Skip to main content

Magnetic Nanoparticle Assisted Molecular MR Imaging

  • Chapter
Bio-Applications of Nanoparticles

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 620))

Abstract

Magnetic nanoparticles exhibit unique nanoscale properties of superparamagnetism and have the potential to be utilized as excellent probes for magnetic resonance imaging (MRI). Especially, clinically benign iron oxide nanoparticles provide good MR probing capability and some of them are currently available for clinical applications. However, limited magnetic property and inability to escape from reticuloendothelial system (RES) of the currently used nanoparticles impede their further advancements and therefore it is necessary to develop advanced magnetic nanoparticle probes for next-generation molecular MR imaging. In this chapter, we overview recent progresses on the development of magnetic nanoparticle probes for molecular MR imaging. Utilization of these nanoparticle probes for both in vitro and in vivo molecular MR imaging will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belcher AM, Wu XH, Christensen RJ et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 1996; 381:56–58.

    Article  CAS  Google Scholar 

  2. Aizenberg J, Tkachenko A, Weiner S et al. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 2001; 412:819–822.

    Article  PubMed  CAS  Google Scholar 

  3. Bazylinski DA, Frankel RB. Magnetosome formation in prokaryotes. Nat Rev Microbiol 2004; 2:217–230.

    Article  PubMed  CAS  Google Scholar 

  4. Weissleder R, Mahmood U. Molecular imaging. Radiology 2001; 219:316–333.

    PubMed  CAS  Google Scholar 

  5. Michalet X, Pinaud FF, Bentolila LA et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005; 307:538–544.

    Article  PubMed  CAS  Google Scholar 

  6. Bruchez Jr M, Moronne M, Gin P et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281:2013–2016.

    Article  PubMed  CAS  Google Scholar 

  7. Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281:2016–2018.

    Article  PubMed  CAS  Google Scholar 

  8. LaConte L, Nitin N, Bao G. Magnetic nanoparticle probes. Nanotoday 2005; 8:32–38.

    Google Scholar 

  9. Wu X, Liu H, Liu J et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21:41–46.

    Article  PubMed  CAS  Google Scholar 

  10. Mitchell DG. MRI Principles. 1st ed. Philadelphia: W. B. Saunders Company, 1999.

    Google Scholar 

  11. Massoud TF, Gambhir SS. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Gene, Dev 2003; 17:545–580.

    Article  CAS  Google Scholar 

  12. Bulte JWM, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004; 17:484–499.

    Article  PubMed  CAS  Google Scholar 

  13. Wang YXJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: Physicochemical characteristics and applications in MR imaging. Eur Radiol 2001; 11:2319–2331.

    Article  PubMed  CAS  Google Scholar 

  14. Koenig SH, Kellar KE. Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med 1995; 34:227–233.

    Article  PubMed  CAS  Google Scholar 

  15. Jun YW, Huh YM, Choi JS et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 2005; 127:5732–5733.

    Article  PubMed  CAS  Google Scholar 

  16. Hamm B, Staks T, Taupitz M et al. Contrast-enhanced MR imaging of liver and spleen: First experience in humans with a new superparamagnetic iron oxide. J Magn Reson Imaging 1994; 4:659–668.

    Article  PubMed  CAS  Google Scholar 

  17. Reimer P, Tombach B. Hepatic MRI with SPIO: Detection and characterization of focal liver lesions. Eur Radiol 1998; 8:1198–1204.

    Article  PubMed  CAS  Google Scholar 

  18. McLachlan SJ, Morris MR, Lucas MA et al. J Magn Reson Imaging 1994; 4:301–307.

    Article  PubMed  CAS  Google Scholar 

  19. Weissleder R. Radiology 1994; 193:593–595.

    PubMed  CAS  Google Scholar 

  20. Bengele HH, Palmacci S, Rogers J et al. Magn Reson Imaging 1994; 12:433–442.

    Article  PubMed  CAS  Google Scholar 

  21. Suwa T, Ozawa S, Ueda M et al. Magnetic resonance imaging of esophageal squamous cell carcinoma using magnetite particles coated with anti-epidermal growth factor receptor antibody. Int J Cancer 1998; 75:626–634.

