasciculation mediated by complexes of axonin-1 and Ng cell adhesion molecule. J Cell Biol 1998; 143(6):1673–1690.

    Article  PubMed  CAS  Google Scholar 

  21. De Angelis E, MacFarlane J, Du JS et al. Pathological missense mutations of neural cell adhesion molecule L1 affect homophilic and heterophilic binding activities. EMBO J 1999; 18(17):4744–4753.

    Article  PubMed  Google Scholar 

  22. De Angelis E, Watkins A, Schafer M et al. Disease-associated mutations in L1 CAM interfere with ligand interactions and cell-surface expression. Hum Mol Genet 2002; 11(1):1–12.

    Article  PubMed  Google Scholar 

  23. Kasper C, Rasmussen H, Kastrup JS et al. Structural basis of cell-cell adhesion by NCAM. Nat Struct Biol 2000; 7(5):389–393.

    Article  PubMed  CAS  Google Scholar 

  24. Freigang J, Proba K, Leder L et al. The crystal structure of the ligand binding module of axonin-1/TAG-1 suggests a zipper mechanism for neural cell adhesion. Cell 2000; 101(4):425–433.

    Article  PubMed  CAS  Google Scholar 

  25. Pipes GC, Lin Q, Riley SE et al. The Beat generation: A multigene family encoding IgSF proteins related to the Beat axon guidance molecule in Drosophila. Development 2001; 128(22): 4545–4552.

    PubMed  CAS  Google Scholar 

  26. Aurelio O, Hall DH, Hobert O. Immunoglobulin-domain proteins required for maintenance of ventral nerve cord organization. Science 2002; 295(5555):686–690.

    Article  PubMed  CAS  Google Scholar 

  27. Fambrough D, Goodman CS. The Drosophila beaten path gene encodes a novel secreted protein that regulates defasciculation at motor axon choice points. Cell 1996; 87(6):1049–1058.

    Article  PubMed  CAS  Google Scholar 

  28. Doherty P, Walsh FS. CAM-FGF receptor interactions: A model for axonal growth. Mol Cell Neurosci 1996; 8(2–3):99–111.

    Article  CAS  Google Scholar 

  29. Doherty P, Williams G, Williams EJ. CAMs and axonal growth: A critical evaluation of the role of calcium and the MAPK cascade. Mol Cell Neurosci 2000; 16(4):283–295.

    Article  PubMed  CAS  Google Scholar 

  30. Schmid RS, Graff RD, Schaller MD et al. NCAM stimulates the Ras-MAPK pathway and CREB phosphorylation in neuronal cells. J Neurobiol 1999; 38(4):542–558.

    Article  PubMed  CAS  Google Scholar 

  31. Kolkova K, Novitskaya V, Pedersen N et al. Neural cell adhesion molecule-stimulated neurite out-growth depends on activation of protein kinase C and the ras-mitogen-activated protein kinase pathway. J Neurosci 2000; 20(6):2238–2246.

    PubMed  CAS  Google Scholar 

  32. Schmid RS, Pruitt WM, Maness PF. A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis. J Neurosci 2000; 20(11):4177–4188.

    PubMed  CAS  Google Scholar 

  33. Schaefer AW, Kamiguchi H, Wong EV et al. Activation of the MAPK signal cascade by the neural cell adhesion molecule L1 requires L1 internalization. J Biol Chem 1999; 274(53):37965–37973.

    Article  PubMed  CAS  Google Scholar 

  34. Perron JC, Bixby JL. Distinct neurite outgrowth signaling pathways converge on ERK activation. Mol Cell Neurosci 1999; 13(5):362–378.

    Article  PubMed  CAS  Google Scholar 

  35. Nakai Y, Kamiguchi H. Migration of nerve growth cones requires detergent-resistant membranes in a spatially defined and substrate-dependent manner. J Cell Biol 2002; 159(6):1097–1108.

    Article  PubMed  CAS  Google Scholar 

  36. Niethammer P, Delling M, Sytnyk V et al. Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J Cell Biol 2002; 157(3):521–532.

