The Role of Cell Adhesion Molecules in Axon Growth and Guidance

  • Hiroyuki Kamiguchi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 621)


During development, axons elongate along the correct path toward their final targets. Growing axons maintain adhesive interactions with specific environmental cues via cell adhesion molecules (CAMs). The axon-environment adhesion must be dynamically controlled, both temporally and spatially, to enable the axons to navigate and migrate correctly. In this way, CAMs play a central role in mediating contact-dependent regulation of motile behavior of the axons. This chapter examines the mechanisms underlying how CAMs control axon growth and guidance, with a particular focus on intracellular signaling, trafficking, and interactions with the actin cytoskeleton.


Focal Adhesion Kinase Growth Cone Fibroblast Growth Factor Receptor Neural Cell Adhesion Molecule Axon Guidance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rutishauser U, Gall WE, Edelman GM. Adhesion among neural cells of the chick embryo. IV. Role of the cell surface molecule CAM in the formation of neurite bundles in cultures of spinal ganglia. J Cell Biol 1978; 79(2 Pt 1):382–393.PubMedCrossRefGoogle Scholar
  2. 2.
    Harrelson AL, Goodman CS. Growth cone guidance in insects: Fasciclin II is a member of the immunoglobulin superfamily. Science 1988; 242(4879):700–708.PubMedCrossRefGoogle Scholar
  3. 3.
    Fischer G, Kunemund V, Schachner M. Neurite outgrowth patterns in cerebellar microexplant cultures are affected by antibodies to the cell surface glycoprotein L1. J Neurosci 1986; 6(2):605–612.PubMedGoogle Scholar
  4. 4.
    Grumet M, Edelman GM. Neuron-glia cell adhesion molecule interacts with neurons and astroglia via different binding mechanisms. J Cell Biol 1988; 106(2):487–503.PubMedCrossRefGoogle Scholar
  5. 5.
    Lemmon V, Farr KL, Lagenaur C. L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron 1989; 2(6):1597–1603.PubMedCrossRefGoogle Scholar
  6. 6.
    Bozyczko D, Horwitz AF. The participation of a putative cell surface receptor for laminin and fibronectin in peripheral neurite extension. J Neurosci 1986; 6(5):1241–1251.PubMedGoogle Scholar
  7. 7.
    Tomaselli KJ, Reichardt LF, Bixby JL. Distinct molecular interactions mediate neuronal process outgrowth on nonneuronal cell surfaces and extracellular matrices. J Cell Biol 1986; 103(6 Pt 2):2659–2672.PubMedCrossRefGoogle Scholar
  8. 8.
    Matsunaga M, Hatta K, Nagafuchi A et al. Guidance of optic nerve fibres by N-cadherin adhesion molecules. Nature 1988; 334(6177):62–64.PubMedCrossRefGoogle Scholar
  9. 9.
    Bixby JL, Zhang R. Purified N-cadherin is a potent substrate for the rapid induction of neurite outgrowth. J Cell Biol 1990; 110(4):1253–1260.PubMedCrossRefGoogle Scholar
  10. 10.
    Dodd J, Jessell TM. Axon guidance and the patterning of neuronal projections in vertebrates. Science 1988; 242(4879):692–699.PubMedCrossRefGoogle Scholar
  11. 11.
    Kamiguchi H, Lemmon V. IgCAMs: Bidirectional signals underlying neurite growth. Curr Opin Cell Biol 2000; 12(5):598–605.PubMedCrossRefGoogle Scholar
  12. 12.
    Cunningham BA, Hemperly JJ, Murray BA et al. Neural cell adhesion molecule: Structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 1987; 236(4803):799–806.PubMedCrossRefGoogle Scholar
  13. 13.
    Rutishauser U. Polysialic acid and the regulation of cell interactions. Curr Opin Cell Biol 1996; 8(5):679–684.PubMedCrossRefGoogle Scholar
  14. 14.
    Tang J, Rutishauser U, Landmesser L. Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron 1994; 13(2):405–414.PubMedCrossRefGoogle Scholar
  15. 15.
    Moos M, Tacke R, Scherer H et al. Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 1988; 334(6184):701–703.PubMedCrossRefGoogle Scholar
  16. 16.
    Takeda Y, Asou H, Murakami Y et al. A nonneuronal isoform of cell adhesion molecule L1: Tissue-specific expression and functional analysis. J Neurochem 1996; 66(6):2338–2349.PubMedCrossRefGoogle Scholar
  17. 17.