    Article  PubMed  CAS  Google Scholar 

  22. Kresse M, Wagner S, Pfefferer D et al. Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn Reson Med 1998; 40:236–242.

    Article  PubMed  CAS  Google Scholar 

  23. Krieg FM, Andres RY, Winterhalter KH. Superparamagnetically labelled neutrophils as potential abscess-specific contrast agent for MRI. Magn Reson Imaging 1995; 13:393–400.

    Article  PubMed  CAS  Google Scholar 

  24. Weissleder R, Lee AS, Khaw BA et al. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 1992; 182:381–385.

    PubMed  CAS  Google Scholar 

  25. Kraitchman DL, Heldman AW, Atalar E et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 2003; 107:2290–2293.

    Article  PubMed  Google Scholar 

  26. Kang HW, Josephson L, Petrovsky A et al. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconj Chem 2002; 13:122–127.

    Article  CAS  Google Scholar 

  27. Zhao M, Beauregard DA, Loizou L et al. Noninvasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 2001; 7:1241–1244.

    Article  PubMed  CAS  Google Scholar 

  28. Högemann D, Josephson L, Weissleder R et al. Improvement of MRI probes to allow efficient detection of gene expression. Bioconj Chem 2000; 11:941–946.

    Article  Google Scholar 

  29. Weissleder R, Moore A, Mahmood U et al. In vivo magnetic resonance imaging of transgene expression. Nat Med 2000; 6:351–355.

    Article  PubMed  CAS  Google Scholar 

  30. Tiefenauer LX, Kühne G, Andres RY. Antibody-magnetite nanoparticles: In vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging. Bioconj Chem 1993; 4:347–352.

    Article  CAS  Google Scholar 

  31. Artemov D, Mori N, Okollie B et al. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 2003; 49:403–408.

    Article  PubMed  CAS  Google Scholar 

  32. Tiefenauer LX, Tschirky A, Iwhne G et al. In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn Reson Imaging 1996; 14:391–402.

    Article  PubMed  CAS  Google Scholar 

  33. Huh YM, Jun YW, Song HT et al. In vivo magnetic resonance detection, of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 2005; 127:12387–12391.

    Article  PubMed  CAS  Google Scholar 

  34. Sjögren CE, Johansson C, Naevestad A et al. Crystal size and properties of superparamagnetic iron oxide (SPIO) particles. Magn Reson Imaging 1997; 15:55–67.

    Article  PubMed  Google Scholar 

  35. Hahn PF, Stark DD, Lewis JM et al. First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imaging. Radiology 1990; 175:695–700.

    PubMed  CAS  Google Scholar 

  36. Bach-Gansmo T. Ferrimagnetic susceptibility contrast agents. Acta Radiol 1993; 387:1–30.

    CAS  Google Scholar 

  37. Weissleder R, Elizondo G, Josephson L et al. Experimental lymph node metastases Enhanced detection with MR lymphography. Radiology 1989; 171:835–839.

    PubMed  CAS  Google Scholar 

  38. Weissleder R, Stark DD, Engelastad BL et al. Superparamagnetic iron oxide: Pharmacokinetics and toxicity. Am J Roentgenol 1989; 152:167–173.

    CAS  Google Scholar 

  39. Reimer P, Rummeny EJ, Daldrup HE et al. Clinical results with Resovist: A phase 2 clinical trial. Radiology 1995; 195:489–496.

    PubMed  CAS  Google Scholar 

  40. Grubnic S, Padhani AR, Revell PB et al. Comparative efficacy of and sequence choice for two oral contrast agents used during MR imaging. Am J Roentgenol 1999; 173:173–178.