    Article  PubMed  CAS  Google Scholar 

  37. Lin CH, Forscher P. Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron 1995; 14(4):763–771.

    Article  PubMed  CAS  Google Scholar 

  38. Dent EW, Gettler FB. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 2003; 40(2):209–227.

    Article  PubMed  CAS  Google Scholar 

  39. Suter DM, Forscher P. Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J Neurobiol 2000; 44(2):97–113.

    Article  PubMed  CAS  Google Scholar 

  40. Mitchison T, Kirschner M. Cytoskeletal dynamics and nerve growth. Neuron 1988; 1(9):761–772.

    Article  PubMed  CAS  Google Scholar 

  41. Jay DG. The clutch hypothesis revisited: Ascribing the roles of actin-associated proteins in filopodial protrusion in the nerve growth cone. J Neurobiol 2000; 44(2):114–125.

    Article  PubMed  CAS  Google Scholar 

  42. Nishimura K, Yoshihara F, Tojima T et al. L1-dependent neuritogenesis involves ankyrinB that mediates L1-CAM coupling with retrograde actin flow. J Cell Biol 2003; 163(5):1077–1088.

    Article  PubMed  CAS  Google Scholar 

  43. Lauffenburger DA, Horwitz AF. Cell migration: A physically integrated molecular process. Cell 1996; 84(3):359–369.

    Article  PubMed  CAS  Google Scholar 

  44. Sheetz MP, Baumrind NL, Wayne DB et al. Concentration of membrane antigens by forward transport and trapping in neuronal growth cones. Cell 1990; 61(2):231–241.

    Article  PubMed  CAS  Google Scholar 

  45. Schmidt CE, Dai J, Lauffenburger DA et al. Integrin-cytoskeletal interactions in neuronal growth cones. J Neurosci 1995; 15(5 Pt 1):3400–3407.

    PubMed  CAS  Google Scholar 

  46. Grabham PW, Foley M, Umeojiako A et al. Nerve growth factor stimulates coupling of beta1 integrin to distinct transport mechanisms in the filopodia of growth cones. J Cell Sci 2000; 113(Pt 17):3003–3012.

    PubMed  CAS  Google Scholar 

  47. Kamiguchi H, Long KE, Pendergast M et al. The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway. J Neurosci 1998; 18(14):5311–5321.

    PubMed  CAS  Google Scholar 

  48. Kamiguchi H, Lemmon V. Recycling of the cell adhesion molecule L1 in axonal growth cones. J Neurosci 2000; 20(10):3676–3686.

    PubMed  CAS  Google Scholar 

  49. Kamiguchi H, Yoshihara F. The role of endocytic L1 trafficking in polarized adhesion and migration of nerve growth cones. J Neurosci 2001: 21(23):9194–9203.

    PubMed  CAS  Google Scholar 

  50. Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science 1996; 274(5290):1123–1133.

    Article  PubMed  CAS  Google Scholar 

  51. Stoeckli ET, Sonderegger P, Pollerberg GE et al. Interference with axonin-1 and NrCAM interactions unmasks a floor-plate activity inhibitory for commissural axons. Neuron 1997; 18(2):209–221.

    Article  PubMed  CAS  Google Scholar 

  52. Fitzli D, Stoeckli ET, Kunz S et al. A direct interaction of axonin-1 with NgCAM-related cell adhesion molecule (NrCAM) results in guidance, but not growth of commissural axons. J Cell Biol 2000; 149(4):951–968.

    Article  PubMed  CAS  Google Scholar 

  53. Perrin FE, Rathjen FG, Stoeckli ET. Distinct subpopulations of sensory afferents require F11 or axonin-1 for growth to their target layers within the spinal cord of the chick. Neuron 2001; 30(3):707–723.

    Article  PubMed  CAS  Google Scholar 

  54. Castellani V, Chedotal A, Schachner M et al. Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron 2000; 27(2):237–249.

    Article  PubMed  CAS  Google Scholar 

  55. Castellani V, De Angelis E, Kenwrick S et al. Cis and trans interactions of L1 with neuropilin-1 control axonal responses to semaphorin 3A. EMBO J 2002; 21(23):6348–6357.

    Article  PubMed  CAS  Google Scholar 

  56. Hopker VH, Shewan D, Tessier-Lavigne M et al. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 1999; 401(6748):69–73.

    Article  PubMed  CAS  Google Scholar 

  57. Rhee J, Mahfooz NS, Arregui C et al. Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nat Cell Biol 2002; 4(10):798–805.

    Article  PubMed  CAS  Google Scholar 

  58. Rosenthal A, Jouet M, Kenwrick S. Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus [published erratum appears in Nat Genet 1993 Mar;3(3):372]. Nat Genet 1992; 2(2):107–112.