    Brummendorf T, Wolff JM, Frank R et al. Neural cell recognition molecule F11: Homology with fibronectin type III and immunoglobulin type C domains. Neuron 1989; 2(4):1351–1361.PubMedCrossRefGoogle Scholar
  18. 18.
    Furley AJ, Morton SB, Manalo D et al. The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell 1990; 61(1):157–170.PubMedCrossRefGoogle Scholar
  19. 19.
    Volkmer H, Leuschner R, Zacharias U et al. Neurofascin induces neurites by heterophilic interactions with axonal NrCAM while NrCAM requires F11 on the axonal surface to extend neurites. J Cell Biol 1996; 135(4):1059–1069.PubMedCrossRefGoogle Scholar
  20. 20.
    Kunz S, Spirig M, Ginsburg C et al. Neurite fasciculation mediated by complexes of axonin-1 and Ng cell adhesion molecule. J Cell Biol 1998; 143(6):1673–1690.PubMedCrossRefGoogle Scholar
  21. 21.
    De Angelis E, MacFarlane J, Du JS et al. Pathological missense mutations of neural cell adhesion molecule L1 affect homophilic and heterophilic binding activities. EMBO J 1999; 18(17):4744–4753.PubMedCrossRefGoogle Scholar
  22. 22.
    De Angelis E, Watkins A, Schafer M et al. Disease-associated mutations in L1 CAM interfere with ligand interactions and cell-surface expression. Hum Mol Genet 2002; 11(1):1–12.PubMedCrossRefGoogle Scholar
  23. 23.
    Kasper C, Rasmussen H, Kastrup JS et al. Structural basis of cell-cell adhesion by NCAM. Nat Struct Biol 2000; 7(5):389–393.PubMedCrossRefGoogle Scholar
  24. 24.
    Freigang J, Proba K, Leder L et al. The crystal structure of the ligand binding module of axonin-1/TAG-1 suggests a zipper mechanism for neural cell adhesion. Cell 2000; 101(4):425–433.PubMedCrossRefGoogle Scholar
  25. 25.
    Pipes GC, Lin Q, Riley SE et al. The Beat generation: A multigene family encoding IgSF proteins related to the Beat axon guidance molecule in Drosophila. Development 2001; 128(22): 4545–4552.PubMedGoogle Scholar
  26. 26.
    Aurelio O, Hall DH, Hobert O. Immunoglobulin-domain proteins required for maintenance of ventral nerve cord organization. Science 2002; 295(5555):686–690.PubMedCrossRefGoogle Scholar
  27. 27.
    Fambrough D, Goodman CS. The Drosophila beaten path gene encodes a novel secreted protein that regulates defasciculation at motor axon choice points. Cell 1996; 87(6):1049–1058.PubMedCrossRefGoogle Scholar
  28. 28.
    Doherty P, Walsh FS. CAM-FGF receptor interactions: A model for axonal growth. Mol Cell Neurosci 1996; 8(2–3):99–111.CrossRefGoogle Scholar
  29. 29.
    Doherty P, Williams G, Williams EJ. CAMs and axonal growth: A critical evaluation of the role of calcium and the MAPK cascade. Mol Cell Neurosci 2000; 16(4):283–295.PubMedCrossRefGoogle Scholar
  30. 30.
    Schmid RS, Graff RD, Schaller MD et al. NCAM stimulates the Ras-MAPK pathway and CREB phosphorylation in neuronal cells. J Neurobiol 1999; 38(4):542–558.PubMedCrossRefGoogle Scholar
  31. 31.
    Kolkova K, Novitskaya V, Pedersen N et al. Neural cell adhesion molecule-stimulated neurite out-growth depends on activation of protein kinase C and the ras-mitogen-activated protein kinase pathway. J Neurosci 2000; 20(6):2238–2246.PubMedGoogle Scholar
  32. 32.
    Schmid RS, Pruitt WM, Maness PF. A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis. J Neurosci 2000; 20(11):4177–4188.PubMedGoogle Scholar
  33. 33.
    Schaefer AW, Kamiguchi H, Wong EV et al. Activation of the MAPK signal cascade by the neural cell adhesion molecule L1 requires L1 internalization. J Biol Chem 1999; 274(53):37965–37973.PubMedCrossRefGoogle Scholar
  34. 34.
    Perron JC, Bixby JL. Distinct neurite outgrowth signaling pathways converge on ERK activation. Mol Cell Neurosci 1999; 13(5):362–378.PubMedCrossRefGoogle Scholar
  35. 35.