    CAS  Google Scholar 

  41. Bartolozzi C, Lencioni R, Donati F et al. Abdominal MR: Liver and pancreas. Eur Radiol 1999; 9:1496–1512.

    Article  PubMed  CAS  Google Scholar 

  42. Moore A, Marecos E, Bogdanov A et al. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 2000; 214:568–574.

    PubMed  CAS  Google Scholar 

  43. Bengele HH, Palmacci S, Rogers J et al. Biodistribution of an ultrasmall superparamagnetic iron oxide colloid, BMS 180549, by different routes of administration. Magn Reson Imaging 1994; 12:433–442.

    Article  PubMed  CAS  Google Scholar 

  44. Shen T, Weissleder R, Papisov M et al. Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties. Magn Reson Med 1993; 29:599–604.

    Article  PubMed  CAS  Google Scholar 

  45. Ford GC, Harrison PM, Rice DW et al. Ferritin: Design and formation of an iron-storage molecule. Philos Trans R London Ser B 1984; 304:551–565.

    Article  CAS  Google Scholar 

  46. Meldrum FC, Heywood BR, Mann S. Magnetoferritin: In vitro synthesis of a novel magnetic protein. Science 1992; 257:522–523.

    Article  PubMed  CAS  Google Scholar 

  47. Bulte JWM, Douglas T, Mann S et al. Magnetoferritin: Characterization of a novel superparamagnetic MR contrast agent. J Magn Reson Imaging 1994; 4:497–505.

    Article  PubMed  CAS  Google Scholar 

  48. Meldrum FC, Wade VJ, Nimmo DL et al. Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 1991; 349:684–687.

    Article  CAS  Google Scholar 

  49. Bulte JWM, Douglas T, Mann S et al. Initial assessment of magnetoferritin biokinetics and proton relaxation enhancement in rats. Acad Radiol 1995; 2:871–878.

    Article  PubMed  CAS  Google Scholar 

  50. Bulte JWM, Douglas T, Witwer B et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotech 2001; 19:1141–1147.

    Article  CAS  Google Scholar 

  51. Strable E, Bulte JWM, Moskowitz B et al. Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem Mater 2001; 13:2201–2209.

    Article  CAS  Google Scholar 

  52. Bulte JWM, De Cuyper M, Despres D et al. Short-vs. long-circulating magnetoliposomes as bone marrow-seeking MR contrast agents. J Magn Reson Imaging 1999; 9:329–335.

    Article  PubMed  CAS  Google Scholar 

  53. Cheon J, Kang NJ, Lee SM et al. Shape evolution of single-crystalline iron oxide nanocrystals. J Am Chem Soc 2004; 126:1950–1951.

    Article  PubMed  CAS  Google Scholar 

  54. Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 2002; 124:8204–8205.

    Article  PubMed  CAS  Google Scholar 

  55. Redl FX, Black CT, Papaefthymiou GC et al. Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J Am Chem Soc 2004; 126:14583–14599.

    Article  PubMed  CAS  Google Scholar 

  56. Park J, An K, Hwang Y et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 2004; 3:891–895.

    Article  PubMed  CAS  Google Scholar 

  57. Jana NR, Chen Y, Peng X. Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 2004; 16:3931–3935.

    Article  CAS  Google Scholar 

  58. Song HT, Choi JS, Huh YM et al. Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. J Am Chem Soc 2005; 127:9992–9993.

    Article  PubMed  CAS  Google Scholar 

  59. Pileni MP. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2003; 2:145–150.

    Article  PubMed  CAS  Google Scholar 

  60. Nitin N, LaConte LEW, Zurkiya O et al. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J Biol Inorg Chem 2004; 9:706–712.

    Article  PubMed  CAS  Google Scholar 

  61. Yee C, Kataby G, Ulman A et al. Self-assembled monolayers of alkanesulfonic and-phosphonic acids on amorphous iron oxide nanoparticles. Langmuir 1999; 15:7111–7115.