    Article  PubMed  CAS  Google Scholar 

  59. Van Camp G, Vits L, Coucke P et al. A duplication in the L1CAM gene associated with X-linked hydrocephalus. Nat Genet 1993; 4(4):421–425.

    Article  PubMed  CAS  Google Scholar 

  60. Dahme M, Bartsch U, Martini R et al. Disruption of the mouse L1 gene L1 gene leads to malformations of the nervous system. Nat Genet 1997; 17(3):346–349.

    Article  PubMed  CAS  Google Scholar 

  61. Cohen NR, Taylor JS, Scott LB et al. Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr Biol 1998; 8(1):26–33.

    Article  PubMed  CAS  Google Scholar 

  62. Fransen E, D’Hooge R, Van Camp G et al. L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Hum Mol Genet 1998; 7(6):999–1009.

    Article  PubMed  CAS  Google Scholar 

  63. Demyanenko GP, Tsai AY, Maness PF. Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. J Neurosci 1999; 19(12):4907–4920.

    PubMed  CAS  Google Scholar 

  64. Kamiguchi H, Hlavin ML, Yamasaki M et al. Adhesion molecules and inhrited diseases of the human nervous system. Annu Rev Neurosci 1998; 21:97–125.

    Article  PubMed  CAS  Google Scholar 

  65. Demyanenko GP, Maness PF. The L1 cell adhesion molecule is essential for topographic mapping of retinal axons. J Neurosci 2003; 23(2):530–538.

    PubMed  CAS  Google Scholar 

  66. Wiencken-Barger AE, Mavity-Hudson J, Bartsch U et al. Casagrande VA. The role of L1 in axon pathfinding and fasciulation. Cereb Cortex 2004; 14(2):121–131.

    Article  PubMed  CAS  Google Scholar 

  67. Itoh K, Cheng L, Kamei Y et al. Brain development in mice lacking L1-L1 homophilic adhesion. J Cell Biol 2004; 165(1):145–154.

    Article  PubMed  CAS  Google Scholar 

  68. Yamasaki M, Thompson P, Lemmon V. CRASH syndrome: Mutations in L1CAM correlate with severity of the disease. Neuropediatrics 1997; 28(3):175–178.

    Article  PubMed  CAS  Google Scholar 

  69. Tomasiewicz H, Ono K, Yee D et al. Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron 1993; 11(6):1163–1174.

    Article  PubMed  CAS  Google Scholar 

  70. Cremer H, Lange R, Christoph A et al. Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 1994; 367(6462):455–459.

    Article  PubMed  CAS  Google Scholar 

  71. Cremer H, Chazal G, Goridis C et al. NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol Cell Neurosci 1997; 8(5):323–335.

    Article  PubMed  CAS  Google Scholar 

  72. Berglund EO, Murai KK, Fredette B et al. Ataxia and abnormal cerebellar microorganization in mice with ablated contactin gene expression. Neuron 1999; 24(3):739–750.

    Article  PubMed  CAS  Google Scholar 

  73. Montag-Sallaz M, Schachner M, Montag D. Misguided axonal projections, neural cell adhesion molecule 180 mRNA upregulation, and altered behavior in mice deficient for the close homolog of L1. Mol Cell Biol 2002; 22(22):7967–7981.

    Article  PubMed  CAS  Google Scholar 

  74. Demyanenko GP, Schachner M, Anton E et al. Close homolog of L1 modulates area-specific neuronal positioning and dendrite orientation in the cerebral cortex. Neuron 2004; 44(3):423–437.

    Article  PubMed  CAS  Google Scholar 

  75. Sakurai T, Lustig M, Babiarz J et al. Overlapping functions of the cell adhesion molecules Nr-CAM and L1 in cerebellar granule cell development. J Cell Biol 2001; 154(6):1259–1273.

    Article  PubMed  CAS  Google Scholar 

  76. Ango F, di Cristo G, Higashiyama H et al. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell 2004; 119(2):257–272.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Kamiguchi, H. (2007). The Role of Cell Adhesion Molecules in Axon Growth and Guidance. In: Bagnard, D. (eds) Axon Growth and Guidance. Advances in Experimental Medicine and Biology, vol 621. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76715-4_7

Download citation

Publish with us

Policies and ethics