    Nakai Y, Kamiguchi H. Migration of nerve growth cones requires detergent-resistant membranes in a spatially defined and substrate-dependent manner. J Cell Biol 2002; 159(6):1097–1108.PubMedCrossRefGoogle Scholar
  36. 36.
    Niethammer P, Delling M, Sytnyk V et al. Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J Cell Biol 2002; 157(3):521–532.PubMedCrossRefGoogle Scholar
  37. 37.
    Lin CH, Forscher P. Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron 1995; 14(4):763–771.PubMedCrossRefGoogle Scholar
  38. 38.
    Dent EW, Gettler FB. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 2003; 40(2):209–227.PubMedCrossRefGoogle Scholar
  39. 39.
    Suter DM, Forscher P. Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J Neurobiol 2000; 44(2):97–113.PubMedCrossRefGoogle Scholar
  40. 40.
    Mitchison T, Kirschner M. Cytoskeletal dynamics and nerve growth. Neuron 1988; 1(9):761–772.PubMedCrossRefGoogle Scholar
  41. 41.
    Jay DG. The clutch hypothesis revisited: Ascribing the roles of actin-associated proteins in filopodial protrusion in the nerve growth cone. J Neurobiol 2000; 44(2):114–125.PubMedCrossRefGoogle Scholar
  42. 42.
    Nishimura K, Yoshihara F, Tojima T et al. L1-dependent neuritogenesis involves ankyrinB that mediates L1-CAM coupling with retrograde actin flow. J Cell Biol 2003; 163(5):1077–1088.PubMedCrossRefGoogle Scholar
  43. 43.
    Lauffenburger DA, Horwitz AF. Cell migration: A physically integrated molecular process. Cell 1996; 84(3):359–369.PubMedCrossRefGoogle Scholar
  44. 44.
    Sheetz MP, Baumrind NL, Wayne DB et al. Concentration of membrane antigens by forward transport and trapping in neuronal growth cones. Cell 1990; 61(2):231–241.PubMedCrossRefGoogle Scholar
  45. 45.
    Schmidt CE, Dai J, Lauffenburger DA et al. Integrin-cytoskeletal interactions in neuronal growth cones. J Neurosci 1995; 15(5 Pt 1):3400–3407.PubMedGoogle Scholar
  46. 46.
    Grabham PW, Foley M, Umeojiako A et al. Nerve growth factor stimulates coupling of beta1 integrin to distinct transport mechanisms in the filopodia of growth cones. J Cell Sci 2000; 113(Pt 17):3003–3012.PubMedGoogle Scholar
  47. 47.
    Kamiguchi H, Long KE, Pendergast M et al. The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway. J Neurosci 1998; 18(14):5311–5321.PubMedGoogle Scholar
  48. 48.
    Kamiguchi H, Lemmon V. Recycling of the cell adhesion molecule L1 in axonal growth cones. J Neurosci 2000; 20(10):3676–3686.PubMedGoogle Scholar
  49. 49.
    Kamiguchi H, Yoshihara F. The role of endocytic L1 trafficking in polarized adhesion and migration of nerve growth cones. J Neurosci 2001: 21(23):9194–9203.PubMedGoogle Scholar
  50. 50.
    Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science 1996; 274(5290):1123–1133.PubMedCrossRefGoogle Scholar
  51. 51.
    Stoeckli ET, Sonderegger P, Pollerberg GE et al. Interference with axonin-1 and NrCAM interactions unmasks a floor-plate activity inhibitory for commissural axons. Neuron 1997; 18(2):209–221.PubMedCrossRefGoogle Scholar
  52. 52.
    Fitzli D, Stoeckli ET, Kunz S et al. A direct interaction of axonin-1 with NgCAM-related cell adhesion molecule (NrCAM) results in guidance, but not growth of commissural axons. J Cell Biol 2000; 149(4):951–968.PubMedCrossRefGoogle Scholar
  53. 53.
    Perrin FE, Rathjen FG, Stoeckli ET. Distinct subpopulations of sensory afferents require F11 or axonin-1 for growth to their target layers within the spinal cord of the chick. Neuron 2001; 30(3):707–723.PubMedCrossRefGoogle Scholar
  54. 54.
    Castellani V, Chedotal A, Schachner M et al. Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron 2000; 27(2):237–249.PubMedCrossRefGoogle Scholar
  55. 55.
    Castellani V, De Angelis E, Kenwrick S et al. Cis and trans interactions of L1 with neuropilin-1 control axonal responses to semaphorin 3A. EMBO J 2002; 21(23):6348–6357.PubMedCrossRefGoogle Scholar
  56. 56.