    Article  CAS  Google Scholar 

  62. Harris LA, Goff JD, Carmichael AY et al. Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem Mater 2003; 15:1367–1377.

    Article  CAS  Google Scholar 

  63. Burke NAD, Stover HDH, Dawson FD. Magnetic nanocomposites: Preparation and characterization of polymer-coated iron nanoparticles. Chem Mater 2002; 14:4752–4761.

    Article  CAS  Google Scholar 

  64. Lu Y, Yin Y, Mayers BT et al. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett 2002; 2:183–186.

    Article  CAS  Google Scholar 

  65. Santra S, Tapec R, Theodoropoulou N et al. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir 2001; 17:2900–2906.

    Article  CAS  Google Scholar 

  66. Dubertret B, Skourides P, Norris DJ et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002; 298:1759–1762.

    Article  PubMed  CAS  Google Scholar 

  67. Kim SW, Kim S, Tracy JB et al. Phosphine oxide polymer for water-soluble nanoparticles. J Am Chem Soc 2005; 127:4556–4557.

    Article  PubMed  CAS  Google Scholar 

  68. Kohler N, Fryxell GE, Zhang M. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 2004; 126:7206–7211.

    Article  PubMed  CAS  Google Scholar 

  69. Weissleder R, Lee AS, Fischman AJ et al. Polyclonal human immunoglobulin G labeled with polymeric iron oxide: Antibody MR imaging. Radiology 1991; 181:245–249.

    PubMed  CAS  Google Scholar 

  70. Schmitz SA, Taupitz M, Wagner S et al. Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. J Magn Reson Imaging 2001; 14:355–361.

    Article  PubMed  CAS  Google Scholar 

  71. Wadghiri YZ, Sigurdsson EM, Sadowski M et al. Detection of Alzheimer’s amyloid in Transgenic mice using magnetic resonance microimaging. Magn Reson Med 2003; 50:293–302.

    Article  PubMed  CAS  Google Scholar 

  72. Risau W. Mechanisms of angiogenesis. Nature 1997; 386:671–674.

    Article  PubMed  CAS  Google Scholar 

  73. Veikkola T, Karkkainen M, Claesson-Welsh L et al. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 2000; 60:203–212.

    PubMed  CAS  Google Scholar 

  74. Kim I, Kim HG, So JN et al. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Circ Res 2000; 86:24–29.

    PubMed  CAS  Google Scholar 

  75. Saeed M, Wendland MF, Engelbrecht M et al. Value of blood pool contrast agents in magnetic resonance angiography of the pelvis and lower extremities. Eur Radiol 1998; 8:1047–1053.

    Article  PubMed  CAS  Google Scholar 

  76. Lahorte CM, Vanderheyden JL, Steinmetz N et al. Apoptosis-detecting radioligands: Current state of the art and future perspectives. Eur J Nucl Med Mol Imaging 2004; 31:887–919.

    Article  PubMed  CAS  Google Scholar 

  77. Shah K, Weissleder R. Molecular optical imaging: Applications leading to the development of present day therapeutics. NeuroRx 2005; 2:215–225.

    Article  PubMed  Google Scholar 

  78. Gross S, Piwnica-Worms D. Spying on cancer: Molecular imaging in vivo with genetically encoded reporters. Cancer Cell 2005; 7:5–15.

    PubMed  CAS  Google Scholar 

  79. Haberkorn U, Altmann A. Functional genomics and radioisotope-based imaging procedures. Ann Med 2003; 35:370–379.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Jun, Yw., Jang, Jt., Cheon, J. (2007). Magnetic Nanoparticle Assisted Molecular MR Imaging. In: Chan, W.C.W. (eds) Bio-Applications of Nanoparticles. Advances in Experimental Medicine and Biology, vol 620. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76713-0_7

Download citation

Publish with us

Policies and ethics