    Hopker VH, Shewan D, Tessier-Lavigne M et al. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 1999; 401(6748):69–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Rhee J, Mahfooz NS, Arregui C et al. Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nat Cell Biol 2002; 4(10):798–805.PubMedCrossRefGoogle Scholar
  58. 58.
    Rosenthal A, Jouet M, Kenwrick S. Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus [published erratum appears in Nat Genet 1993 Mar;3(3):372]. Nat Genet 1992; 2(2):107–112.PubMedCrossRefGoogle Scholar
  59. 59.
    Van Camp G, Vits L, Coucke P et al. A duplication in the L1CAM gene associated with X-linked hydrocephalus. Nat Genet 1993; 4(4):421–425.PubMedCrossRefGoogle Scholar
  60. 60.
    Dahme M, Bartsch U, Martini R et al. Disruption of the mouse L1 gene L1 gene leads to malformations of the nervous system. Nat Genet 1997; 17(3):346–349.PubMedCrossRefGoogle Scholar
  61. 61.
    Cohen NR, Taylor JS, Scott LB et al. Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr Biol 1998; 8(1):26–33.PubMedCrossRefGoogle Scholar
  62. 62.
    Fransen E, D’Hooge R, Van Camp G et al. L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Hum Mol Genet 1998; 7(6):999–1009.PubMedCrossRefGoogle Scholar
  63. 63.
    Demyanenko GP, Tsai AY, Maness PF. Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. J Neurosci 1999; 19(12):4907–4920.PubMedGoogle Scholar
  64. 64.
    Kamiguchi H, Hlavin ML, Yamasaki M et al. Adhesion molecules and inhrited diseases of the human nervous system. Annu Rev Neurosci 1998; 21:97–125.PubMedCrossRefGoogle Scholar
  65. 65.
    Demyanenko GP, Maness PF. The L1 cell adhesion molecule is essential for topographic mapping of retinal axons. J Neurosci 2003; 23(2):530–538.PubMedGoogle Scholar
  66. 66.
    Wiencken-Barger AE, Mavity-Hudson J, Bartsch U et al. Casagrande VA. The role of L1 in axon pathfinding and fasciulation. Cereb Cortex 2004; 14(2):121–131.PubMedCrossRefGoogle Scholar
  67. 67.
    Itoh K, Cheng L, Kamei Y et al. Brain development in mice lacking L1-L1 homophilic adhesion. J Cell Biol 2004; 165(1):145–154.PubMedCrossRefGoogle Scholar
  68. 68.
    Yamasaki M, Thompson P, Lemmon V. CRASH syndrome: Mutations in L1CAM correlate with severity of the disease. Neuropediatrics 1997; 28(3):175–178.PubMedCrossRefGoogle Scholar
  69. 69.
    Tomasiewicz H, Ono K, Yee D et al. Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron 1993; 11(6):1163–1174.PubMedCrossRefGoogle Scholar
  70. 70.
    Cremer H, Lange R, Christoph A et al. Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 1994; 367(6462):455–459.PubMedCrossRefGoogle Scholar
  71. 71.
    Cremer H, Chazal G, Goridis C et al. NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol Cell Neurosci 1997; 8(5):323–335.PubMedCrossRefGoogle Scholar
  72. 72.
    Berglund EO, Murai KK, Fredette B et al. Ataxia and abnormal cerebellar microorganization in mice with ablated contactin gene expression. Neuron 1999; 24(3):739–750.PubMedCrossRefGoogle Scholar
  73. 73.
    Montag-Sallaz M, Schachner M, Montag D. Misguided axonal projections, neural cell adhesion molecule 180 mRNA upregulation, and altered behavior in mice deficient for the close homolog of L1. Mol Cell Biol 2002; 22(22):7967–7981.PubMedCrossRefGoogle Scholar
  74. 74.
    Demyanenko GP, Schachner M, Anton E et al. Close homolog of L1 modulates area-specific neuronal positioning and dendrite orientation in the cerebral cortex. Neuron 2004; 44(3):423–437.PubMedCrossRefGoogle Scholar
  75. 75.
    Sakurai T, Lustig M, Babiarz J et al. Overlapping functions of the cell adhesion molecules Nr-CAM and L1 in cerebellar granule cell development. J Cell Biol 2001; 154(6):1259–1273.PubMedCrossRefGoogle Scholar
  76. 76.
    Ango F, di Cristo G, Higashiyama H et al. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell 2004; 119(2):257–272.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Hiroyuki Kamiguchi
    • 1
  1. 1.Laboratory for Neuronal Growth MechanismsRIKEN Brain Science InstituteWako, SaitamaJapan

Personalised recommendations